|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The GQA dataset.""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{hudson2019gqa, |
|
title={Gqa: A new dataset for real-world visual reasoning and compositional question answering}, |
|
author={Hudson, Drew A and Manning, Christopher D}, |
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, |
|
pages={6700--6709}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
GQA is a new dataset for real-world visual reasoning and compositional question answering, |
|
seeking to address key shortcomings of previous visual question answering (VQA) datasets. |
|
""" |
|
|
|
_URLS = { |
|
"train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json", |
|
"dev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json", |
|
"img": "https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip", |
|
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json", |
|
} |
|
|
|
_IMG_DIR = "images" |
|
|
|
|
|
class Gqa(datasets.GeneratorBasedBuilder): |
|
"""The GQA dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="gqa", version=datasets.Version("1.0.0"), description="GQA dataset."), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"question_id": datasets.Value("int32"), |
|
"image_id": datasets.Value("string"), |
|
"label": datasets.Value("int32"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URLS) |
|
self.ans2label = json.load(open(dl_dir["ans2label"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": dl_dir["train"], "img_dir": os.path.join(dl_dir["img"], _IMG_DIR)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": dl_dir["dev"], "img_dir": os.path.join(dl_dir["img"], _IMG_DIR)}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, img_dir): |
|
""" Yields examples as (key, example) tuples. """ |
|
with open(filepath, encoding="utf-8") as f: |
|
gqa = json.load(f) |
|
for id_, d in enumerate(gqa): |
|
img_id = os.path.join(img_dir, d["img_id"] + ".jpg") |
|
label = self.ans2label[next(iter(d["label"]))] |
|
yield id_, { |
|
"question": d["sent"], |
|
"question_id": d["question_id"], |
|
"image_id": img_id, |
|
"label": label, |
|
} |