frankaging
commited on
Commit
·
3bb3188
1
Parent(s):
8910c0a
add round2
Browse files- dataset_infos.json +1 -1
- dynasent.py +153 -23
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"dynabench.dynasent.r1.all": {"description": "DynaSent is an English-language benchmark task for ternary\n (positive/negative/neutral) sentiment analysis.\n For more details on the dataset construction process,\n see https://github.com/cgpotts/dynasent.", "citation": "@article{\n potts-etal-2020-dynasent,\n title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},\n author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus\n and Kiela, Douwe},\n journal={arXiv preprint arXiv:2012.15349},\n url={https://arxiv.org/abs/2012.15349},\n year={2020}\n }", "homepage": "https://dynabench.org/tasks/3", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "hit_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "indices_into_review_text": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "model_0_label": {"dtype": "string", "id": null, "_type": "Value"}, "model_0_probs": {"negative": {"dtype": "float32", "id": null, "_type": "Value"}, "positive": {"dtype": "float32", "id": null, "_type": "Value"}, "neutral": {"dtype": "float32", "id": null, "_type": "Value"}}, "text_id": {"dtype": "string", "id": null, "_type": "Value"}, "review_id": {"dtype": "string", "id": null, "_type": "Value"}, "review_rating": {"dtype": "int32", "id": null, "_type": "Value"}, "label_distribution": {"positive": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "negative": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "neutral": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "mixed": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}, "metadata": {"split": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "int32", "id": null, "_type": "Value"}, "subset": {"dtype": "string", "id": null, "_type": "Value"}, "model_in_the_loop": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "dynabench_dyna_sent", "config_name": "dynabench.dynasent.r1.all", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23007540, "num_examples": 80488, "dataset_name": "dynabench_dyna_sent"}, "validation": {"name": "validation", "num_bytes": 1057327, "num_examples": 3600, "dataset_name": "dynabench_dyna_sent"}, "test": {"name": "test", "num_bytes": 1035527, "num_examples": 3600, "dataset_name": "dynabench_dyna_sent"}}, "download_checksums": {"https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip": {"num_bytes": 17051772, "checksum": "33001cf394618aa38f9530c43ca87072b92f5ee609a02afa2d168d25560cedfd"}}, "download_size": 17051772, "post_processing_size": null, "dataset_size": 25100394, "size_in_bytes": 42152166}}
|
|
|
1 |
+
{"dynabench.dynasent.r1.all": {"description": "DynaSent is an English-language benchmark task for ternary\n (positive/negative/neutral) sentiment analysis.\n For more details on the dataset construction process,\n see https://github.com/cgpotts/dynasent.", "citation": "@article{\n potts-etal-2020-dynasent,\n title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},\n author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus\n and Kiela, Douwe},\n journal={arXiv preprint arXiv:2012.15349},\n url={https://arxiv.org/abs/2012.15349},\n year={2020}\n }", "homepage": "https://dynabench.org/tasks/3", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "hit_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "indices_into_review_text": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "model_0_label": {"dtype": "string", "id": null, "_type": "Value"}, "model_0_probs": {"negative": {"dtype": "float32", "id": null, "_type": "Value"}, "positive": {"dtype": "float32", "id": null, "_type": "Value"}, "neutral": {"dtype": "float32", "id": null, "_type": "Value"}}, "text_id": {"dtype": "string", "id": null, "_type": "Value"}, "review_id": {"dtype": "string", "id": null, "_type": "Value"}, "review_rating": {"dtype": "int32", "id": null, "_type": "Value"}, "label_distribution": {"positive": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "negative": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "neutral": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "mixed": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}, "metadata": {"split": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "int32", "id": null, "_type": "Value"}, "subset": {"dtype": "string", "id": null, "_type": "Value"}, "model_in_the_loop": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "dynabench_dyna_sent", "config_name": "dynabench.dynasent.r1.all", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23007540, "num_examples": 80488, "dataset_name": "dynabench_dyna_sent"}, "validation": {"name": "validation", "num_bytes": 1057327, "num_examples": 3600, "dataset_name": "dynabench_dyna_sent"}, "test": {"name": "test", "num_bytes": 1035527, "num_examples": 3600, "dataset_name": "dynabench_dyna_sent"}}, "download_checksums": {"https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip": {"num_bytes": 17051772, "checksum": "33001cf394618aa38f9530c43ca87072b92f5ee609a02afa2d168d25560cedfd"}}, "download_size": 17051772, "post_processing_size": null, "dataset_size": 25100394, "size_in_bytes": 42152166}, "dynabench.dynasent.r2.all": {"description": "DynaSent is an English-language benchmark task for ternary\n (positive/negative/neutral) sentiment analysis.\n For more details on the dataset construction process,\n see https://github.com/cgpotts/dynasent.", "citation": "@article{\n potts-etal-2020-dynasent,\n title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},\n author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus\n and Kiela, Douwe},\n journal={arXiv preprint arXiv:2012.15349},\n url={https://arxiv.org/abs/2012.15349},\n year={2020}\n }", "homepage": "https://dynabench.org/tasks/3", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "hit_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_author": {"dtype": "string", "id": null, "_type": "Value"}, "has_prompt": {"dtype": "bool", "id": null, "_type": "Value"}, "prompt_data": {"indices_into_review_text": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "review_rating": {"dtype": "int32", "id": null, "_type": "Value"}, "prompt_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "review_id": {"dtype": "string", "id": null, "_type": "Value"}}, "model_1_label": {"dtype": "string", "id": null, "_type": "Value"}, "model_1_probs": {"negative": {"dtype": "float32", "id": null, "_type": "Value"}, "positive": {"dtype": "float32", "id": null, "_type": "Value"}, "neutral": {"dtype": "float32", "id": null, "_type": "Value"}}, "text_id": {"dtype": "string", "id": null, "_type": "Value"}, "label_distribution": {"positive": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "negative": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "neutral": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "mixed": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}, "metadata": {"split": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "int32", "id": null, "_type": "Value"}, "subset": {"dtype": "string", "id": null, "_type": "Value"}, "model_in_the_loop": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "dynabench_dyna_sent", "config_name": "dynabench.dynasent.r2.all", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4604051, "num_examples": 13065, "dataset_name": "dynabench_dyna_sent"}, "validation": {"name": "validation", "num_bytes": 264059, "num_examples": 720, "dataset_name": "dynabench_dyna_sent"}, "test": {"name": "test", "num_bytes": 259782, "num_examples": 720, "dataset_name": "dynabench_dyna_sent"}}, "download_checksums": {"https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip": {"num_bytes": 17051772, "checksum": "33001cf394618aa38f9530c43ca87072b92f5ee609a02afa2d168d25560cedfd"}}, "download_size": 17051772, "post_processing_size": null, "dataset_size": 5127892, "size_in_bytes": 22179664}}
|
dynasent.py
CHANGED
@@ -23,7 +23,7 @@ from collections import OrderedDict
|
|
23 |
import datasets
|
24 |
logger = datasets.logging.get_logger(__name__)
|
25 |
_VERSION = datasets.Version("1.1.0") # v1.1 fixed for example uid.
|
26 |
-
_NUM_ROUNDS =
|
27 |
_DESCRIPTION = """\
|
28 |
Dynabench.DynaSent is a Sentiment Analysis dataset collected using a
|
29 |
human-and-model-in-the-loop.
|
@@ -115,6 +115,82 @@ _ROUND_DETAILS = {
|
|
115 |
"model": "RoBERTa"
|
116 |
}
|
117 |
}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
)
|
119 |
}
|
120 |
|
@@ -221,25 +297,79 @@ class DynabenchDynaSent(datasets.GeneratorBasedBuilder):
|
|
221 |
for line in f:
|
222 |
d = json.loads(line)
|
223 |
if d['gold_label'] in ternary_labels:
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
"
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
import datasets
|
24 |
logger = datasets.logging.get_logger(__name__)
|
25 |
_VERSION = datasets.Version("1.1.0") # v1.1 fixed for example uid.
|
26 |
+
_NUM_ROUNDS = 2
|
27 |
_DESCRIPTION = """\
|
28 |
Dynabench.DynaSent is a Sentiment Analysis dataset collected using a
|
29 |
human-and-model-in-the-loop.
|
|
|
115 |
"model": "RoBERTa"
|
116 |
}
|
117 |
}),
|
118 |
+
),
|
119 |
+
2: DynabenchRoundDetails(
|
120 |
+
citation="""\
|
121 |
+
@article{
|
122 |
+
potts-etal-2020-dynasent,
|
123 |
+
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis},
|
124 |
+
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus
|
125 |
+
and Kiela, Douwe},
|
126 |
+
journal={arXiv preprint arXiv:2012.15349},
|
127 |
+
url={https://arxiv.org/abs/2012.15349},
|
128 |
+
year={2020}
|
129 |
+
}
|
130 |
+
""".strip(),
|
131 |
+
description="""\
|
132 |
+
DynaSent is an English-language benchmark task for ternary
|
133 |
+
(positive/negative/neutral) sentiment analysis.
|
134 |
+
For more details on the dataset construction process,
|
135 |
+
see https://github.com/cgpotts/dynasent.
|
136 |
+
""".strip(),
|
137 |
+
homepage="https://dynabench.org/tasks/3",
|
138 |
+
data_license="CC BY 4.0",
|
139 |
+
data_url="https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip",
|
140 |
+
data_features=datasets.Features(
|
141 |
+
{
|
142 |
+
"id": datasets.Value("string"),
|
143 |
+
"hit_ids": datasets.features.Sequence(
|
144 |
+
datasets.Value("string")
|
145 |
+
),
|
146 |
+
"sentence": datasets.Value("string"),
|
147 |
+
"sentence_author": datasets.Value("string"),
|
148 |
+
"has_prompt": datasets.Value("bool"),
|
149 |
+
"prompt_data": {
|
150 |
+
"indices_into_review_text": datasets.features.Sequence(
|
151 |
+
datasets.Value("int32")
|
152 |
+
),
|
153 |
+
"review_rating": datasets.Value("int32"),
|
154 |
+
"prompt_sentence": datasets.Value("string"),
|
155 |
+
"review_id": datasets.Value("string")
|
156 |
+
},
|
157 |
+
"model_1_label": datasets.Value("string"),
|
158 |
+
"model_1_probs": {
|
159 |
+
"negative": datasets.Value("float32"),
|
160 |
+
"positive": datasets.Value("float32"),
|
161 |
+
"neutral": datasets.Value("float32")
|
162 |
+
},
|
163 |
+
"text_id": datasets.Value("string"),
|
164 |
+
"label_distribution": {
|
165 |
+
"positive": datasets.features.Sequence(
|
166 |
+
datasets.Value("string")
|
167 |
+
),
|
168 |
+
"negative": datasets.features.Sequence(
|
169 |
+
datasets.Value("string")
|
170 |
+
),
|
171 |
+
"neutral": datasets.features.Sequence(
|
172 |
+
datasets.Value("string")
|
173 |
+
),
|
174 |
+
"mixed": datasets.features.Sequence(
|
175 |
+
datasets.Value("string")
|
176 |
+
)
|
177 |
+
},
|
178 |
+
"gold_label": datasets.Value("string"),
|
179 |
+
"metadata": {
|
180 |
+
"split": datasets.Value("string"),
|
181 |
+
"round": datasets.Value("int32"),
|
182 |
+
"subset": datasets.Value("string"),
|
183 |
+
"model_in_the_loop": datasets.Value("string"),
|
184 |
+
}
|
185 |
+
}
|
186 |
+
),
|
187 |
+
data_subset_map=OrderedDict({
|
188 |
+
"all": {
|
189 |
+
"dir": "dynasent-v1.1",
|
190 |
+
"file_prefix": "dynasent-v1.1-round02-dynabench-",
|
191 |
+
"model": "RoBERTa"
|
192 |
+
}
|
193 |
+
}),
|
194 |
)
|
195 |
}
|
196 |
|
|
|
297 |
for line in f:
|
298 |
d = json.loads(line)
|
299 |
if d['gold_label'] in ternary_labels:
|
300 |
+
if round == 1:
|
301 |
+
# Construct DynaSent features.
|
302 |
+
yield d["text_id"], {
|
303 |
+
"id": d["text_id"],
|
304 |
+
# DynaSent Example.
|
305 |
+
"hit_ids": d["hit_ids"],
|
306 |
+
"sentence": d["sentence"],
|
307 |
+
"indices_into_review_text": d["indices_into_review_text"],
|
308 |
+
"model_0_label": d["model_0_label"],
|
309 |
+
"model_0_probs": d["model_0_probs"],
|
310 |
+
"text_id": d["text_id"],
|
311 |
+
"review_id": d["review_id"],
|
312 |
+
"review_rating": d["review_rating"],
|
313 |
+
"label_distribution": d["label_distribution"],
|
314 |
+
"gold_label": d["gold_label"],
|
315 |
+
# Metadata.
|
316 |
+
"metadata": {
|
317 |
+
"split": split,
|
318 |
+
"round": round,
|
319 |
+
"subset": subset,
|
320 |
+
"model_in_the_loop": model_in_the_loop
|
321 |
+
}
|
322 |
+
}
|
323 |
+
elif round == 2:
|
324 |
+
# Construct DynaSent features.
|
325 |
+
if d["has_prompt"]:
|
326 |
+
if "indices_into_review_text" in d["prompt_data"]:
|
327 |
+
indices_into_review_text = d["prompt_data"]["indices_into_review_text"]
|
328 |
+
else:
|
329 |
+
indices_into_review_text = []
|
330 |
+
if "review_rating" in d["prompt_data"]:
|
331 |
+
review_rating = d["prompt_data"]["review_rating"]
|
332 |
+
else:
|
333 |
+
review_rating = -1 # -1 means unknown.
|
334 |
+
if "review_id" in d["prompt_data"]:
|
335 |
+
review_id = d["prompt_data"]["review_id"]
|
336 |
+
else:
|
337 |
+
review_id = ""
|
338 |
+
if "prompt_sentence" in d["prompt_data"]:
|
339 |
+
prompt_sentence = d["prompt_data"]["prompt_sentence"]
|
340 |
+
else:
|
341 |
+
prompt_sentence = ""
|
342 |
+
prompt_data = {
|
343 |
+
"indices_into_review_text": indices_into_review_text,
|
344 |
+
"review_rating": review_rating,
|
345 |
+
"prompt_sentence": prompt_sentence,
|
346 |
+
"review_id": review_id,
|
347 |
+
}
|
348 |
+
else:
|
349 |
+
prompt_data = {
|
350 |
+
"indices_into_review_text": [],
|
351 |
+
"review_rating": -1, # -1 means unknown.
|
352 |
+
"prompt_sentence": "",
|
353 |
+
"review_id": "",
|
354 |
+
}
|
355 |
+
yield d["text_id"], {
|
356 |
+
"id": d["text_id"],
|
357 |
+
# DynaSent Example.
|
358 |
+
"hit_ids": d["hit_ids"],
|
359 |
+
"sentence": d["sentence"],
|
360 |
+
"sentence_author": d["sentence_author"],
|
361 |
+
"has_prompt": d["has_prompt"],
|
362 |
+
"prompt_data": prompt_data,
|
363 |
+
"model_1_label": d["model_1_label"],
|
364 |
+
"model_1_probs": d["model_1_probs"],
|
365 |
+
"text_id": d["text_id"],
|
366 |
+
"label_distribution": d["label_distribution"],
|
367 |
+
"gold_label": d["gold_label"],
|
368 |
+
# Metadata.
|
369 |
+
"metadata": {
|
370 |
+
"split": split,
|
371 |
+
"round": round,
|
372 |
+
"subset": subset,
|
373 |
+
"model_in_the_loop": model_in_the_loop
|
374 |
+
}
|
375 |
+
}
|