car-dataset-repo-v3 / json2csv.py
duyan2803's picture
Add files using upload-large-folder tool
6305384 verified
raw
history blame
1.96 kB
import pandas as pd
import json
from sklearn.model_selection import train_test_split
# Load JSON data
with open('data.json', 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract the primary data structure
names = list(data.keys())
images = [item.get('images', []) for item in data.values()]
# Collect details into separate columns dynamically using a dictionary comprehension
details_columns = {key: [] for key in {k for v in data.values() for k in v.get('details', {})}}
for value in data.values():
for detail_key in details_columns:
details_columns[detail_key].append(value.get('details', {}).get(detail_key))
# Create the DataFrame
columns = {
"Name": names,
"Images": images,
**details_columns
}
df = pd.DataFrame(columns)
# Generate HTML column for multiple images
def generate_html(image_paths):
# Convert string representation of list to an actual list
if isinstance(image_paths, str):
image_paths = eval(image_paths) # Convert stringified list to Python list
elif not isinstance(image_paths, list):
return None # Handle unexpected cases
# Generate HTML for all image paths
return ''.join([f'<img src="{path}" style="width:100px; margin:5px;" />' for path in image_paths])
# Add HTML column
df['Images_HTML'] = df['Images'].apply(generate_html)
# Flatten the dataset so each image gets its own row
# Remove columns with all None values
df_flattened = df.dropna(axis=1, how='all')
# Remove column named 'Name' if it exists
df_flattened = df_flattened.drop(columns=['Charging portsLog in to see.'], errors='ignore')
df_flattened = df_flattened.loc[:, df_flattened.notna().sum() >= 10]
# Split data into train, test, and validation sets
df_flattened.to_parquet('train_with_html.parquet', index=False)
print("Data has been flattened, split, and saved to 'train.csv', 'test.csv', and 'val.csv'.")
print("Train dataset with HTML column saved to 'train_with_html.parquet'.")