Datasets:
Commit
•
beddd3c
1
Parent(s):
d240107
refactor dataset loading script
Browse filesSome refactoring to the dataset loading script. Each example comprises an image + metadata and an `objects` field, which contains a list with the bounding boxes associated with that image.
- DocLayNet.py +89 -85
DocLayNet.py
CHANGED
@@ -6,10 +6,10 @@ https://huggingface.co/datasets/ydshieh/coco_dataset_script/blob/main/coco_datas
|
|
6 |
import json
|
7 |
import os
|
8 |
import datasets
|
|
|
9 |
|
10 |
|
11 |
class COCOBuilderConfig(datasets.BuilderConfig):
|
12 |
-
|
13 |
def __init__(self, name, splits, **kwargs):
|
14 |
super().__init__(name, **kwargs)
|
15 |
self.splits = splits
|
@@ -43,12 +43,10 @@ _LICENSE = "CDLA-Permissive-1.0"
|
|
43 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
44 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
45 |
|
46 |
-
# This script is supposed to work with local (downloaded) COCO dataset.
|
47 |
_URLs = {
|
48 |
"core": "https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip",
|
49 |
}
|
50 |
|
51 |
-
|
52 |
# Name of the dataset usually match the script name with CamelCase instead of snake_case
|
53 |
class COCODataset(datasets.GeneratorBasedBuilder):
|
54 |
"""An example dataset script to work with the local (downloaded) COCO dataset"""
|
@@ -57,28 +55,51 @@ class COCODataset(datasets.GeneratorBasedBuilder):
|
|
57 |
|
58 |
BUILDER_CONFIG_CLASS = COCOBuilderConfig
|
59 |
BUILDER_CONFIGS = [
|
60 |
-
COCOBuilderConfig(name=
|
61 |
]
|
62 |
DEFAULT_CONFIG_NAME = "2022.08"
|
63 |
|
64 |
def _info(self):
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
"id": datasets.Value("int64"),
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
72 |
-
|
73 |
-
|
74 |
-
"doc_category": datasets.Value("string"), # high-level document category
|
75 |
-
"collection": datasets.Value("string"), # sub-collection name
|
76 |
-
"doc_name": datasets.Value("string"), # original document filename
|
77 |
-
"page_no": datasets.Value("int64"), # page number in original document
|
78 |
-
# "precedence": datasets.Value("int64"), # annotation order, non-zero in case of redundant double- or triple-annotation
|
79 |
}
|
80 |
-
|
81 |
-
features = datasets.Features(feature_dict)
|
82 |
|
83 |
return datasets.DatasetInfo(
|
84 |
# This is the description that will appear on the datasets page.
|
@@ -99,53 +120,41 @@ class COCODataset(datasets.GeneratorBasedBuilder):
|
|
99 |
|
100 |
def _split_generators(self, dl_manager):
|
101 |
"""Returns SplitGenerators."""
|
102 |
-
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
103 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
104 |
-
|
105 |
-
# data_dir = self.config.data_dir
|
106 |
-
# if not data_dir:
|
107 |
-
# raise ValueError(
|
108 |
-
# "This script is supposed to work with local (downloaded) COCO dataset. The argument `data_dir` in `load_dataset()` is required."
|
109 |
-
# )
|
110 |
-
|
111 |
-
# _DL_URLS = {
|
112 |
-
# "train": os.path.join(data_dir, "train2017.zip"),
|
113 |
-
# "val": os.path.join(data_dir, "val2017.zip"),
|
114 |
-
# "test": os.path.join(data_dir, "test2017.zip"),
|
115 |
-
# "annotations_trainval": os.path.join(data_dir, "annotations_trainval2017.zip"),
|
116 |
-
# "image_info_test": os.path.join(data_dir, "image_info_test2017.zip"),
|
117 |
-
# }
|
118 |
archive_path = dl_manager.download_and_extract(_URLs)
|
119 |
-
print("archive_path: ", archive_path)
|
120 |
-
|
121 |
splits = []
|
122 |
for split in self.config.splits:
|
123 |
-
if split ==
|
124 |
dataset = datasets.SplitGenerator(
|
125 |
name=datasets.Split.TRAIN,
|
126 |
# These kwargs will be passed to _generate_examples
|
127 |
gen_kwargs={
|
128 |
-
"json_path": os.path.join(
|
|
|
|
|
129 |
"image_dir": os.path.join(archive_path["core"], "PNG"),
|
130 |
"split": "train",
|
131 |
-
}
|
132 |
)
|
133 |
-
elif split in [
|
134 |
dataset = datasets.SplitGenerator(
|
135 |
name=datasets.Split.VALIDATION,
|
136 |
# These kwargs will be passed to _generate_examples
|
137 |
gen_kwargs={
|
138 |
-
"json_path": os.path.join(
|
|
|
|
|
139 |
"image_dir": os.path.join(archive_path["core"], "PNG"),
|
140 |
"split": "val",
|
141 |
},
|
142 |
)
|
143 |
-
elif split ==
|
144 |
dataset = datasets.SplitGenerator(
|
145 |
name=datasets.Split.TEST,
|
146 |
# These kwargs will be passed to _generate_examples
|
147 |
gen_kwargs={
|
148 |
-
"json_path": os.path.join(
|
|
|
|
|
149 |
"image_dir": os.path.join(archive_path["core"], "PNG"),
|
150 |
"split": "test",
|
151 |
},
|
@@ -154,53 +163,48 @@ class COCODataset(datasets.GeneratorBasedBuilder):
|
|
154 |
continue
|
155 |
|
156 |
splits.append(dataset)
|
157 |
-
|
158 |
return splits
|
159 |
|
160 |
def _generate_examples(
|
161 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
162 |
-
self,
|
|
|
|
|
|
|
163 |
):
|
164 |
-
"""
|
165 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
166 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
annotations =
|
184 |
-
|
185 |
-
# build a dict of image_id ->
|
186 |
for annotation in annotations:
|
187 |
-
|
188 |
-
image_info = d[annotation["image_id"]]
|
189 |
-
annotation.update(image_info)
|
190 |
-
annotation["id"] = _id
|
191 |
-
|
192 |
-
entries = annotations
|
193 |
-
|
194 |
-
for id_, entry in enumerate(entries):
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
6 |
import json
|
7 |
import os
|
8 |
import datasets
|
9 |
+
import collections
|
10 |
|
11 |
|
12 |
class COCOBuilderConfig(datasets.BuilderConfig):
|
|
|
13 |
def __init__(self, name, splits, **kwargs):
|
14 |
super().__init__(name, **kwargs)
|
15 |
self.splits = splits
|
|
|
43 |
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
44 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
45 |
|
|
|
46 |
_URLs = {
|
47 |
"core": "https://codait-cos-dax.s3.us.cloud-object-storage.appdomain.cloud/dax-doclaynet/1.0.0/DocLayNet_core.zip",
|
48 |
}
|
49 |
|
|
|
50 |
# Name of the dataset usually match the script name with CamelCase instead of snake_case
|
51 |
class COCODataset(datasets.GeneratorBasedBuilder):
|
52 |
"""An example dataset script to work with the local (downloaded) COCO dataset"""
|
|
|
55 |
|
56 |
BUILDER_CONFIG_CLASS = COCOBuilderConfig
|
57 |
BUILDER_CONFIGS = [
|
58 |
+
COCOBuilderConfig(name="2022.08", splits=["train", "val", "test"]),
|
59 |
]
|
60 |
DEFAULT_CONFIG_NAME = "2022.08"
|
61 |
|
62 |
def _info(self):
|
63 |
+
features = datasets.Features(
|
64 |
+
{
|
65 |
+
"image_id": datasets.Value("int64"),
|
66 |
+
"image": datasets.Image(),
|
67 |
+
"width": datasets.Value("int32"),
|
68 |
+
"height": datasets.Value("int32"),
|
69 |
+
# Custom fields
|
70 |
+
"doc_category": datasets.Value(
|
71 |
+
"string"
|
72 |
+
), # high-level document category
|
73 |
+
"collection": datasets.Value("string"), # sub-collection name
|
74 |
+
"doc_name": datasets.Value("string"), # original document filename
|
75 |
+
"page_no": datasets.Value("int64"), # page number in original document
|
76 |
+
}
|
77 |
+
)
|
78 |
+
object_dict = {
|
79 |
+
"category_id": datasets.ClassLabel(
|
80 |
+
names=[
|
81 |
+
"Caption",
|
82 |
+
"Footnote",
|
83 |
+
"Formula",
|
84 |
+
"List-item",
|
85 |
+
"Page-footer",
|
86 |
+
"Page-header",
|
87 |
+
"Picture",
|
88 |
+
"Section-header",
|
89 |
+
"Table",
|
90 |
+
"Text",
|
91 |
+
"Title",
|
92 |
+
]
|
93 |
+
),
|
94 |
+
"image_id": datasets.Value("string"),
|
95 |
"id": datasets.Value("int64"),
|
96 |
+
"area": datasets.Value("int64"),
|
97 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
98 |
+
"segmentation": [[datasets.Value("float32")]],
|
99 |
+
"iscrowd": datasets.Value("bool"),
|
100 |
+
"precedence": datasets.Value("int32"),
|
|
|
|
|
|
|
|
|
|
|
101 |
}
|
102 |
+
features["objects"] = [object_dict]
|
|
|
103 |
|
104 |
return datasets.DatasetInfo(
|
105 |
# This is the description that will appear on the datasets page.
|
|
|
120 |
|
121 |
def _split_generators(self, dl_manager):
|
122 |
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
archive_path = dl_manager.download_and_extract(_URLs)
|
|
|
|
|
124 |
splits = []
|
125 |
for split in self.config.splits:
|
126 |
+
if split == "train":
|
127 |
dataset = datasets.SplitGenerator(
|
128 |
name=datasets.Split.TRAIN,
|
129 |
# These kwargs will be passed to _generate_examples
|
130 |
gen_kwargs={
|
131 |
+
"json_path": os.path.join(
|
132 |
+
archive_path["core"], "COCO", "train.json"
|
133 |
+
),
|
134 |
"image_dir": os.path.join(archive_path["core"], "PNG"),
|
135 |
"split": "train",
|
136 |
+
},
|
137 |
)
|
138 |
+
elif split in ["val", "valid", "validation", "dev"]:
|
139 |
dataset = datasets.SplitGenerator(
|
140 |
name=datasets.Split.VALIDATION,
|
141 |
# These kwargs will be passed to _generate_examples
|
142 |
gen_kwargs={
|
143 |
+
"json_path": os.path.join(
|
144 |
+
archive_path["core"], "COCO", "val.json"
|
145 |
+
),
|
146 |
"image_dir": os.path.join(archive_path["core"], "PNG"),
|
147 |
"split": "val",
|
148 |
},
|
149 |
)
|
150 |
+
elif split == "test":
|
151 |
dataset = datasets.SplitGenerator(
|
152 |
name=datasets.Split.TEST,
|
153 |
# These kwargs will be passed to _generate_examples
|
154 |
gen_kwargs={
|
155 |
+
"json_path": os.path.join(
|
156 |
+
archive_path["core"], "COCO", "test.json"
|
157 |
+
),
|
158 |
"image_dir": os.path.join(archive_path["core"], "PNG"),
|
159 |
"split": "test",
|
160 |
},
|
|
|
163 |
continue
|
164 |
|
165 |
splits.append(dataset)
|
|
|
166 |
return splits
|
167 |
|
168 |
def _generate_examples(
|
169 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
170 |
+
self,
|
171 |
+
json_path,
|
172 |
+
image_dir,
|
173 |
+
split,
|
174 |
):
|
175 |
+
"""Yields examples as (key, example) tuples."""
|
176 |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
177 |
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
178 |
+
def _image_info_to_example(image_info, image_dir):
|
179 |
+
image = image_info["file_name"]
|
180 |
+
return {
|
181 |
+
"image_id": image_info["id"],
|
182 |
+
"image": os.path.join(image_dir, image),
|
183 |
+
"width": image_info["width"],
|
184 |
+
"height": image_info["height"],
|
185 |
+
"doc_category": image_info["doc_category"],
|
186 |
+
"collection": image_info["collection"],
|
187 |
+
"doc_name": image_info["doc_name"],
|
188 |
+
"page_no": image_info["page_no"],
|
189 |
+
}
|
190 |
+
|
191 |
+
with open(json_path, encoding="utf8") as f:
|
192 |
+
annotation_data = json.load(f)
|
193 |
+
images = annotation_data["images"]
|
194 |
+
annotations = annotation_data["annotations"]
|
195 |
+
image_id_to_annotations = collections.defaultdict(list)
|
|
|
196 |
for annotation in annotations:
|
197 |
+
image_id_to_annotations[annotation["image_id"]].append(annotation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
for idx, image_info in enumerate(images):
|
200 |
+
example = _image_info_to_example(image_info, image_dir)
|
201 |
+
annotations = image_id_to_annotations[image_info["id"]]
|
202 |
+
objects = []
|
203 |
+
for annotation in annotations:
|
204 |
+
category_id = annotation["category_id"] # Zero based counting
|
205 |
+
if category_id != -1:
|
206 |
+
category_id = category_id - 1
|
207 |
+
annotation["category_id"] = category_id
|
208 |
+
objects.append(annotation)
|
209 |
+
example["objects"] = objects
|
210 |
+
yield idx, example
|