|
|
|
|
|
|
|
|
|
import numpy as np |
|
import pyarrow as pa |
|
|
|
from dora import DoraStatus |
|
from ultralytics import YOLO |
|
|
|
pa.array([]) |
|
|
|
CAMERA_WIDTH = 960 |
|
CAMERA_HEIGHT = 540 |
|
|
|
|
|
class Operator: |
|
""" |
|
Infering object from images |
|
""" |
|
|
|
def __init__(self): |
|
self.model = YOLO("yolov8n.pt") |
|
|
|
def on_event( |
|
self, |
|
dora_event, |
|
send_output, |
|
) -> DoraStatus: |
|
if dora_event["type"] == "INPUT": |
|
return self.on_input(dora_event, send_output) |
|
return DoraStatus.CONTINUE |
|
|
|
def on_input( |
|
self, |
|
dora_input, |
|
send_output, |
|
) -> DoraStatus: |
|
"""Handle image |
|
Args: |
|
dora_input (dict) containing the "id", value, and "metadata" |
|
send_output Callable[[str, bytes | pa.Array, Optional[dict]], None]: |
|
Function for sending output to the dataflow: |
|
- First argument is the `output_id` |
|
- Second argument is the data as either bytes or `pa.Array` |
|
- Third argument is dora metadata dict |
|
e.g.: `send_output("bbox", pa.array([100], type=pa.uint8()), dora_event["metadata"])` |
|
""" |
|
|
|
frame = dora_input["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) |
|
frame = frame[:, :, ::-1] |
|
results = self.model(frame) |
|
|
|
boxes = np.array(results[0].boxes.xyxy.cpu()) |
|
conf = np.array(results[0].boxes.conf.cpu()) |
|
label = np.array(results[0].boxes.cls.cpu()) |
|
|
|
arrays = np.concatenate((boxes, conf[:, None], label[:, None]), axis=1) |
|
|
|
send_output("bbox", pa.array(arrays.ravel()), dora_input["metadata"]) |
|
return DoraStatus.CONTINUE |
|
|