haixuantao commited on
Commit
034b730
·
0 Parent(s):

initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ *.arrow filter=lfs diff=lfs merge=lfs -text
2
+ *.mkv filter=lfs diff=lfs merge=lfs -text
3
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
4
+ *.parquet filter=lfs diff=lfs merge=lfs -text
5
+ graphs/out/**/*.txt filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ graphs/yolov5n.pt
2
+ *.pt
3
+ operators/__pycache__/
4
+ __pycache__/
5
+ *.avi
6
+ *.txt
graphs/dataflow_basic.yml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ nodes:
2
+ - id: robot
3
+ operator:
4
+ python: ../operators/robot.py
5
+ inputs:
6
+ control:
7
+ source: keyboard/submitted
8
+ queue_size: 1
9
+ tick:
10
+ source: dora/timer/millis/200
11
+ queue_size: 1
12
+
13
+ - id: bot_webcam
14
+ custom:
15
+ source: ../operators/opencv_stream.py
16
+ outputs:
17
+ - image
18
+
19
+ ### Camera
20
+ - id: plot_bot
21
+ operator:
22
+ python: ../operators/plot.py
23
+ inputs:
24
+ image: bot_webcam/image
25
+ keyboard_buffer: keyboard/buffer
26
+ user_message: keyboard/submitted
27
+
28
+ - id: keyboard
29
+ custom:
30
+ source: ../operators/keyboard_op.py
31
+ outputs:
32
+ - buffer
33
+ - submitted
34
+
graphs/dataflow_robot_vlm.yml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ nodes:
2
+ ### Camera
3
+ - id: plot_bot
4
+ operator:
5
+ python: ../operators/plot.py
6
+ inputs:
7
+ image: webcam/image
8
+ assistant_message: vlm/assistant_message
9
+ keyboard_buffer: keyboard/buffer
10
+ user_message: keyboard/submitted
11
+
12
+ - id: vlm
13
+ operator:
14
+ python: ../operators/chatgpt_op.py
15
+ inputs:
16
+ image:
17
+ source: webcam/image
18
+ queue_size: 1
19
+ instruction: keyboard/submitted
20
+ outputs:
21
+ - assistant_message
22
+
23
+ - id: robot
24
+ operator:
25
+ python: ../operators/robot.py
26
+ inputs:
27
+ tick:
28
+ source: dora/timer/millis/2000
29
+ queue_size: 1
30
+ control:
31
+ source: vlm/assistant_message
32
+ queue_size: 1
33
+
34
+ - id: webcam
35
+ custom:
36
+ source: ../operators/opencv_stream.py
37
+ outputs:
38
+ - image
39
+
40
+ - id: keyboard
41
+ custom:
42
+ source: ../operators/keyboard_op.py
43
+ outputs:
44
+ - buffer
45
+ - submitted
graphs/dataflow_vlm_basic.yml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ nodes:
2
+ ### Camera
3
+ - id: plot_bot
4
+ operator:
5
+ python: ../operators/plot.py
6
+ inputs:
7
+ image: webcam/image
8
+ # keyboard_buffer: keyboard/buffer
9
+ # user_message: keyboard/submitted
10
+ assistant_message: vlm/assistant_message
11
+
12
+ - id: vlm
13
+ operator:
14
+ python: ../operators/chatgpt_op.py
15
+ inputs:
16
+ image:
17
+ source: webcam/image
18
+ queue_size: 1
19
+ outputs:
20
+ - assistant_message
21
+
22
+ - id: webcam
23
+ operator:
24
+ python: ../operators/webcam.py
25
+ inputs:
26
+ tick: dora/timer/millis/500
27
+ outputs:
28
+ - image
operators/chatgpt_op.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dora import DoraStatus
2
+ import os
3
+ import pyarrow as pa
4
+
5
+
6
+ import requests
7
+
8
+ import os
9
+
10
+ import base64
11
+ import requests
12
+ from io import BytesIO
13
+ import numpy as np
14
+ import cv2
15
+
16
+
17
+ def encode_numpy_image(np_image):
18
+ # Convert the NumPy array to a PIL Image
19
+ cv2.resize(np_image, (512, 512))
20
+ _, buffer = cv2.imencode(
21
+ ".png", np_image
22
+ ) # You can change '.png' to another format if needed
23
+
24
+ # Convert the buffer to a byte stream
25
+ byte_stream = BytesIO(buffer)
26
+
27
+ # Encode the byte stream to base64
28
+ base64_encoded_image = base64.b64encode(byte_stream.getvalue()).decode("utf-8")
29
+ return base64_encoded_image
30
+
31
+
32
+ CAMERA_WIDTH = 640
33
+ CAMERA_HEIGHT = 480
34
+
35
+ API_KEY = os.getenv("OPENAI_API_KEY")
36
+
37
+
38
+ MESSAGE_SENDER_TEMPLATE = """
39
+ You control a robot. Don't get too close to objects.
40
+
41
+ {user_message}
42
+
43
+ Respond with only one of the following actions:
44
+ - FORWARD
45
+ - BACKWARD
46
+ - TURN_RIGHT
47
+ - TURN_LEFT
48
+ - NOD_YES
49
+ - NOD_NO
50
+ - STOP
51
+
52
+ You're last 5 actions where:
53
+ {actions}
54
+ """
55
+
56
+
57
+ import time
58
+
59
+
60
+ def understand_image(image, user_message, actions):
61
+ # Getting the base64 string
62
+ base64_image = encode_numpy_image(image)
63
+ headers = {"Content-Type": "application/json", "Authorization": f"Bearer {API_KEY}"}
64
+
65
+ now = time.time()
66
+ payload = {
67
+ "model": "gpt-4-vision-preview",
68
+ "messages": [
69
+ {
70
+ "role": "user",
71
+ "content": [
72
+ {
73
+ "type": "text",
74
+ "text": MESSAGE_SENDER_TEMPLATE.format(
75
+ user_message="\n".join(user_message),
76
+ actions="\n".join(actions[:-5]),
77
+ ),
78
+ },
79
+ {
80
+ "type": "image_url",
81
+ "image_url": {
82
+ "url": f"data:image/jpeg;base64,{base64_image}",
83
+ "detail": "low",
84
+ },
85
+ },
86
+ ],
87
+ }
88
+ ],
89
+ "max_tokens": 50,
90
+ }
91
+
92
+ response = requests.post(
93
+ "https://api.openai.com/v1/chat/completions", headers=headers, json=payload
94
+ )
95
+
96
+ print("resp:", time.time() - now)
97
+ return response.json()["choices"][0]["message"]["content"]
98
+
99
+
100
+ class Operator:
101
+ def __init__(self):
102
+ self.actions = []
103
+ self.instruction = []
104
+
105
+ def on_event(
106
+ self,
107
+ dora_event,
108
+ send_output,
109
+ ) -> DoraStatus:
110
+ if dora_event["type"] == "INPUT":
111
+ if dora_event["id"] == "image":
112
+ image = (
113
+ dora_event["value"]
114
+ .to_numpy()
115
+ .reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
116
+ .copy()
117
+ )
118
+ output = understand_image(image, self.instruction, self.actions)
119
+ self.actions.append(output)
120
+ print("response: ", output, flush=True)
121
+
122
+ send_output(
123
+ "assistant_message",
124
+ pa.array([f"{output}"]),
125
+ dora_event["metadata"],
126
+ )
127
+ elif dora_event["id"] == "instruction":
128
+ self.instruction.append(dora_event["value"][0].as_py())
129
+ print("instructions: ", self.instruction, flush=True)
130
+ return DoraStatus.CONTINUE
131
+
132
+
133
+ if __name__ == "__main__":
134
+ op = Operator()
135
+
136
+ # Path to the current file
137
+ current_file_path = __file__
138
+
139
+ # Directory of the current file
140
+ current_directory = os.path.dirname(current_file_path)
141
+
142
+ path = current_directory + "/test_image.jpg"
143
+
144
+ op.on_event(
145
+ {
146
+ "type": "INPUT",
147
+ "id": "code_modifier",
148
+ "value": pa.array(
149
+ [
150
+ {
151
+ "path": path,
152
+ "user_message": "change planning to make gimbal follow bounding box ",
153
+ },
154
+ ]
155
+ ),
156
+ "metadata": [],
157
+ },
158
+ print,
159
+ )
operators/keyboard_op.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pynput import keyboard
2
+ from pynput.keyboard import Key, Events
3
+ import pyarrow as pa
4
+ from dora import Node
5
+
6
+
7
+ node = Node()
8
+ buffer_text = ""
9
+ ctrl = False
10
+ submitted_text = []
11
+ cursor = 0
12
+
13
+ NODE_TOPIC = ["record", "send", "ask", "change"]
14
+
15
+ with keyboard.Events() as events:
16
+ while True:
17
+ dora_event = node.next(0.01)
18
+ if (
19
+ dora_event is not None
20
+ and dora_event["type"] == "INPUT"
21
+ and dora_event["id"] == "recording"
22
+ ):
23
+ buffer_text += dora_event["value"][0].as_py()
24
+ node.send_output("buffer", pa.array([buffer_text]))
25
+ continue
26
+
27
+ event = events.get(1.0)
28
+ if event is not None and isinstance(event, Events.Press):
29
+ if hasattr(event.key, "char"):
30
+ cursor = 0
31
+ buffer_text += event.key.char
32
+ node.send_output("buffer", pa.array([buffer_text]))
33
+ else:
34
+ if event.key == Key.backspace:
35
+ buffer_text = buffer_text[:-1]
36
+ node.send_output("buffer", pa.array([buffer_text]))
37
+ elif event.key == Key.esc:
38
+ buffer_text = ""
39
+ node.send_output("buffer", pa.array([buffer_text]))
40
+ elif event.key == Key.enter:
41
+ node.send_output("submitted", pa.array([buffer_text]))
42
+ first_word = buffer_text.split(" ")[0]
43
+ if first_word in NODE_TOPIC:
44
+ node.send_output(first_word, pa.array([buffer_text]))
45
+ submitted_text.append(buffer_text)
46
+ buffer_text = ""
47
+ node.send_output("buffer", pa.array([buffer_text]))
48
+ elif event.key == Key.ctrl:
49
+ ctrl = True
50
+ elif event.key == Key.space:
51
+ buffer_text += " "
52
+ node.send_output("buffer", pa.array([buffer_text]))
53
+ elif event.key == Key.up:
54
+ if len(submitted_text) > 0:
55
+ cursor = max(cursor - 1, -len(submitted_text))
56
+ buffer_text = submitted_text[cursor]
57
+ node.send_output("buffer", pa.array([buffer_text]))
58
+ elif event.key == Key.down:
59
+ if len(submitted_text) > 0:
60
+ cursor = min(cursor + 1, 0)
61
+ buffer_text = submitted_text[cursor]
62
+ node.send_output("buffer", pa.array([buffer_text]))
63
+ elif event is not None and isinstance(event, Events.Release):
64
+ if event.key == Key.ctrl:
65
+ ctrl = False
operators/microphone_op.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pyarrow as pa
3
+ import sounddevice as sd
4
+
5
+ from dora import DoraStatus
6
+
7
+ SAMPLE_RATE = 16000
8
+ MAX_DURATION = 5
9
+
10
+
11
+ class Operator:
12
+ """
13
+ Microphone operator that records the audio
14
+ """
15
+
16
+ def on_event(
17
+ self,
18
+ dora_event,
19
+ send_output,
20
+ ) -> DoraStatus:
21
+ if dora_event["type"] == "INPUT":
22
+ audio_data = sd.rec(
23
+ int(SAMPLE_RATE * MAX_DURATION),
24
+ samplerate=SAMPLE_RATE,
25
+ channels=1,
26
+ dtype=np.int16,
27
+ blocking=True,
28
+ )
29
+
30
+ audio_data = audio_data.ravel().astype(np.float32) / 32768.0
31
+ send_output("audio", pa.array(audio_data), dora_event["metadata"])
32
+ return DoraStatus.CONTINUE
operators/opencv_stream.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import pyarrow as pa
3
+ from dora import Node
4
+
5
+ node = Node()
6
+ # TCP stream URL (replace with your stream URL)
7
+ TCP_STREAM_URL = "tcp://192.168.2.1:40921"
8
+ # Global variables, change it to adapt your needs
9
+
10
+ CAMERA_WIDTH = 640
11
+ CAMERA_HEIGHT = 480
12
+
13
+ # Create a VideoCapture object using the TCP stream URL
14
+ cap = cv2.VideoCapture(TCP_STREAM_URL)
15
+
16
+ # Check if the VideoCapture object opened successfully
17
+ assert cap.isOpened(), "Error: Could not open video capture."
18
+
19
+ while True:
20
+ # Read a frame from the stream
21
+ ret, frame = cap.read()
22
+
23
+ if not ret:
24
+ break # Break the loop when no more frames are available
25
+ frame = cv2.resize(frame, (CAMERA_WIDTH, CAMERA_HEIGHT))
26
+
27
+ node.send_output("image", pa.array(frame.ravel()))
28
+
29
+
30
+ # Release the VideoCapture object and any OpenCV windows
31
+ cap.release()
32
+ cv2.destroyAllWindows()
operators/plot.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+
4
+ from dora import DoraStatus
5
+
6
+
7
+ CAMERA_WIDTH = 640
8
+ CAMERA_HEIGHT = 480
9
+
10
+ FONT = cv2.FONT_HERSHEY_SIMPLEX
11
+
12
+ writer = cv2.VideoWriter(
13
+ "output01.avi",
14
+ cv2.VideoWriter_fourcc(*"MJPG"),
15
+ 30,
16
+ (CAMERA_WIDTH, CAMERA_HEIGHT),
17
+ )
18
+
19
+
20
+ class Operator:
21
+ """
22
+ Plot image and bounding box
23
+ """
24
+
25
+ def __init__(self):
26
+ self.bboxs = []
27
+ self.buffer = ""
28
+ self.submitted = []
29
+ self.lines = []
30
+
31
+ def on_event(
32
+ self,
33
+ dora_event,
34
+ send_output,
35
+ ):
36
+ if dora_event["type"] == "INPUT":
37
+ id = dora_event["id"]
38
+ value = dora_event["value"]
39
+ if id == "image":
40
+
41
+ image = (
42
+ value.to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)).copy()
43
+ )
44
+
45
+ cv2.putText(
46
+ image, self.buffer, (20, 14 + 15 * 25), FONT, 0.8, (190, 250, 0), 2
47
+ )
48
+
49
+ i = 0
50
+ for text in self.submitted[::-1]:
51
+ color = (
52
+ (0, 255, 190)
53
+ if text["role"] == "user_message"
54
+ else (0, 190, 255)
55
+ )
56
+ cv2.putText(
57
+ image,
58
+ text["content"],
59
+ (
60
+ 20,
61
+ 14 + (13 - i) * 25,
62
+ ),
63
+ FONT,
64
+ 0.8,
65
+ color,
66
+ 2,
67
+ )
68
+ i += 1
69
+ writer.write(image)
70
+ cv2.imshow("frame", image)
71
+ if cv2.waitKey(1) & 0xFF == ord("q"):
72
+ return DoraStatus.STOP
73
+ elif id == "keyboard_buffer":
74
+ self.buffer = value[0].as_py()
75
+ elif "message" in id:
76
+ self.submitted += [
77
+ {
78
+ "role": id,
79
+ "content": value[0].as_py(),
80
+ }
81
+ ]
82
+
83
+ return DoraStatus.CONTINUE
operators/robot.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from robomaster import robot
2
+ from typing import Callable, Optional, Union
3
+ from enum import Enum
4
+ from dora import DoraStatus
5
+
6
+ import pyarrow as pa
7
+
8
+
9
+ CONN = "ap"
10
+
11
+
12
+ class Command(Enum):
13
+ NOD_YES = [
14
+ {"action": "gimbal", "value": [20.0, 0.0]},
15
+ {"action": "gimbal", "value": [0.0, 0.0]},
16
+ ]
17
+ NOD_NO = [
18
+ {"action": "gimbal", "value": [0.0, -20.0]},
19
+ {"action": "gimbal", "value": [0.0, 20.0]},
20
+ {"action": "gimbal", "value": [0.0, 0.0]},
21
+ ]
22
+ FORWARD = [
23
+ {
24
+ "action": "control",
25
+ "value": [0.5, 0.0, 0.0, 0.6, 0],
26
+ }
27
+ ]
28
+ BACKWARD = [
29
+ {
30
+ "action": "control",
31
+ "value": [-0.5, 0.0, 0.0, 0.6, 0],
32
+ }
33
+ ]
34
+ TURN_LEFT = [
35
+ {"action": "gimbal", "value": [0.0, -45.0]},
36
+ {
37
+ "action": "control",
38
+ "value": [0.0, 0.0, 45.0, 0.0, 50],
39
+ },
40
+ ]
41
+ TURN_RIGHT = [
42
+ {"action": "gimbal", "value": [0.0, 45.0]},
43
+ {
44
+ "value": [0.0, 0.0, -45.0, 0.0, 50],
45
+ "action": "control",
46
+ },
47
+ ]
48
+ UNKNOWN = [
49
+ {
50
+ "value": [0.0, 0.0, 0.0, 0.0, 0],
51
+ "action": "control",
52
+ }
53
+ ]
54
+ # STOP = [0, 0, 0, 0]
55
+ # COMPLETED = [0, 0, 0, 0]
56
+
57
+ @classmethod
58
+ def parse(cls, value):
59
+ for k, v in cls.__members__.items():
60
+ if k == value:
61
+ return v
62
+ return cls.UNKNOWN
63
+
64
+
65
+ class Operator:
66
+ def __init__(self):
67
+ self.ep_robot = robot.Robot()
68
+ print("Initializing robot...")
69
+ assert self.ep_robot.initialize(conn_type=CONN), "Could not initialize ep_robot"
70
+ assert self.ep_robot.camera.start_video_stream(
71
+ display=False
72
+ ), "Could not start video stream"
73
+
74
+ self.ep_robot.gimbal.recenter().wait_for_completed()
75
+ self.backlog = []
76
+ self.event = None
77
+
78
+ def on_event(
79
+ self,
80
+ dora_event: str,
81
+ send_output: Callable[[str, Union[bytes, pa.UInt8Array], Optional[dict]], None],
82
+ ) -> DoraStatus:
83
+ event_type = dora_event["type"]
84
+ if event_type == "INPUT":
85
+ if not (
86
+ self.event is not None
87
+ and not (self.event._event.isSet() and self.event.is_completed)
88
+ ):
89
+ if dora_event["id"] == "tick":
90
+ if len(self.backlog) > 0:
91
+ command = self.backlog.pop(0)
92
+ print(command, flush=True)
93
+ if command["action"] == "control":
94
+ [x, y, z, xy_speed, z_speed] = command["value"]
95
+ print(command, flush=True)
96
+ self.event = self.ep_robot.chassis.move(
97
+ x=x, y=y, z=z, xy_speed=xy_speed, z_speed=z_speed
98
+ )
99
+ elif command["action"] == "gimbal":
100
+ [pitch, yaw] = command["value"]
101
+ print(command, flush=True)
102
+ self.event = self.ep_robot.gimbal.moveto(
103
+ pitch=pitch, yaw=yaw, pitch_speed=0.0, yaw_speed=50.0
104
+ )
105
+ elif dora_event["id"] == "control":
106
+ raw_command = dora_event["value"][0].as_py()
107
+ print(raw_command, flush=True)
108
+ cmd = Command.parse(raw_command)
109
+ self.backlog += cmd.value
110
+
111
+ return DoraStatus.CONTINUE
operators/vlm_op.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dora import DoraStatus
2
+ import pylcs
3
+ import os
4
+ import pyarrow as pa
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer
6
+ import json
7
+
8
+ import re
9
+ import time
10
+
11
+ import torch
12
+ import requests
13
+
14
+ from io import BytesIO
15
+ from PIL import Image
16
+ from transformers import AutoModelForCausalLM, AutoProcessor
17
+
18
+ from transformers.image_utils import (
19
+ to_numpy_array,
20
+ PILImageResampling,
21
+ ChannelDimension,
22
+ )
23
+ from transformers.image_transforms import resize, to_channel_dimension_format
24
+
25
+ API_TOKEN = os.getenv("HF_TOKEN")
26
+
27
+ DEVICE = torch.device("cuda")
28
+ PROCESSOR = AutoProcessor.from_pretrained(
29
+ "HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
30
+ token=API_TOKEN,
31
+ )
32
+ MODEL = AutoModelForCausalLM.from_pretrained(
33
+ "HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
34
+ token=API_TOKEN,
35
+ trust_remote_code=True,
36
+ torch_dtype=torch.bfloat16,
37
+ ).to(DEVICE)
38
+ image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
39
+ BOS_TOKEN = PROCESSOR.tokenizer.bos_token
40
+ BAD_WORDS_IDS = PROCESSOR.tokenizer(
41
+ ["<image>", "<fake_token_around_image>"], add_special_tokens=False
42
+ ).input_ids
43
+
44
+
45
+ CHATGPT = True
46
+ MODEL_NAME_OR_PATH = "TheBloke/deepseek-coder-6.7B-instruct-GPTQ"
47
+
48
+ MESSAGE_SENDER_TEMPLATE = """
49
+ ### Instruction
50
+ You're a json expert. Format your response as a json with a topic and a data field in a ```json block. No explaination needed. No code needed.
51
+ The schema for those json are:
52
+ - forward
53
+ - backward
54
+ - left
55
+ - right
56
+
57
+ The response should look like this:
58
+ ```json
59
+
60
+ [
61
+ {{ "topic": "control", "data": "forward" }},
62
+ ]
63
+ ```
64
+
65
+ {user_message}
66
+
67
+ ### Response:
68
+ """
69
+
70
+ model = AutoModelForCausalLM.from_pretrained(
71
+ MODEL_NAME_OR_PATH,
72
+ device_map="auto",
73
+ trust_remote_code=True,
74
+ revision="main",
75
+ )
76
+
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
79
+
80
+
81
+ def extract_json_code_blocks(text):
82
+ """
83
+ Extracts json code blocks from the given text that are enclosed in triple backticks with a json language identifier.
84
+
85
+ Parameters:
86
+ - text: A string that may contain one or more json code blocks.
87
+
88
+ Returns:
89
+ - A list of strings, where each string is a block of json code extracted from the text.
90
+ """
91
+ pattern = r"```json\n(.*?)\n```"
92
+ matches = re.findall(pattern, text, re.DOTALL)
93
+ if len(matches) == 0:
94
+ pattern = r"```json\n(.*?)(?:\n```|$)"
95
+ matches = re.findall(pattern, text, re.DOTALL)
96
+ if len(matches) == 0:
97
+ return [text]
98
+
99
+ return matches
100
+
101
+
102
+ from openai import OpenAI
103
+ import os
104
+
105
+ import base64
106
+ import requests
107
+
108
+ API_TOKEN = os.getenv("HF_TOKEN")
109
+
110
+
111
+ # Function to encode the image
112
+ def encode_image(image_path):
113
+ with open(image_path, "rb") as image_file:
114
+ return base64.b64encode(image_file.read()).decode("utf-8")
115
+
116
+
117
+ def understand_image(image_path):
118
+
119
+ # Getting the base64 string
120
+ base64_image = encode_image(image_path)
121
+
122
+ headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
123
+
124
+ payload = {
125
+ "model": "gpt-4-vision-preview",
126
+ "messages": [
127
+ {
128
+ "role": "user",
129
+ "content": [
130
+ {
131
+ "type": "text",
132
+ "text": "What’s in this image? Describe it in a short sentence",
133
+ },
134
+ {
135
+ "type": "image_url",
136
+ "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
137
+ },
138
+ ],
139
+ }
140
+ ],
141
+ "max_tokens": 300,
142
+ }
143
+
144
+ response = requests.post(
145
+ "https://api.openai.com/v1/chat/completions", headers=headers, json=payload
146
+ )
147
+
148
+ print(response.json()["choices"][0]["message"]["content"])
149
+
150
+
151
+ class Operator:
152
+
153
+ def on_event(
154
+ self,
155
+ dora_event,
156
+ send_output,
157
+ ) -> DoraStatus:
158
+ if dora_event["type"] == "INPUT" and dora_event["id"] == "message_sender":
159
+ user_message = dora_event["value"][0].as_py()
160
+ output = self.ask_llm(
161
+ MESSAGE_SENDER_TEMPLATE.format(user_message=user_message)
162
+ )
163
+ outputs = extract_json_code_blocks(output)[0]
164
+ print("response: ", output, flush=True)
165
+ try:
166
+ outputs = json.loads(outputs)
167
+ if not isinstance(outputs, list):
168
+ outputs = [outputs]
169
+ for output in outputs:
170
+ if not isinstance(output["data"], list):
171
+ output["data"] = [output["data"]]
172
+
173
+ if output["topic"] in ["led", "blaster"]:
174
+ send_output(
175
+ output["topic"],
176
+ pa.array(output["data"]),
177
+ dora_event["metadata"],
178
+ )
179
+
180
+ send_output(
181
+ "assistant_message",
182
+ pa.array([f"sent: {output}"]),
183
+ dora_event["metadata"],
184
+ )
185
+ else:
186
+ send_output(
187
+ "assistant_message",
188
+ pa.array(
189
+ [f"Could not send as topic was not available: {output}"]
190
+ ),
191
+ dora_event["metadata"],
192
+ )
193
+ except:
194
+ send_output(
195
+ "assistant_message",
196
+ pa.array([f"Could not parse json: {outputs}"]),
197
+ dora_event["metadata"],
198
+ )
199
+ # if data is not iterable, put data in a list
200
+ return DoraStatus.CONTINUE
201
+
202
+ def ask_llm(self, prompt):
203
+
204
+ # Generate output
205
+ # prompt = PROMPT_TEMPLATE.format(system_message=system_message, prompt=prompt))
206
+ input = tokenizer(prompt, return_tensors="pt")
207
+ input_ids = input.input_ids.cuda()
208
+
209
+ # add attention mask here
210
+ attention_mask = input["attention_mask"]
211
+
212
+ output = model.generate(
213
+ inputs=input_ids,
214
+ temperature=0.7,
215
+ do_sample=True,
216
+ top_p=0.95,
217
+ top_k=40,
218
+ max_new_tokens=512,
219
+ attention_mask=attention_mask,
220
+ eos_token_id=tokenizer.eos_token_id,
221
+ )
222
+ # Get the tokens from the output, decode them, print them
223
+
224
+ # Get text between im_start and im_end
225
+ return tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt) :]
226
+
227
+ def ask_chatgpt(self, prompt):
228
+ from openai import OpenAI
229
+
230
+ client = OpenAI()
231
+ print("---asking chatgpt: ", prompt, flush=True)
232
+ response = client.chat.completions.create(
233
+ model="gpt-4-turbo-preview",
234
+ messages=[
235
+ {"role": "system", "content": "You are a helpful assistant."},
236
+ {"role": "user", "content": prompt},
237
+ ],
238
+ )
239
+ answer = response.choices[0].message.content
240
+
241
+ print("Done", flush=True)
242
+ return answer
243
+
244
+
245
+ if __name__ == "__main__":
246
+ op = Operator()
247
+
248
+ # Path to the current file
249
+ current_file_path = __file__
250
+
251
+ # Directory of the current file
252
+ current_directory = os.path.dirname(current_file_path)
253
+
254
+ path = current_directory + "/planning_op.py"
255
+ with open(path, "r", encoding="utf8") as f:
256
+ raw = f.read()
257
+
258
+ op.on_event(
259
+ {
260
+ "type": "INPUT",
261
+ "id": "code_modifier",
262
+ "value": pa.array(
263
+ [
264
+ {
265
+ "path": path,
266
+ "user_message": "change planning to make gimbal follow bounding box ",
267
+ },
268
+ ]
269
+ ),
270
+ "metadata": [],
271
+ },
272
+ print,
273
+ )
operators/whisper_op.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pyarrow as pa
2
+ import whisper
3
+
4
+ from dora import DoraStatus
5
+
6
+
7
+ model = whisper.load_model("base")
8
+
9
+
10
+ class Operator:
11
+ """
12
+ Transforming Speech to Text using OpenAI Whisper model
13
+ """
14
+
15
+ def on_event(
16
+ self,
17
+ dora_event,
18
+ send_output,
19
+ ) -> DoraStatus:
20
+ if dora_event["type"] == "INPUT":
21
+ audio = dora_event["value"].to_numpy()
22
+ audio = whisper.pad_or_trim(audio)
23
+ result = model.transcribe(audio, language="en")
24
+ send_output("text", pa.array([result["text"]]), dora_event["metadata"])
25
+ return DoraStatus.CONTINUE
tests/test_idefix2.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import requests
4
+
5
+ from io import BytesIO
6
+ from PIL import Image
7
+ from transformers import AutoModelForCausalLM, AutoProcessor
8
+
9
+ from transformers.image_utils import (
10
+ to_numpy_array,
11
+ PILImageResampling,
12
+ ChannelDimension,
13
+ )
14
+ from transformers.image_transforms import resize, to_channel_dimension_format
15
+
16
+
17
+ API_TOKEN = os.getenv("HF_TOKEN")
18
+
19
+ DEVICE = torch.device("cuda")
20
+ PROCESSOR = AutoProcessor.from_pretrained(
21
+ "HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
22
+ token=API_TOKEN,
23
+ )
24
+ MODEL = AutoModelForCausalLM.from_pretrained(
25
+ "HuggingFaceM4/tr_272_bis_opt_step_15000_merge",
26
+ token=API_TOKEN,
27
+ trust_remote_code=True,
28
+ torch_dtype=torch.bfloat16,
29
+ ).to(DEVICE)
30
+ image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
31
+ BOS_TOKEN = PROCESSOR.tokenizer.bos_token
32
+ BAD_WORDS_IDS = PROCESSOR.tokenizer(
33
+ ["<image>", "<fake_token_around_image>"], add_special_tokens=False
34
+ ).input_ids
35
+
36
+
37
+ def convert_to_rgb(image):
38
+ # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
39
+ # for transparent images. The call to `alpha_composite` handles this case
40
+ if image.mode == "RGB":
41
+ return image
42
+
43
+ image_rgba = image.convert("RGBA")
44
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
45
+ alpha_composite = Image.alpha_composite(background, image_rgba)
46
+ alpha_composite = alpha_composite.convert("RGB")
47
+ return alpha_composite
48
+
49
+
50
+ # The processor is the same as the Idefics processor except for the BILINEAR interpolation,
51
+ # so this is a hack in order to redefine ONLY the transform method
52
+ def custom_transform(x):
53
+ x = convert_to_rgb(x)
54
+ x = to_numpy_array(x)
55
+
56
+ height, width = x.shape[:2]
57
+ aspect_ratio = width / height
58
+ if width >= height and width > 980:
59
+ width = 980
60
+ height = int(width / aspect_ratio)
61
+ elif height > width and height > 980:
62
+ height = 980
63
+ width = int(height * aspect_ratio)
64
+ width = max(width, 378)
65
+ height = max(height, 378)
66
+
67
+ x = resize(x, (height, width), resample=PILImageResampling.BILINEAR)
68
+ x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
69
+ x = PROCESSOR.image_processor.normalize(
70
+ x,
71
+ mean=PROCESSOR.image_processor.image_mean,
72
+ std=PROCESSOR.image_processor.image_std,
73
+ )
74
+ x = to_channel_dimension_format(x, ChannelDimension.FIRST)
75
+ x = torch.tensor(x)
76
+ return x
77
+
78
+
79
+ def download_image(url):
80
+ try:
81
+ # Send a GET request to the URL to download the image
82
+ response = requests.get(url)
83
+ # Check if the request was successful (status code 200)
84
+ if response.status_code == 200:
85
+ # Open the image using PIL
86
+ image = Image.open(BytesIO(response.content))
87
+ # Return the PIL image object
88
+ return image
89
+ else:
90
+ print(f"Failed to download image. Status code: {response.status_code}")
91
+ return None
92
+ except Exception as e:
93
+ print(f"An error occurred: {e}")
94
+ return None
95
+
96
+
97
+ # Create text token inputs
98
+ image_seq = "<image>" * image_seq_len
99
+
100
+ instruction = "What is this?"
101
+ # Create pixel inputs
102
+ image = download_image(
103
+ "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
104
+ )
105
+
106
+
107
+ def ask_vlm(instruction, image):
108
+
109
+ inputs = PROCESSOR.tokenizer(
110
+ [
111
+ f"{BOS_TOKEN}<fake_token_around_image>{image_seq}<fake_token_around_image>{instruction}",
112
+ ],
113
+ return_tensors="pt",
114
+ add_special_tokens=False,
115
+ padding=True,
116
+ )
117
+
118
+ raw_images = [
119
+ [image],
120
+ ]
121
+ output_images = [
122
+ [PROCESSOR.image_processor(img, transform=custom_transform) for img in img_list]
123
+ for img_list in raw_images
124
+ ]
125
+ total_batch_size = len(output_images)
126
+ max_num_images = max([len(img_l) for img_l in output_images])
127
+ max_height = max([i.size(2) for img_l in output_images for i in img_l])
128
+ max_width = max([i.size(3) for img_l in output_images for i in img_l])
129
+ padded_image_tensor = torch.zeros(
130
+ total_batch_size, max_num_images, 3, max_height, max_width
131
+ )
132
+ padded_pixel_attention_masks = torch.zeros(
133
+ total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool
134
+ )
135
+ for batch_idx, img_l in enumerate(output_images):
136
+ for img_idx, img in enumerate(img_l):
137
+ im_height, im_width = img.size()[2:]
138
+ padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img
139
+ padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = (
140
+ True
141
+ )
142
+
143
+ inputs["pixel_values"] = padded_image_tensor
144
+ inputs["pixel_attention_mask"] = padded_pixel_attention_masks
145
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
146
+
147
+ generated_ids = MODEL.generate(
148
+ **inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
149
+ )
150
+ generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
151
+ return generated_texts
152
+
153
+
154
+ print(ask_vlm(instruction, image))
tests/test_robomaster.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from robomaster import robot, blaster, led
2
+
3
+ CONN = "ap"
4
+ ep_robot = robot.Robot()
5
+ print("Initializing robot...")
6
+ assert ep_robot.initialize(conn_type=CONN), "Could not initialize ep_robot"
7
+ event = ep_robot.chassis.move(x=0, y=0, z=-90.0, xy_speed=0, z_speed=50)