dora-idefics2 / operators /idefics2_utils.py
haixuantao's picture
Adding latest `WIP`
357c750
raw
history blame
2.34 kB
import requests
import torch
from PIL import Image
from io import BytesIO
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig
MODE = "quantized"
DEVICE = "cuda"
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
BAD_WORDS_IDS = PROCESSOR.tokenizer(
["<image>", "<fake_token_around_image>"], add_special_tokens=False
).input_ids
EOS_WORDS_IDS = PROCESSOR.tokenizer(
"<end_of_utterance>", add_special_tokens=False
).input_ids + [PROCESSOR.tokenizer.eos_token_id]
# Load model
if MODE == "regular":
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceM4/idefics2-tfrm-compatible",
torch_dtype=torch.float16,
trust_remote_code=True,
_attn_implementation="flash_attention_2",
revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d",
).to(DEVICE)
elif MODE == "quantized":
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
model = AutoModelForVision2Seq.from_pretrained(
quant_path, trust_remote_code=True
).to(DEVICE)
elif MODE == "fused_quantized":
quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
quantization_config = AwqConfig(
bits=4,
fuse_max_seq_len=4096,
modules_to_fuse={
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
"mlp": ["gate_proj", "up_proj", "down_proj"],
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
"use_alibi": False,
"num_attention_heads": 32,
"num_key_value_heads": 8,
"hidden_size": 4096,
},
)
model = AutoModelForVision2Seq.from_pretrained(
quant_path, quantization_config=quantization_config, trust_remote_code=True
).to(DEVICE)
else:
raise ValueError("Unknown mode")
def ask_vlm(image, instruction):
prompts = [
"User:",
image,
f"{instruction}.<end_of_utterance>\n",
"Assistant:",
]
inputs = PROCESSOR(prompts)
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
generated_ids = model.generate(
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10
)
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
return generated_texts[0].split("\nAssistant: ")[1]