|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import logging |
|
|
import glob |
|
|
import json |
|
|
from multiprocessing import Process |
|
|
from pprint import pformat |
|
|
|
|
|
import click |
|
|
|
|
|
from pix2text import set_logger, Pix2Text |
|
|
|
|
|
_CONTEXT_SETTINGS = {"help_option_names": ['-h', '--help']} |
|
|
logger = set_logger(log_level=logging.INFO) |
|
|
|
|
|
|
|
|
@click.group(context_settings=_CONTEXT_SETTINGS) |
|
|
def cli(): |
|
|
pass |
|
|
|
|
|
|
|
|
@cli.command('predict') |
|
|
@click.option( |
|
|
"-l", |
|
|
"--languages", |
|
|
type=str, |
|
|
default='en,ch_sim', |
|
|
help="Language Codes for Text-OCR to recognize, separated by commas", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--layout-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the layout parser model, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--mfd-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the MFD model, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--formula-ocr-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the Latex-OCR mathematical formula recognition model. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--text-ocr-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for Text-OCR recognition, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--enable-formula/--disable-formula", |
|
|
default=True, |
|
|
help="Whether to enable formula recognition", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--enable-table/--disable-table", |
|
|
default=True, |
|
|
help="Whether to enable table recognition", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-d", |
|
|
"--device", |
|
|
help="Choose to run the code using `cpu`, `gpu`, or a specific GPU like `cuda:0`", |
|
|
type=str, |
|
|
default='cpu', |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--file-type", |
|
|
type=click.Choice(['pdf', 'page', 'text_formula', 'formula', 'text']), |
|
|
default='text_formula', |
|
|
help="Which file type to process, 'pdf', 'page', 'text_formula', 'formula', or 'text'", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--resized-shape", |
|
|
help="Resize the image width to this size before processing", |
|
|
type=int, |
|
|
default=768, |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-i", |
|
|
"--img-file-or-dir", |
|
|
required=True, |
|
|
help="File path of the input image/pdf or the specified directory", |
|
|
) |
|
|
@click.option( |
|
|
"--save-debug-res", |
|
|
default=None, |
|
|
help="If `save_debug_res` is set, the directory to save the debug results; default value is `None`, which means not to save", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--rec-kwargs", |
|
|
type=str, |
|
|
default=None, |
|
|
help="kwargs for calling .recognize(), in JSON string format", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--return-text/--no-return-text", |
|
|
default=True, |
|
|
help="Whether to return only the text result", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--auto-line-break/--no-auto-line-break", |
|
|
default=True, |
|
|
help="Whether to automatically determine to merge adjacent line results into a single line result", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-o", |
|
|
"--output-dir", |
|
|
default='output-md', |
|
|
help="Output directory for the recognized text results. Only effective when `file-type` is `pdf` or `page`", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--log-level", |
|
|
default='INFO', |
|
|
help="Log Level, such as `INFO`, `DEBUG`", |
|
|
show_default=True, |
|
|
) |
|
|
def predict( |
|
|
languages, |
|
|
layout_config, |
|
|
mfd_config, |
|
|
formula_ocr_config, |
|
|
text_ocr_config, |
|
|
enable_formula, |
|
|
enable_table, |
|
|
device, |
|
|
file_type, |
|
|
resized_shape, |
|
|
img_file_or_dir, |
|
|
save_debug_res, |
|
|
rec_kwargs, |
|
|
return_text, |
|
|
auto_line_break, |
|
|
output_dir, |
|
|
log_level, |
|
|
): |
|
|
"""Use Pix2Text (P2T) to predict the text information in an image or PDF.""" |
|
|
logger = set_logger(log_level=log_level) |
|
|
|
|
|
mfd_config = json.loads(mfd_config) if mfd_config else {} |
|
|
formula_ocr_config = json.loads(formula_ocr_config) if formula_ocr_config else {} |
|
|
languages = [lang.strip() for lang in languages.split(',') if lang.strip()] |
|
|
text_ocr_config = json.loads(text_ocr_config) if text_ocr_config else {} |
|
|
|
|
|
layout_config = json.loads(layout_config) if layout_config else {} |
|
|
text_formula_config = { |
|
|
'languages': languages, |
|
|
'mfd': mfd_config, |
|
|
'formula': formula_ocr_config, |
|
|
'text': text_ocr_config, |
|
|
} |
|
|
total_config = { |
|
|
'layout': layout_config, |
|
|
'text_formula': text_formula_config, |
|
|
} |
|
|
p2t = Pix2Text.from_config( |
|
|
total_configs=total_config, |
|
|
enable_formula=enable_formula, |
|
|
enable_table=enable_table, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
fp_list = [] |
|
|
if os.path.isfile(img_file_or_dir): |
|
|
fp_list.append(img_file_or_dir) |
|
|
if save_debug_res: |
|
|
save_debug_res = [save_debug_res] |
|
|
elif os.path.isdir(img_file_or_dir): |
|
|
fn_list = glob.glob1(img_file_or_dir, '*g') |
|
|
fp_list = [os.path.join(img_file_or_dir, fn) for fn in fn_list] |
|
|
if save_debug_res: |
|
|
os.makedirs(save_debug_res, exist_ok=True) |
|
|
save_debug_res = [ |
|
|
os.path.join(save_debug_res, 'output-debugs-' + fn) for fn in fn_list |
|
|
] |
|
|
else: |
|
|
raise ValueError(f'{img_file_or_dir} is not a valid file or directory') |
|
|
|
|
|
rec_kwargs = json.loads(rec_kwargs) if rec_kwargs else {} |
|
|
rec_kwargs['resized_shape'] = resized_shape |
|
|
rec_kwargs['return_text'] = return_text |
|
|
rec_kwargs['auto_line_break'] = auto_line_break |
|
|
|
|
|
for idx, fp in enumerate(fp_list): |
|
|
if file_type in ('pdf', 'page'): |
|
|
rec_kwargs['save_debug_res'] = ( |
|
|
save_debug_res[idx] if save_debug_res is not None else None |
|
|
) |
|
|
else: |
|
|
rec_kwargs['save_analysis_res'] = ( |
|
|
save_debug_res[idx] if save_debug_res is not None else None |
|
|
) |
|
|
out = p2t.recognize(fp, file_type=file_type, **rec_kwargs) |
|
|
if file_type in ('pdf', 'page'): |
|
|
out = out.to_markdown(output_dir) |
|
|
logger.info( |
|
|
f'In image: {fp}\nOuts: \n{out if isinstance(out, str) else pformat(out)}\n' |
|
|
) |
|
|
|
|
|
|
|
|
@cli.command('evaluate') |
|
|
@click.option( |
|
|
"-l", |
|
|
"--languages", |
|
|
type=str, |
|
|
default='en,ch_sim', |
|
|
help="Language Codes for Text-OCR to recognize, separated by commas", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--layout-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the layout parser model, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--mfd-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the MFD model, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--formula-ocr-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the Latex-OCR mathematical formula recognition model. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--text-ocr-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for Text-OCR recognition, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--enable-formula/--disable-formula", |
|
|
default=True, |
|
|
help="Whether to enable formula recognition", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--enable-table/--disable-table", |
|
|
default=True, |
|
|
help="Whether to enable table recognition", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-d", |
|
|
"--device", |
|
|
help="Choose to run the code using `cpu`, `gpu`, or a specific GPU like `cuda:0`", |
|
|
type=str, |
|
|
default='cpu', |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--file-type", |
|
|
type=click.Choice(['pdf', 'page', 'text_formula', 'formula', 'text']), |
|
|
default='text_formula', |
|
|
help="Which file type to process, 'pdf', 'page', 'text_formula', 'formula', or 'text'", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--resized-shape", |
|
|
help="Resize the image width to this size before processing", |
|
|
type=int, |
|
|
default=768, |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-i", |
|
|
"--input-json", |
|
|
required=True, |
|
|
help="JSON file containing evaluation data with image paths and ground truth", |
|
|
) |
|
|
@click.option( |
|
|
"--gt-key", |
|
|
default="model_result", |
|
|
help="Key name for ground truth text in the JSON data", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--prefix-img-dir", |
|
|
default="data", |
|
|
help="Root directory for image files, will be prepended to img_path in JSON", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--rec-kwargs", |
|
|
type=str, |
|
|
default=None, |
|
|
help="kwargs for calling .recognize(), in JSON string format", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--auto-line-break/--no-auto-line-break", |
|
|
default=True, |
|
|
help="Whether to automatically determine to merge adjacent line results into a single line result", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-o", |
|
|
"--output-json", |
|
|
default='evaluation_results.json', |
|
|
help="Output JSON file for evaluation results", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--output-excel", |
|
|
default=None, |
|
|
help="Output Excel file with embedded images (optional)", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--output-html", |
|
|
default=None, |
|
|
help="Output HTML report with embedded images (optional)", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--max-img-width", |
|
|
default=400, |
|
|
help="Maximum width for embedded images in pixels", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--max-img-height", |
|
|
default=300, |
|
|
help="Maximum height for embedded images in pixels", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--max-samples", |
|
|
default=-1, |
|
|
help="Maximum number of samples to process (-1 for all samples)", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--log-level", |
|
|
default='INFO', |
|
|
help="Log Level, such as `INFO`, `DEBUG`", |
|
|
show_default=True, |
|
|
) |
|
|
def evaluate( |
|
|
languages, |
|
|
layout_config, |
|
|
mfd_config, |
|
|
formula_ocr_config, |
|
|
text_ocr_config, |
|
|
enable_formula, |
|
|
enable_table, |
|
|
device, |
|
|
file_type, |
|
|
resized_shape, |
|
|
input_json, |
|
|
gt_key, |
|
|
prefix_img_dir, |
|
|
rec_kwargs, |
|
|
auto_line_break, |
|
|
output_json, |
|
|
output_excel, |
|
|
output_html, |
|
|
max_img_width, |
|
|
max_img_height, |
|
|
max_samples, |
|
|
log_level, |
|
|
): |
|
|
"""Evaluate Pix2Text (P2T) performance using a JSON file with image paths and ground truth.""" |
|
|
from pix2text.utils import ( |
|
|
calculate_cer_batch, |
|
|
calculate_cer, |
|
|
save_evaluation_results_to_excel_with_images, |
|
|
create_html_report_with_images |
|
|
) |
|
|
|
|
|
logger = set_logger(log_level=log_level) |
|
|
|
|
|
|
|
|
try: |
|
|
with open(input_json, 'r', encoding='utf-8') as f: |
|
|
eval_data = json.load(f) |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to load evaluation data from {input_json}: {e}") |
|
|
return |
|
|
|
|
|
if not isinstance(eval_data, list): |
|
|
logger.error("Evaluation data must be a list of dictionaries") |
|
|
return |
|
|
|
|
|
|
|
|
for i, item in enumerate(eval_data): |
|
|
if not isinstance(item, dict): |
|
|
logger.error(f"Item {i} is not a dictionary") |
|
|
return |
|
|
if 'img_path' not in item or gt_key not in item: |
|
|
logger.error(f"Item {i} missing required keys 'img_path' or '{gt_key}'") |
|
|
return |
|
|
|
|
|
|
|
|
mfd_config = json.loads(mfd_config) if mfd_config else {} |
|
|
formula_ocr_config = json.loads(formula_ocr_config) if formula_ocr_config else {} |
|
|
languages = [lang.strip() for lang in languages.split(',') if lang.strip()] |
|
|
text_ocr_config = json.loads(text_ocr_config) if text_ocr_config else {} |
|
|
|
|
|
layout_config = json.loads(layout_config) if layout_config else {} |
|
|
text_formula_config = { |
|
|
'languages': languages, |
|
|
'mfd': mfd_config, |
|
|
'formula': formula_ocr_config, |
|
|
'text': text_ocr_config, |
|
|
} |
|
|
total_config = { |
|
|
'layout': layout_config, |
|
|
'text_formula': text_formula_config, |
|
|
} |
|
|
p2t = Pix2Text.from_config( |
|
|
total_configs=total_config, |
|
|
enable_formula=enable_formula, |
|
|
enable_table=enable_table, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
|
|
|
rec_kwargs = json.loads(rec_kwargs) if rec_kwargs else {} |
|
|
rec_kwargs['resized_shape'] = resized_shape |
|
|
rec_kwargs['return_text'] = True |
|
|
rec_kwargs['auto_line_break'] = auto_line_break |
|
|
|
|
|
def filter_and_clean_gt(gt): |
|
|
|
|
|
|
|
|
if not gt: |
|
|
return False, gt |
|
|
if gt.startswith(r'$$') and gt.endswith(r'$$'): |
|
|
gt = gt[2:-2] |
|
|
if '$$' not in gt: |
|
|
return True, gt.strip() |
|
|
return False, gt |
|
|
|
|
|
|
|
|
predictions = [] |
|
|
ground_truths = [] |
|
|
results = [] |
|
|
|
|
|
|
|
|
if max_samples > 0: |
|
|
import random |
|
|
random.seed(42) |
|
|
random.shuffle(eval_data) |
|
|
|
|
|
logger.info(f"Limited to {max_samples} samples for evaluation") |
|
|
logger.info(f"Starting evaluation on {len(eval_data)} images...") |
|
|
|
|
|
for i, item in enumerate(eval_data): |
|
|
if len(results) >= max_samples: |
|
|
break |
|
|
img_path = item['new_img_path'] |
|
|
ground_truth = item[gt_key] |
|
|
|
|
|
|
|
|
if isinstance(ground_truth, str): |
|
|
try: |
|
|
ground_truth = json.loads(ground_truth) |
|
|
except json.JSONDecodeError: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
is_formula, ground_truth = filter_and_clean_gt(ground_truth) |
|
|
if not is_formula: |
|
|
continue |
|
|
|
|
|
|
|
|
if not os.path.isabs(img_path): |
|
|
img_path = os.path.join(prefix_img_dir, img_path) |
|
|
|
|
|
logger.info(f"Processing image {i+1}/{len(eval_data)}: {img_path}") |
|
|
|
|
|
try: |
|
|
|
|
|
if not os.path.exists(img_path): |
|
|
logger.warning(f"Image file not found: {img_path}") |
|
|
continue |
|
|
|
|
|
|
|
|
prediction = p2t.recognize(img_path, file_type=file_type, **rec_kwargs) |
|
|
|
|
|
|
|
|
if not isinstance(prediction, str): |
|
|
if hasattr(prediction, 'to_markdown'): |
|
|
prediction = prediction.to_markdown() |
|
|
else: |
|
|
prediction = str(prediction) |
|
|
|
|
|
predictions.append(prediction) |
|
|
ground_truths.append(ground_truth) |
|
|
|
|
|
|
|
|
cer = calculate_cer(prediction, ground_truth) |
|
|
|
|
|
result = { |
|
|
'img_path': img_path, |
|
|
'ground_truth': ground_truth, |
|
|
'prediction': prediction, |
|
|
'cer': cer |
|
|
} |
|
|
results.append(result) |
|
|
|
|
|
logger.info(f"Image {img_path} CER: {cer:.4f}") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing image {img_path}: {e}") |
|
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if predictions and ground_truths: |
|
|
cer_stats = calculate_cer_batch(predictions, ground_truths) |
|
|
|
|
|
|
|
|
evaluation_results = { |
|
|
'summary': { |
|
|
'total_samples': len(results), |
|
|
'average_cer': cer_stats['average_cer'], |
|
|
'individual_cers': cer_stats['individual_cers'] |
|
|
}, |
|
|
'detailed_results': results |
|
|
} |
|
|
|
|
|
|
|
|
try: |
|
|
with open(output_json, 'w', encoding='utf-8') as f: |
|
|
json.dump(evaluation_results, f, ensure_ascii=False, indent=2) |
|
|
logger.info(f"Evaluation results saved to: {output_json}") |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to save evaluation results: {e}") |
|
|
|
|
|
|
|
|
logger.info("=" * 50) |
|
|
logger.info("EVALUATION SUMMARY") |
|
|
logger.info("=" * 50) |
|
|
logger.info(f"Total samples processed: {len(results)}") |
|
|
logger.info(f"Average CER: {cer_stats['average_cer']:.4f}") |
|
|
logger.info(f"Best CER: {min(cer_stats['individual_cers']):.4f}") |
|
|
logger.info(f"Worst CER: {max(cer_stats['individual_cers']):.4f}") |
|
|
logger.info("=" * 50) |
|
|
|
|
|
else: |
|
|
logger.error("No valid predictions generated") |
|
|
|
|
|
|
|
|
if output_excel and results: |
|
|
excel_success = save_evaluation_results_to_excel_with_images( |
|
|
results=results, |
|
|
output_file=output_excel, |
|
|
img_path_key='img_path', |
|
|
gt_key='ground_truth', |
|
|
pred_key='prediction', |
|
|
cer_key='cer', |
|
|
max_img_width=max_img_width, |
|
|
max_img_height=max_img_height |
|
|
) |
|
|
if excel_success: |
|
|
logger.info(f"Excel file with embedded images saved to: {output_excel}") |
|
|
else: |
|
|
logger.warning("Failed to save Excel file with embedded images") |
|
|
|
|
|
|
|
|
if output_html and results: |
|
|
html_success = create_html_report_with_images( |
|
|
results=results, |
|
|
output_file=output_html, |
|
|
img_path_key='img_path', |
|
|
gt_key='ground_truth', |
|
|
pred_key='prediction', |
|
|
cer_key='cer', |
|
|
max_img_width=max_img_width, |
|
|
max_img_height=max_img_height |
|
|
) |
|
|
if html_success: |
|
|
logger.info(f"HTML report with embedded images saved to: {output_html}") |
|
|
else: |
|
|
logger.warning("Failed to save HTML report with embedded images") |
|
|
|
|
|
|
|
|
@cli.command('serve') |
|
|
@click.option( |
|
|
"-l", |
|
|
"--languages", |
|
|
type=str, |
|
|
default='en,ch_sim', |
|
|
help="Language Codes for Text-OCR to recognize, separated by commas", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--layout-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the layout parser model, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--mfd-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the MFD model, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--formula-ocr-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for the Latex-OCR mathematical formula recognition model. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--text-ocr-config", |
|
|
type=str, |
|
|
default=None, |
|
|
help="Configuration information for Text-OCR recognition, in JSON string format. Default: `None`, meaning using the default configuration", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--enable-formula/--disable-formula", |
|
|
default=True, |
|
|
help="Whether to enable formula recognition", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--enable-table/--disable-table", |
|
|
default=True, |
|
|
help="Whether to enable table recognition", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-d", |
|
|
"--device", |
|
|
help="Choose to run the code using `cpu`, `gpu`, or a specific GPU like `cuda:0`", |
|
|
type=str, |
|
|
default='cpu', |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"-o", |
|
|
"--output-md-root-dir", |
|
|
default='output-md-root', |
|
|
help="Markdown output root directory for the recognized text results. Only effective when `file-type` is `pdf` or `page`", |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
'-H', '--host', type=str, default='0.0.0.0', help='server host', show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
'-p', '--port', type=int, default=8503, help='server port', show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
'--reload', |
|
|
is_flag=True, |
|
|
help='whether to reload the server when the codes have been changed', |
|
|
show_default=True, |
|
|
) |
|
|
@click.option( |
|
|
"--log-level", |
|
|
default='INFO', |
|
|
help="Log Level, such as `INFO`, `DEBUG`", |
|
|
show_default=True, |
|
|
) |
|
|
def serve( |
|
|
languages, |
|
|
layout_config, |
|
|
mfd_config, |
|
|
formula_ocr_config, |
|
|
text_ocr_config, |
|
|
enable_formula, |
|
|
enable_table, |
|
|
device, |
|
|
output_md_root_dir, |
|
|
host, |
|
|
port, |
|
|
reload, |
|
|
log_level, |
|
|
): |
|
|
"""Start the HTTP service.""" |
|
|
from pix2text.serve import start_server |
|
|
|
|
|
logger = set_logger(log_level=log_level) |
|
|
|
|
|
analyzer_config = json.loads(mfd_config) if mfd_config else {} |
|
|
formula_ocr_config = json.loads(formula_ocr_config) if formula_ocr_config else {} |
|
|
languages = [lang.strip() for lang in languages.split(',') if lang.strip()] |
|
|
text_ocr_config = json.loads(text_ocr_config) if text_ocr_config else {} |
|
|
|
|
|
layout_config = json.loads(layout_config) if layout_config else {} |
|
|
text_formula_config = { |
|
|
'languages': languages, |
|
|
'mfd': analyzer_config, |
|
|
'formula': formula_ocr_config, |
|
|
'text': text_ocr_config, |
|
|
} |
|
|
total_config = { |
|
|
'layout': layout_config, |
|
|
'text_formula': text_formula_config, |
|
|
} |
|
|
p2t_config = dict( |
|
|
total_configs=total_config, |
|
|
enable_formula=enable_formula, |
|
|
enable_table=enable_table, |
|
|
device=device, |
|
|
) |
|
|
api = Process( |
|
|
target=start_server, |
|
|
kwargs={ |
|
|
'p2t_config': p2t_config, |
|
|
'output_md_root_dir': output_md_root_dir, |
|
|
'host': host, |
|
|
'port': port, |
|
|
'reload': reload, |
|
|
}, |
|
|
) |
|
|
api.start() |
|
|
api.join() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
cli() |
|
|
|