|
|
import logging |
|
|
import os |
|
|
import cv2 |
|
|
import numpy as np |
|
|
import importlib.util |
|
|
import sys |
|
|
import subprocess |
|
|
|
|
|
|
|
|
def get_check_global_params(mode): |
|
|
check_params = [ |
|
|
"use_gpu", |
|
|
"max_text_length", |
|
|
"image_shape", |
|
|
"image_shape", |
|
|
"character_type", |
|
|
"loss_type", |
|
|
] |
|
|
if mode == "train_eval": |
|
|
check_params = check_params + [ |
|
|
"train_batch_size_per_card", |
|
|
"test_batch_size_per_card", |
|
|
] |
|
|
elif mode == "test": |
|
|
check_params = check_params + ["test_batch_size_per_card"] |
|
|
return check_params |
|
|
|
|
|
|
|
|
def _check_image_file(path): |
|
|
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif", "pdf"} |
|
|
return any([path.lower().endswith(e) for e in img_end]) |
|
|
|
|
|
|
|
|
def get_image_file_list(img_file): |
|
|
imgs_lists = [] |
|
|
if img_file is None or not os.path.exists(img_file): |
|
|
raise Exception("not found any img file in {}".format(img_file)) |
|
|
|
|
|
if os.path.isfile(img_file) and _check_image_file(img_file): |
|
|
imgs_lists.append(img_file) |
|
|
elif os.path.isdir(img_file): |
|
|
for single_file in os.listdir(img_file): |
|
|
file_path = os.path.join(img_file, single_file) |
|
|
if os.path.isfile(file_path) and _check_image_file(file_path): |
|
|
imgs_lists.append(file_path) |
|
|
if len(imgs_lists) == 0: |
|
|
raise Exception("not found any img file in {}".format(img_file)) |
|
|
imgs_lists = sorted(imgs_lists) |
|
|
return imgs_lists |
|
|
|
|
|
|
|
|
def binarize_img(img): |
|
|
if len(img.shape) == 3 and img.shape[2] == 3: |
|
|
gray = cv2.cvtColor(img, |
|
|
cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
_, gray = cv2.threshold(gray, 0, 255, |
|
|
cv2.THRESH_BINARY + cv2.THRESH_OTSU) |
|
|
img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) |
|
|
return img |
|
|
|
|
|
|
|
|
def alpha_to_color(img, alpha_color=(255, 255, 255)): |
|
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
|
B, G, R, A = cv2.split(img) |
|
|
alpha = A / 255 |
|
|
|
|
|
R = (alpha_color[0] * (1 - alpha) + R * alpha).astype(np.uint8) |
|
|
G = (alpha_color[1] * (1 - alpha) + G * alpha).astype(np.uint8) |
|
|
B = (alpha_color[2] * (1 - alpha) + B * alpha).astype(np.uint8) |
|
|
|
|
|
img = cv2.merge((B, G, R)) |
|
|
return img |
|
|
|
|
|
|
|
|
def check_and_read(img_path): |
|
|
if os.path.basename(img_path)[-3:].lower() == "gif": |
|
|
gif = cv2.VideoCapture(img_path) |
|
|
ret, frame = gif.read() |
|
|
if not ret: |
|
|
logger = logging.getLogger("openrec") |
|
|
logger.info("Cannot read {}. This gif image maybe corrupted.") |
|
|
return None, False |
|
|
if len(frame.shape) == 2 or frame.shape[-1] == 1: |
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) |
|
|
imgvalue = frame[:, :, ::-1] |
|
|
return imgvalue, True, False |
|
|
elif os.path.basename(img_path)[-3:].lower() == "pdf": |
|
|
import fitz |
|
|
from PIL import Image |
|
|
|
|
|
imgs = [] |
|
|
with fitz.open(img_path) as pdf: |
|
|
for pg in range(0, pdf.page_count): |
|
|
page = pdf[pg] |
|
|
mat = fitz.Matrix(2, 2) |
|
|
pm = page.get_pixmap(matrix=mat, alpha=False) |
|
|
|
|
|
|
|
|
if pm.width > 2000 or pm.height > 2000: |
|
|
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False) |
|
|
|
|
|
img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples) |
|
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
imgs.append(img) |
|
|
return imgs, False, True |
|
|
return None, False, False |
|
|
|
|
|
|
|
|
def load_vqa_bio_label_maps(label_map_path): |
|
|
with open(label_map_path, "r", encoding="utf-8") as fin: |
|
|
lines = fin.readlines() |
|
|
old_lines = [line.strip() for line in lines] |
|
|
lines = ["O"] |
|
|
for line in old_lines: |
|
|
|
|
|
if line.upper() in ["OTHER", "OTHERS", "IGNORE"]: |
|
|
continue |
|
|
lines.append(line) |
|
|
labels = ["O"] |
|
|
for line in lines[1:]: |
|
|
labels.append("B-" + line) |
|
|
labels.append("I-" + line) |
|
|
label2id_map = {label.upper(): idx for idx, label in enumerate(labels)} |
|
|
id2label_map = {idx: label.upper() for idx, label in enumerate(labels)} |
|
|
return label2id_map, id2label_map |
|
|
|
|
|
|
|
|
def check_install(module_name, install_name): |
|
|
spec = importlib.util.find_spec(module_name) |
|
|
if spec is None: |
|
|
print(f"Warnning! The {module_name} module is NOT installed") |
|
|
print( |
|
|
f"Try install {module_name} module automatically. You can also try to install manually by pip install {install_name}." |
|
|
) |
|
|
python = sys.executable |
|
|
try: |
|
|
subprocess.check_call( |
|
|
[python, "-m", "pip", "install", install_name], |
|
|
stdout=subprocess.DEVNULL, ) |
|
|
print(f"The {module_name} module is now installed") |
|
|
except subprocess.CalledProcessError as exc: |
|
|
raise Exception( |
|
|
f"Install {module_name} failed, please install manually") |
|
|
else: |
|
|
print(f"{module_name} has been installed.") |
|
|
|
|
|
|
|
|
class AverageMeter: |
|
|
def __init__(self): |
|
|
self.reset() |
|
|
|
|
|
def reset(self): |
|
|
"""reset""" |
|
|
self.val = 0 |
|
|
self.avg = 0 |
|
|
self.sum = 0 |
|
|
self.count = 0 |
|
|
|
|
|
def update(self, val, n=1): |
|
|
"""update""" |
|
|
self.val = val |
|
|
self.sum += val * n |
|
|
self.count += n |
|
|
self.avg = self.sum / self.count |
|
|
|