|
|
from concern.config import Configurable, State |
|
|
from concern.log import Logger |
|
|
from structure.builder import Builder |
|
|
from structure.representers import * |
|
|
from structure.measurers import * |
|
|
from structure.visualizers import * |
|
|
from data.data_loader import * |
|
|
from data import * |
|
|
from training.model_saver import ModelSaver |
|
|
from training.checkpoint import Checkpoint |
|
|
from training.optimizer_scheduler import OptimizerScheduler |
|
|
|
|
|
|
|
|
class Structure(Configurable): |
|
|
builder = State() |
|
|
representer = State() |
|
|
measurer = State() |
|
|
visualizer = State() |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
self.load_all(**kwargs) |
|
|
|
|
|
@property |
|
|
def model_name(self): |
|
|
return self.builder.model_name |
|
|
|
|
|
|
|
|
class TrainSettings(Configurable): |
|
|
data_loader = State() |
|
|
model_saver = State() |
|
|
checkpoint = State() |
|
|
scheduler = State() |
|
|
epochs = State(default=10) |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
kwargs['cmd'].update(is_train=True) |
|
|
self.load_all(**kwargs) |
|
|
if 'epochs' in kwargs['cmd']: |
|
|
self.epochs = kwargs['cmd']['epochs'] |
|
|
|
|
|
|
|
|
class ValidationSettings(Configurable): |
|
|
data_loaders = State() |
|
|
visualize = State() |
|
|
interval = State(default=100) |
|
|
exempt = State(default=-1) |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
kwargs['cmd'].update(is_train=False) |
|
|
self.load_all(**kwargs) |
|
|
|
|
|
cmd = kwargs['cmd'] |
|
|
self.visualize = cmd['visualize'] |
|
|
|
|
|
|
|
|
class EvaluationSettings(Configurable): |
|
|
data_loaders = State() |
|
|
visualize = State(default=True) |
|
|
resume = State() |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
self.load_all(**kwargs) |
|
|
|
|
|
|
|
|
class EvaluationSettings2(Configurable): |
|
|
structure = State() |
|
|
data_loaders = State() |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
self.load_all(**kwargs) |
|
|
|
|
|
|
|
|
class ShowSettings(Configurable): |
|
|
data_loader = State() |
|
|
representer = State() |
|
|
visualizer = State() |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
self.load_all(**kwargs) |
|
|
|
|
|
|
|
|
class Experiment(Configurable): |
|
|
structure = State(autoload=False) |
|
|
train = State() |
|
|
validation = State(autoload=False) |
|
|
evaluation = State(autoload=False) |
|
|
logger = State(autoload=True) |
|
|
|
|
|
def __init__(self, **kwargs): |
|
|
self.load('structure', **kwargs) |
|
|
|
|
|
cmd = kwargs.get('cmd', {}) |
|
|
if 'name' not in cmd: |
|
|
cmd['name'] = self.structure.model_name |
|
|
|
|
|
self.load_all(**kwargs) |
|
|
self.distributed = cmd.get('distributed', False) |
|
|
self.local_rank = cmd.get('local_rank', 0) |
|
|
|
|
|
if cmd.get('validate', False): |
|
|
self.load('validation', **kwargs) |
|
|
else: |
|
|
self.validation = None |
|
|
|