| import sys | |
| import torch | |
| import torch.nn as nn | |
| class SegDetectorLossBuilder(): | |
| ''' | |
| Build loss functions for SegDetector. | |
| Details about the built functions: | |
| Input: | |
| pred: A dict which contains predictions. | |
| thresh: The threshold prediction | |
| binary: The text segmentation prediction. | |
| thresh_binary: Value produced by `step_function(binary - thresh)`. | |
| batch: | |
| gt: Text regions bitmap gt. | |
| mask: Ignore mask, | |
| pexels where value is 1 indicates no contribution to loss. | |
| thresh_mask: Mask indicates regions cared by thresh supervision. | |
| thresh_map: Threshold gt. | |
| Return: | |
| (loss, metrics). | |
| loss: A scalar loss value. | |
| metrics: A dict contraining partial loss values. | |
| ''' | |
| def __init__(self, loss_class, *args, **kwargs): | |
| self.loss_class = loss_class | |
| self.loss_args = args | |
| self.loss_kwargs = kwargs | |
| def build(self): | |
| return getattr(sys.modules[__name__], self.loss_class)(*self.loss_args, **self.loss_kwargs) | |
| class DiceLoss(nn.Module): | |
| ''' | |
| DiceLoss on binary. | |
| For SegDetector without adaptive module. | |
| ''' | |
| def __init__(self, eps=1e-6): | |
| super(DiceLoss, self).__init__() | |
| from .dice_loss import DiceLoss as Loss | |
| self.loss = Loss(eps) | |
| def forward(self, pred, batch): | |
| loss = self.loss(pred['binary'], batch['gt'], batch['mask']) | |
| return loss, dict(dice_loss=loss) | |
| class BalanceBCELoss(nn.Module): | |
| ''' | |
| DiceLoss on binary. | |
| For SegDetector without adaptive module. | |
| ''' | |
| def __init__(self, eps=1e-6): | |
| super(BalanceBCELoss, self).__init__() | |
| from .balance_cross_entropy_loss import BalanceCrossEntropyLoss | |
| self.loss = BalanceCrossEntropyLoss() | |
| def forward(self, pred, batch): | |
| loss = self.loss(pred['binary'], batch['gt'], batch['mask']) | |
| return loss, dict(dice_loss=loss) | |
| class AdaptiveDiceLoss(nn.Module): | |
| ''' | |
| Integration of DiceLoss on both binary | |
| prediction and thresh prediction. | |
| ''' | |
| def __init__(self, eps=1e-6): | |
| super(AdaptiveDiceLoss, self).__init__() | |
| from .dice_loss import DiceLoss | |
| self.main_loss = DiceLoss(eps) | |
| self.thresh_loss = DiceLoss(eps) | |
| def forward(self, pred, batch): | |
| assert isinstance(pred, dict) | |
| assert 'binary' in pred | |
| assert 'thresh_binary' in pred | |
| binary = pred['binary'] | |
| thresh_binary = pred['thresh_binary'] | |
| gt = batch['gt'] | |
| mask = batch['mask'] | |
| main_loss = self.main_loss(binary, gt, mask) | |
| thresh_loss = self.thresh_loss(thresh_binary, gt, mask) | |
| loss = main_loss + thresh_loss | |
| return loss, dict(main_loss=main_loss, thresh_loss=thresh_loss) | |
| class AdaptiveInstanceDiceLoss(nn.Module): | |
| ''' | |
| InstanceDiceLoss on both binary and thresh_bianry. | |
| ''' | |
| def __init__(self, iou_thresh=0.2, thresh=0.3): | |
| super(AdaptiveInstanceDiceLoss, self).__init__() | |
| from .dice_loss import InstanceDiceLoss, DiceLoss | |
| self.main_loss = DiceLoss() | |
| self.main_instance_loss = InstanceDiceLoss() | |
| self.thresh_loss = DiceLoss() | |
| self.thresh_instance_loss = InstanceDiceLoss() | |
| self.weights = nn.ParameterDict(dict( | |
| main=nn.Parameter(torch.ones(1)), | |
| thresh=nn.Parameter(torch.ones(1)), | |
| main_instance=nn.Parameter(torch.ones(1)), | |
| thresh_instance=nn.Parameter(torch.ones(1)))) | |
| def partial_loss(self, weight, loss): | |
| return loss / weight + torch.log(torch.sqrt(weight)) | |
| def forward(self, pred, batch): | |
| main_loss = self.main_loss(pred['binary'], batch['gt'], batch['mask']) | |
| thresh_loss = self.thresh_loss(pred['thresh_binary'], batch['gt'], batch['mask']) | |
| main_instance_loss = self.main_instance_loss( | |
| pred['binary'], batch['gt'], batch['mask']) | |
| thresh_instance_loss = self.thresh_instance_loss( | |
| pred['thresh_binary'], batch['gt'], batch['mask']) | |
| loss = self.partial_loss(self.weights['main'], main_loss) \ | |
| + self.partial_loss(self.weights['thresh'], thresh_loss) \ | |
| + self.partial_loss(self.weights['main_instance'], main_instance_loss) \ | |
| + self.partial_loss(self.weights['thresh_instance'], thresh_instance_loss) | |
| metrics = dict( | |
| main_loss=main_loss, | |
| thresh_loss=thresh_loss, | |
| main_instance_loss=main_instance_loss, | |
| thresh_instance_loss=thresh_instance_loss) | |
| metrics.update(self.weights) | |
| return loss, metrics | |
| class L1DiceLoss(nn.Module): | |
| ''' | |
| L1Loss on thresh, DiceLoss on thresh_binary and binary. | |
| ''' | |
| def __init__(self, eps=1e-6, l1_scale=10): | |
| super(L1DiceLoss, self).__init__() | |
| self.dice_loss = AdaptiveDiceLoss(eps=eps) | |
| from .l1_loss import MaskL1Loss | |
| self.l1_loss = MaskL1Loss() | |
| self.l1_scale = l1_scale | |
| def forward(self, pred, batch): | |
| dice_loss, metrics = self.dice_loss(pred, batch) | |
| l1_loss, l1_metric = self.l1_loss( | |
| pred['thresh'], batch['thresh_map'], batch['thresh_mask']) | |
| loss = dice_loss + self.l1_scale * l1_loss | |
| metrics.update(**l1_metric) | |
| return loss, metrics | |
| class FullL1DiceLoss(L1DiceLoss): | |
| ''' | |
| L1loss on thresh, pixels with topk losses in non-text regions are also counted. | |
| DiceLoss on thresh_binary and binary. | |
| ''' | |
| def __init__(self, eps=1e-6, l1_scale=10): | |
| nn.Module.__init__(self) | |
| self.dice_loss = AdaptiveDiceLoss(eps=eps) | |
| from .l1_loss import BalanceL1Loss | |
| self.l1_loss = BalanceL1Loss() | |
| self.l1_scale = l1_scale | |
| class L1BalanceCELoss(nn.Module): | |
| ''' | |
| Balanced CrossEntropy Loss on `binary`, | |
| MaskL1Loss on `thresh`, | |
| DiceLoss on `thresh_binary`. | |
| Note: The meaning of inputs can be figured out in `SegDetectorLossBuilder`. | |
| ''' | |
| def __init__(self, eps=1e-6, l1_scale=10, bce_scale=5): | |
| super(L1BalanceCELoss, self).__init__() | |
| from .dice_loss import DiceLoss | |
| from .l1_loss import MaskL1Loss | |
| from .balance_cross_entropy_loss import BalanceCrossEntropyLoss | |
| self.dice_loss = DiceLoss(eps=eps) | |
| self.l1_loss = MaskL1Loss() | |
| self.bce_loss = BalanceCrossEntropyLoss() | |
| self.l1_scale = l1_scale | |
| self.bce_scale = bce_scale | |
| def forward(self, pred, batch): | |
| bce_loss = self.bce_loss(pred['binary'], batch['gt'], batch['mask']) | |
| metrics = dict(bce_loss=bce_loss) | |
| if 'thresh' in pred: | |
| l1_loss, l1_metric = self.l1_loss(pred['thresh'], batch['thresh_map'], batch['thresh_mask']) | |
| dice_loss = self.dice_loss(pred['thresh_binary'], batch['gt'], batch['mask']) | |
| metrics['thresh_loss'] = dice_loss | |
| loss = dice_loss + self.l1_scale * l1_loss + bce_loss * self.bce_scale | |
| metrics.update(**l1_metric) | |
| else: | |
| loss = bce_loss | |
| return loss, metrics | |
| class L1BCEMiningLoss(nn.Module): | |
| ''' | |
| Basicly the same with L1BalanceCELoss, where the bce loss map is used as | |
| attention weigts for DiceLoss | |
| ''' | |
| def __init__(self, eps=1e-6, l1_scale=10, bce_scale=5): | |
| super(L1BCEMiningLoss, self).__init__() | |
| from .dice_loss import DiceLoss | |
| from .l1_loss import MaskL1Loss | |
| from .balance_cross_entropy_loss import BalanceCrossEntropyLoss | |
| self.dice_loss = DiceLoss(eps=eps) | |
| self.l1_loss = MaskL1Loss() | |
| self.bce_loss = BalanceCrossEntropyLoss() | |
| self.l1_scale = l1_scale | |
| self.bce_scale = bce_scale | |
| def forward(self, pred, batch): | |
| bce_loss, bce_map = self.bce_loss(pred['binary'], batch['gt'], batch['mask'], | |
| return_origin=True) | |
| l1_loss, l1_metric = self.l1_loss(pred['thresh'], batch['thresh_map'], batch['thresh_mask']) | |
| bce_map = (bce_map - bce_map.min()) / (bce_map.max() - bce_map.min()) | |
| dice_loss = self.dice_loss( | |
| pred['thresh_binary'], batch['gt'], | |
| batch['mask'], weights=bce_map + 1) | |
| metrics = dict(bce_loss=bce_loss) | |
| metrics['thresh_loss'] = dice_loss | |
| loss = dice_loss + self.l1_scale * l1_loss + bce_loss * self.bce_scale | |
| metrics.update(**l1_metric) | |
| return loss, metrics | |
| class L1LeakyDiceLoss(nn.Module): | |
| ''' | |
| LeakyDiceLoss on binary, | |
| MaskL1Loss on thresh, | |
| DiceLoss on thresh_binary. | |
| ''' | |
| def __init__(self, eps=1e-6, coverage_scale=5, l1_scale=10): | |
| super(L1LeakyDiceLoss, self).__init__() | |
| from .dice_loss import DiceLoss, LeakyDiceLoss | |
| from .l1_loss import MaskL1Loss | |
| self.main_loss = LeakyDiceLoss(coverage_scale=coverage_scale) | |
| self.l1_loss = MaskL1Loss() | |
| self.thresh_loss = DiceLoss(eps=eps) | |
| self.l1_scale = l1_scale | |
| def forward(self, pred, batch): | |
| main_loss, metrics = self.main_loss(pred['binary'], batch['gt'], batch['mask']) | |
| thresh_loss = self.thresh_loss(pred['thresh_binary'], batch['gt'], batch['mask']) | |
| l1_loss, l1_metric = self.l1_loss( | |
| pred['thresh'], batch['thresh_map'], batch['thresh_mask']) | |
| metrics.update(**l1_metric, thresh_loss=thresh_loss) | |
| loss = main_loss + thresh_loss + l1_loss * self.l1_scale | |
| return loss, metrics | |