|
|
from collections import OrderedDict |
|
|
import pdb |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from .feature_attention import ScaleFeatureSelection |
|
|
BatchNorm2d = nn.BatchNorm2d |
|
|
|
|
|
|
|
|
class SegSpatialScaleDetector(nn.Module): |
|
|
def __init__(self, |
|
|
in_channels=[64, 128, 256, 512], |
|
|
inner_channels=256, k=10, |
|
|
bias=False, adaptive=False, smooth=False, serial=False,fpn=True, attention_type='scale_spatial', |
|
|
*args, **kwargs): |
|
|
''' |
|
|
bias: Whether conv layers have bias or not. |
|
|
adaptive: Whether to use adaptive threshold training or not. |
|
|
smooth: If true, use bilinear instead of deconv. |
|
|
serial: If true, thresh prediction will combine segmentation result as input. |
|
|
''' |
|
|
super(SegSpatialScaleDetector, self).__init__() |
|
|
self.k = k |
|
|
self.serial = serial |
|
|
self.fpn = fpn |
|
|
self.up5 = nn.Upsample(scale_factor=2, mode='nearest') |
|
|
self.up4 = nn.Upsample(scale_factor=2, mode='nearest') |
|
|
self.up3 = nn.Upsample(scale_factor=2, mode='nearest') |
|
|
|
|
|
self.in5 = nn.Conv2d(in_channels[-1], inner_channels, 1, bias=bias) |
|
|
self.in4 = nn.Conv2d(in_channels[-2], inner_channels, 1, bias=bias) |
|
|
self.in3 = nn.Conv2d(in_channels[-3], inner_channels, 1, bias=bias) |
|
|
self.in2 = nn.Conv2d(in_channels[-4], inner_channels, 1, bias=bias) |
|
|
|
|
|
if self.fpn: |
|
|
self.out5 = nn.Sequential( |
|
|
nn.Conv2d(inner_channels, inner_channels // 4, 3, padding=1, bias=bias), |
|
|
nn.Upsample(scale_factor=8, mode='nearest')) |
|
|
self.out4 = nn.Sequential( |
|
|
nn.Conv2d(inner_channels, inner_channels // 4, 3, padding=1, bias=bias), |
|
|
nn.Upsample(scale_factor=4, mode='nearest')) |
|
|
self.out3 = nn.Sequential( |
|
|
nn.Conv2d(inner_channels, inner_channels // 4, 3, padding=1, bias=bias), |
|
|
nn.Upsample(scale_factor=2, mode='nearest')) |
|
|
self.out2 = nn.Conv2d(inner_channels, inner_channels//4, 3, padding=1, bias=bias) |
|
|
self.out5.apply(self.weights_init) |
|
|
self.out4.apply(self.weights_init) |
|
|
self.out3.apply(self.weights_init) |
|
|
self.out2.apply(self.weights_init) |
|
|
|
|
|
self.concat_attention = ScaleFeatureSelection(inner_channels, inner_channels//4, attention_type=attention_type) |
|
|
self.binarize = nn.Sequential( |
|
|
nn.Conv2d(inner_channels, inner_channels // 4, 3, bias=bias, padding=1), |
|
|
BatchNorm2d(inner_channels//4), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.ConvTranspose2d(inner_channels//4, inner_channels//4, 2, 2), |
|
|
BatchNorm2d(inner_channels//4), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.ConvTranspose2d(inner_channels//4, 1, 2, 2), |
|
|
nn.Sigmoid()) |
|
|
else: |
|
|
self.concat_attention = ScaleFeatureSelection(inner_channels, inner_channels//4, ) |
|
|
self.binarize = nn.Sequential( |
|
|
nn.Conv2d(inner_channels, inner_channels // 4, 3, bias=bias, padding=1), |
|
|
BatchNorm2d(inner_channels//4), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.ConvTranspose2d(inner_channels//4, inner_channels//4, 2, 2), |
|
|
BatchNorm2d(inner_channels//4), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.ConvTranspose2d(inner_channels//4, 1, 2, 2), |
|
|
nn.Sigmoid()) |
|
|
|
|
|
self.binarize.apply(self.weights_init) |
|
|
self.adaptive = adaptive |
|
|
if adaptive: |
|
|
self.thresh = self._init_thresh( |
|
|
inner_channels, serial=serial, smooth=smooth, bias=bias) |
|
|
self.thresh.apply(self.weights_init) |
|
|
|
|
|
self.in5.apply(self.weights_init) |
|
|
self.in4.apply(self.weights_init) |
|
|
self.in3.apply(self.weights_init) |
|
|
self.in2.apply(self.weights_init) |
|
|
|
|
|
def weights_init(self, m): |
|
|
classname = m.__class__.__name__ |
|
|
if classname.find('Conv') != -1: |
|
|
nn.init.kaiming_normal_(m.weight.data) |
|
|
elif classname.find('BatchNorm') != -1: |
|
|
m.weight.data.fill_(1.) |
|
|
m.bias.data.fill_(1e-4) |
|
|
|
|
|
def _init_thresh(self, inner_channels, |
|
|
serial=False, smooth=False, bias=False): |
|
|
in_channels = inner_channels |
|
|
if serial: |
|
|
in_channels += 1 |
|
|
self.thresh = nn.Sequential( |
|
|
nn.Conv2d(in_channels, inner_channels // |
|
|
4, 3, padding=1, bias=bias), |
|
|
BatchNorm2d(inner_channels//4), |
|
|
nn.ReLU(inplace=True), |
|
|
self._init_upsample(inner_channels // 4, inner_channels//4, smooth=smooth, bias=bias), |
|
|
BatchNorm2d(inner_channels//4), |
|
|
nn.ReLU(inplace=True), |
|
|
self._init_upsample(inner_channels // 4, 1, smooth=smooth, bias=bias), |
|
|
nn.Sigmoid()) |
|
|
return self.thresh |
|
|
|
|
|
def _init_upsample(self, |
|
|
in_channels, out_channels, |
|
|
smooth=False, bias=False): |
|
|
if smooth: |
|
|
inter_out_channels = out_channels |
|
|
if out_channels == 1: |
|
|
inter_out_channels = in_channels |
|
|
module_list = [ |
|
|
nn.Upsample(scale_factor=2, mode='nearest'), |
|
|
nn.Conv2d(in_channels, inter_out_channels, 3, 1, 1, bias=bias)] |
|
|
if out_channels == 1: |
|
|
module_list.append( |
|
|
nn.Conv2d(in_channels, out_channels, |
|
|
kernel_size=1, stride=1, padding=1, bias=True)) |
|
|
|
|
|
return nn.Sequential(module_list) |
|
|
else: |
|
|
return nn.ConvTranspose2d(in_channels, out_channels, 2, 2) |
|
|
|
|
|
def forward(self, features, gt=None, masks=None, training=False): |
|
|
c2, c3, c4, c5 = features |
|
|
in5 = self.in5(c5) |
|
|
in4 = self.in4(c4) |
|
|
in3 = self.in3(c3) |
|
|
in2 = self.in2(c2) |
|
|
|
|
|
out4 = self.up5(in5) + in4 |
|
|
out3 = self.up4(out4) + in3 |
|
|
out2 = self.up3(out3) + in2 |
|
|
p5 = self.out5(in5) |
|
|
p4 = self.out4(out4) |
|
|
p3 = self.out3(out3) |
|
|
p2 = self.out2(out2) |
|
|
|
|
|
fuse = torch.cat((p5, p4, p3, p2), 1) |
|
|
fuse = self.concat_attention(fuse, [p5, p4, p3, p2]) |
|
|
|
|
|
|
|
|
binary = self.binarize(fuse) |
|
|
if self.training: |
|
|
result = OrderedDict(binary=binary) |
|
|
else: |
|
|
return binary |
|
|
if self.adaptive and self.training: |
|
|
if self.serial: |
|
|
fuse = torch.cat( |
|
|
(fuse, nn.functional.interpolate( |
|
|
binary, fuse.shape[2:])), 1) |
|
|
thresh = self.thresh(fuse) |
|
|
thresh_binary = self.step_function(binary, thresh) |
|
|
result.update(thresh=thresh, thresh_binary=thresh_binary) |
|
|
return result |
|
|
|
|
|
def step_function(self, x, y): |
|
|
return torch.reciprocal(1 + torch.exp(-self.k * (x - y))) |