DBNet / DB /decoders /balance_cross_entropy_loss.py
fasdfsa's picture
add DB code
52a9452
import torch
import torch.nn as nn
class BalanceCrossEntropyLoss(nn.Module):
'''
Balanced cross entropy loss.
Shape:
- Input: :math:`(N, 1, H, W)`
- GT: :math:`(N, 1, H, W)`, same shape as the input
- Mask: :math:`(N, H, W)`, same spatial shape as the input
- Output: scalar.
Examples::
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()
'''
def __init__(self, negative_ratio=3.0, eps=1e-6):
super(BalanceCrossEntropyLoss, self).__init__()
self.negative_ratio = negative_ratio
self.eps = eps
def forward(self,
pred: torch.Tensor,
gt: torch.Tensor,
mask: torch.Tensor,
return_origin=False):
'''
Args:
pred: shape :math:`(N, 1, H, W)`, the prediction of network
gt: shape :math:`(N, 1, H, W)`, the target
mask: shape :math:`(N, H, W)`, the mask indicates positive regions
'''
positive = (gt[:,0,:,:] * mask).byte()
negative = ((1 - gt[:,0,:,:]) * mask).byte()
positive_count = int(positive.float().sum())
negative_count = min(int(negative.float().sum()),
int(positive_count * self.negative_ratio))
loss = nn.functional.binary_cross_entropy(
pred, gt, reduction='none')[:, 0, :, :]
positive_loss = loss * positive.float()
negative_loss = loss * negative.float()
negative_loss, _ = torch.topk(negative_loss.view(-1), negative_count)
balance_loss = (positive_loss.sum() + negative_loss.sum()) /\
(positive_count + negative_count + self.eps)
if return_origin:
return balance_loss, loss
return balance_loss