Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
knowledge-base-qa
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""GrailQA: The Strongly Generalizable Question Answering Dataset""" | |
import json | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@misc{gu2020iid, | |
title={Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases}, | |
author={Yu Gu and Sue Kase and Michelle Vanni and Brian Sadler and Percy Liang and Xifeng Yan and Yu Su}, | |
year={2020}, | |
eprint={2011.07743}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Strongly Generalizable Question Answering (GrailQA) is a new large-scale, \ | |
high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated \ | |
with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). \ | |
It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot. | |
""" | |
_URL = "https://dl.orangedox.com/WyaCpL?dl=1" | |
class GrailQA(datasets.GeneratorBasedBuilder): | |
"""GrailQA: The Strongly Generalizable Question Answering Dataset""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"qid": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answer": datasets.features.Sequence( | |
{ | |
"answer_type": datasets.Value("string"), | |
"answer_argument": datasets.Value("string"), | |
"entity_name": datasets.Value("string"), | |
} | |
), | |
"function": datasets.Value("string"), | |
"num_node": datasets.Value("int32"), | |
"num_edge": datasets.Value("int32"), | |
"graph_query": { | |
"nodes": datasets.features.Sequence( | |
{ | |
"nid": datasets.Value("int32"), | |
"node_type": datasets.Value("string"), | |
"id": datasets.Value("string"), | |
"class": datasets.Value("string"), | |
"friendly_name": datasets.Value("string"), | |
"question_node": datasets.Value("int32"), | |
"function": datasets.Value("string"), | |
} | |
), | |
"edges": datasets.features.Sequence( | |
{ | |
"start": datasets.Value("int32"), | |
"end": datasets.Value("int32"), | |
"relation": datasets.Value("string"), | |
"friendly_name": datasets.Value("string"), | |
} | |
), | |
}, | |
"sparql_query": datasets.Value("string"), | |
"domains": datasets.features.Sequence(datasets.Value("string")), | |
"level": datasets.Value("string"), | |
"s_expression": datasets.Value("string"), | |
} | |
), | |
# No default supervised_keys (as we have to pass both question | |
# and context as input). | |
supervised_keys=None, | |
homepage="https://dki-lab.github.io/GrailQA/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
dl_path = os.path.join(dl_manager.download_and_extract(_URL), "GrailQA_v1.0") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_train.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_dev.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_test_public.json")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
samples = json.load(f) | |
for sample in samples: | |
features = { | |
"qid": str(sample["qid"]), | |
"question": sample["question"], | |
"function": sample.get("function", ""), | |
"num_node": sample.get("num_node", -1), | |
"num_edge": sample.get("num_edge", -1), | |
"graph_query": sample.get("graph_query", {"nodes": [], "edges": []}), | |
"sparql_query": sample.get("sparql_query", ""), | |
"domains": sample.get("domains", []), | |
"level": sample.get("level", ""), | |
"s_expression": sample.get("s_expression", ""), | |
} | |
answers = sample.get("answer", []) | |
for answer in answers: | |
if "entity_name" not in answer: | |
answer["entity_name"] = "" | |
features["answer"] = answers | |
yield sample["qid"], features | |