modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
21 values
files
sequence
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
Eirca/add_vocab_fin
2021-03-13T22:53:35.000Z
[]
[ ".gitattributes" ]
Eirca
0
Eirca/vocab_add_fin
2021-03-14T04:42:43.000Z
[]
[ ".gitattributes" ]
Eirca
0
Elbe/RoBERTaforIns
2021-05-20T11:47:50.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
Elbe
12
transformers
Elbe/RoBERTaforIns_2
2020-11-15T22:08:30.000Z
[]
[ ".gitattributes" ]
Elbe
0
Elbe/RoBERTaforIns_full
2020-11-15T22:14:28.000Z
[]
[ ".gitattributes" ]
Elbe
0
EleutherAI/gpt-neo-1.3B
2021-05-20T23:59:56.000Z
[ "pytorch", "rust", "gpt_neo", "causal-lm", "en", "dataset:the Pile", "transformers", "text generation", "the Pile", "license:apache-2.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "rust_model.ot", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
EleutherAI
43,938
transformers
--- language: - en tags: - text generation - pytorch - the Pile - causal-lm license: apache-2.0 datasets: - the Pile --- # GPT-Neo 1.3B ## Model Description GPT-Neo 1.3B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 1.3B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 1.3B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained on the Pile for 380 billion tokens over 362,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-1.3B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | **GPT-Neo 1.3B** | **0.7527** | **6.159** | **13.10** | **7.498** | **57.23%** | **55.01%** | **38.66%** | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | GPT-Neo 2.7B | 0.7165 | 5.646 | 11.39 | 5.626 | 62.22% | 56.50% | 42.73% | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | **GPT-Neo 1.3B** | **24.05%** | **54.40%** | **71.11%** | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | GPT-Neo 2.7B | 24.72% | 57.54% | 72.14% | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` To cite the codebase that this model was trained with, use ```bibtex @software{gpt-neo, author = {Black, Sid and Gao, Leo and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo}: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}, url = {http://github.com/eleutherai/gpt-neo}, version = {1.0}, year = {2021}, } ```
EleutherAI/gpt-neo-125M
2021-05-20T23:57:27.000Z
[ "pytorch", "rust", "gpt_neo", "causal-lm", "en", "dataset:the Pile", "transformers", "text generation", "the Pile", "license:apache-2.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "rust_model.ot", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
EleutherAI
22,648
transformers
--- language: - en tags: - text generation - pytorch - the Pile - causal-lm license: apache-2.0 datasets: - the Pile --- # GPT-Neo 125M ## Model Description GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results TBD ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` To cite the codebase that this model was trained with, use ```bibtex @software{gpt-neo, author = {Black, Sid and Gao, Leo and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo}: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}, url = {http://github.com/eleutherai/gpt-neo}, version = {1.0}, year = {2021}, } ```
EleutherAI/gpt-neo-2.7B
2021-05-21T00:00:44.000Z
[ "pytorch", "rust", "gpt_neo", "causal-lm", "en", "dataset:the Pile", "transformers", "text generation", "the Pile", "license:apache-2.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "rust_model.ot", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
EleutherAI
99,979
transformers
--- language: - en tags: - text generation - pytorch - the Pile - causal-lm license: apache-2.0 datasets: - the Pile --- # GPT-Neo 2.7B ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ``` To cite the codebase that this model was trained with, use ```bibtex @software{gpt-neo, author = {Black, Sid and Gao, Leo and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo}: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}, url = {http://github.com/eleutherai/gpt-neo}, version = {1.0}, year = {2021}, } ```
Elliejone/Ellie
2021-06-02T22:17:14.000Z
[]
[ ".gitattributes" ]
Elliejone
0
Elluran/Hate_speech_detector
2021-05-20T11:49:13.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
Elluran
13
transformers
Emi2160/DialoGPT-small-Neku
2021-06-03T14:04:12.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
Emi2160
48
transformers
--- tags: - conversational --- # My Awesome Model
Emirhan/51k-finetuned-bert-model
2021-06-04T17:35:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Emirhan
12
transformers
Enutodu/QnA
2021-04-21T04:23:52.000Z
[]
[ ".gitattributes" ]
Enutodu
0
ErykWdowiak/GPTalian
2021-05-21T09:42:05.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "en", "it", "scn", "nap", "transformers", "exbert", "license:apache-2.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json", "scripts/01_prepare-bonaffini.pl", "scripts/02_initialize-gptalian.py", "scripts/03_pretrain-gptalian.sh", "scripts/04_play-w-gptalian.ipynb", "scripts/LICENSE", "scripts/run_clm.py" ]
ErykWdowiak
36
transformers
--- language: - en - it - scn - nap tags: - exbert - gpt2 license: apache-2.0 --- # GPTalian This is a GPT2 model of Italian regional languages trained on [collections of Italian "dialect poetry"](http://dialectpoetry.com) by Luigi Bonaffini. This is a multilingual model. Italians use the word "dialect" to describe their regional languages, but they are separate languages. And there's a lot of English in this dataset too. The challenge of this project is to train a model to write the languages of Italy. For those who do not know Italian, here's some (lowercase) text that you can type into the API box: - oggi si parla il dialetto - la sua poesia viene di - ma non sempre trova
EthonLee/Lethon202103test001
2021-01-03T11:42:46.000Z
[]
[ ".gitattributes" ]
EthonLee
0
Eunji/kant
2021-03-29T15:07:45.000Z
[ "tensorboard" ]
[ ".gitattributes", "checkpoint/run1/checkpoint", "checkpoint/run1/counter", "checkpoint/run1/encoder.json", "checkpoint/run1/events.out.tfevents.1615780798.ce057e2444ba", "checkpoint/run1/hparams.json", "checkpoint/run1/model-1000.data-00000-of-00001", "checkpoint/run1/model-1000.index", "checkpoint/run1/model-1000.meta", "checkpoint/run1/vocab.bpe" ]
Eunji
0
Eunku/KorLangModel
2021-03-22T15:32:52.000Z
[]
[ ".gitattributes" ]
Eunku
0
FFZG-cleopatra/bert-emoji-latvian-twitter
2021-05-18T18:33:26.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
FFZG-cleopatra
43
transformers
FPTAI/velectra-base-discriminator-cased
2020-09-30T03:52:16.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "vocab.txt" ]
FPTAI
319
transformers
FPTAI/vibert-base-cased
2021-05-19T11:15:49.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
FPTAI
1,247
transformers
Fabby/gpt2-english-light-novel-titles
2021-03-08T15:30:42.000Z
[]
[ ".gitattributes", "README.md", "model/added_tokens.json", "model/config.json", "model/merges.txt", "model/pytorch_model.bin", "model/special_tokens_map.json", "model/tokenizer_config.json", "model/vocab.json" ]
Fabby
0
Fang/Titania
2021-03-25T09:59:13.000Z
[]
[ ".gitattributes" ]
Fang
0
Fatemah/salamBERT
2021-01-24T09:10:02.000Z
[]
[ ".gitattributes" ]
Fatemah
0
FelipeV/bert-base-spanish-uncased-sentiment
2021-01-21T16:49:27.000Z
[]
[ ".gitattributes" ]
FelipeV
0
Ferch423/gpt2-small-portuguese-wikipediabio
2021-05-21T09:42:53.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "pt", "dataset:wikipedia", "transformers", "wikipedia", "finetuning", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "eval_results_clm.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Ferch423
52
transformers
--- language: "pt" tags: - pt - wikipedia - gpt2 - finetuning datasets: - wikipedia widget: - "André Um" - "Maria do Santos" - "Roberto Carlos" licence: "mit" --- # GPT2-SMALL-PORTUGUESE-WIKIPEDIABIO This is a finetuned model version of gpt2-small-portuguese(https://huggingface.co/pierreguillou/gpt2-small-portuguese) by pierreguillou. It was trained on a person abstract dataset extracted from DBPEDIA (over 100000 people's abstracts). The model is intended as a simple and fun experiment for generating texts abstracts based on ordinary people's names.
Fidlobabovic/beta-kvantorium-simple-small
2021-05-20T11:50:06.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config (2).json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "training_args (1).bin", "vocab.txt" ]
Fidlobabovic
15
transformers
Beta-kavntorium-simple-small is a transformers model RoBerta pretrained on a large corpus of Russion kvantorim data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with objective: Automate communication with the Quantorium community and mentors.
Fidlobabovic/beta-kvantorium-small
2021-05-20T11:50:54.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
Fidlobabovic
10
transformers
Beta-kavntorium-simple-small is a transformers model RoBerta pretrained on a large corpus of Russion kvantorim data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with objective: Automate communication with the Quantorium community and mentors. https://sun9-49.userapi.com/impg/CIJZKA_r9xoLYd47Lvjv_8jyu6epadPyergP3Q/zw3J_E6IlJo.jpg?size=546x385&quality=96&sign=139fa29b864d36958feab4731cc684dc&type=album
FirmanBr/FirmanBrilianBert
2021-05-18T18:35:52.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "training_args.bin", "vocab.txt", "checkpoint-130000/config.json", "checkpoint-130000/optimizer.pt", "checkpoint-130000/pytorch_model.bin", "checkpoint-130000/scheduler.pt", "checkpoint-130000/trainer_state.json", "checkpoint-130000/training_args.bin", "checkpoint-140000/config.json", "checkpoint-140000/optimizer.pt", "checkpoint-140000/pytorch_model.bin", "checkpoint-140000/scheduler.pt", "checkpoint-140000/trainer_state.json", "checkpoint-140000/training_args.bin", "hasil/config.json", "hasil/pytorch_model.bin", "hasil/training_args.bin" ]
FirmanBr
12
transformers
FirmanBr/FirmanIndoLanguageModel
2021-05-18T18:37:51.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
FirmanBr
8
transformers
FirmanBr/chibibot
2021-05-18T18:39:06.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "model_args.json", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
FirmanBr
9
transformers
For/sheldonbot
2021-06-02T15:54:07.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
For
39
transformers
--- tags: - conversational --- #
Forest/gpt2-fanfic
2021-05-21T09:44:04.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Forest
14
transformers
Francesco/dummy
2021-04-09T14:53:50.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Francesco
8
transformers
Francesco/resnet18
2021-04-09T16:00:44.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
Francesco
8
transformers
Frankie2666/twitter-roberta-base-sentiment
2021-03-05T21:37:33.000Z
[]
[ ".gitattributes" ]
Frankie2666
0
Fred/Cows
2021-02-23T09:29:17.000Z
[]
[ ".gitattributes" ]
Fred
0
Froggie/just-testing
2021-03-09T08:04:21.000Z
[]
[ ".gitattributes" ]
Froggie
0
Fujitsu/AugCode
2021-05-20T11:51:49.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "en", "dataset:augmented_codesearchnet", "transformers", "license:mit" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
Fujitsu
31
transformers
--- inference: false license: mit widget: language: - en metrics: - mrr datasets: - augmented_codesearchnet --- # 🔥 Augmented Code Model 🔥 This is Augmented Code Model which is a fined-tune model of [CodeBERT](https://huggingface.co/microsoft/codebert-base) for processing of similarity between given docstring and code. This model is fined-model based on Augmented Code Corpus with ACS=4. ## How to use the model ? Similar to other huggingface model, you may load the model as follows. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Fujitsu/AugCode") model = AutoModelForSequenceClassification.from_pretrained("Fujitsu/AugCode") ``` Then you may use `model` to infer the similarity between a given docstring and code. ### Citation ```bibtex@misc{bahrami2021augcode, title={AugmentedCode: Examining the Effects of Natural Language Resources in Code Retrieval Models}, author={Mehdi Bahrami, N. C. Shrikanth, Yuji Mizobuchi, Lei Liu, Masahiro Fukuyori, Wei-Peng Chen, Kazuki Munakata}, year={2021}, eprint={TBA}, archivePrefix={TBA}, primaryClass={cs.CL} } ```
Fujitsu/pytorrent
2021-05-20T11:52:40.000Z
[ "pytorch", "jax", "roberta", "en", "dataset:pytorrent", "transformers", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
Fujitsu
14
transformers
--- license: mit widget: language: - en datasets: - pytorrent --- # 🔥 RoBERTa-MLM-based PyTorrent 1M 🔥 Pretrained weights based on [PyTorrent Dataset](https://github.com/fla-sil/PyTorrent) which is a curated data from a large official Python packages. We use PyTorrent dataset to train a preliminary DistilBERT-Masked Language Modeling(MLM) model from scratch. The trained model, along with the dataset, aims to help researchers to easily and efficiently work on a large dataset of Python packages using only 5 lines of codes to load the transformer-based model. We use 1M raw Python scripts of PyTorrent that includes 12,350,000 LOC to train the model. We also train a byte-level Byte-pair encoding (BPE) tokenizer that includes 56,000 tokens, which is truncated LOC with the length of 50 to save computation resources. ### Training Objective This model is trained with a Masked Language Model (MLM) objective. ## How to use the model? ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Fujitsu/pytorrent") model = AutoModel.from_pretrained("Fujitsu/pytorrent") ```
Furkan/Furkan
2021-02-12T09:49:08.000Z
[]
[ ".gitattributes" ]
Furkan
0
GD/bert-base-uncased-gh
2020-12-27T15:28:27.000Z
[]
[ ".gitattributes" ]
GD
0
GD/cq-bert-model-repo
2021-05-18T18:40:31.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.txt", "checkpoint-3042/config.json", "checkpoint-3042/optimizer.pt", "checkpoint-3042/pytorch_model.bin", "checkpoint-3042/scheduler.pt", "checkpoint-3042/special_tokens_map.json", "checkpoint-3042/tokenizer_config.json", "checkpoint-3042/trainer_state.json", "checkpoint-3042/training_args.bin", "checkpoint-3042/vocab.txt" ]
GD
14
transformers
GD/qqp-bert-model-repo
2021-03-28T20:28:23.000Z
[]
[ ".gitattributes" ]
GD
0
GD/qqp_1_glue_cased_
2021-03-17T01:25:49.000Z
[]
[ ".gitattributes", "README.md", "qqp_#1_glue_cased/checkpoint-11371/config.json", "qqp_#1_glue_cased/checkpoint-11371/optimizer.pt", "qqp_#1_glue_cased/checkpoint-11371/pytorch_model.bin", "qqp_#1_glue_cased/checkpoint-11371/scheduler.pt", "qqp_#1_glue_cased/checkpoint-11371/special_tokens_map.json", "qqp_#1_glue_cased/checkpoint-11371/tokenizer_config.json", "qqp_#1_glue_cased/checkpoint-11371/trainer_state.json", "qqp_#1_glue_cased/checkpoint-11371/training_args.bin", "qqp_#1_glue_cased/checkpoint-11371/vocab.txt", "qqp_#1_glue_cased/checkpoint-22742/config.json", "qqp_#1_glue_cased/checkpoint-22742/optimizer.pt", "qqp_#1_glue_cased/checkpoint-22742/pytorch_model.bin", "qqp_#1_glue_cased/checkpoint-22742/scheduler.pt", "qqp_#1_glue_cased/checkpoint-22742/special_tokens_map.json", "qqp_#1_glue_cased/checkpoint-22742/tokenizer_config.json", "qqp_#1_glue_cased/checkpoint-22742/trainer_state.json", "qqp_#1_glue_cased/checkpoint-22742/training_args.bin", "qqp_#1_glue_cased/checkpoint-22742/vocab.txt", "qqp_#1_glue_cased/checkpoint-34113/config.json", "qqp_#1_glue_cased/checkpoint-34113/optimizer.pt", "qqp_#1_glue_cased/checkpoint-34113/pytorch_model.bin", "qqp_#1_glue_cased/checkpoint-34113/scheduler.pt", "qqp_#1_glue_cased/checkpoint-34113/special_tokens_map.json", "qqp_#1_glue_cased/checkpoint-34113/tokenizer_config.json", "qqp_#1_glue_cased/checkpoint-34113/trainer_state.json", "qqp_#1_glue_cased/checkpoint-34113/training_args.bin", "qqp_#1_glue_cased/checkpoint-34113/vocab.txt", "qqp_#1_glue_cased/checkpoint-45484/config.json", "qqp_#1_glue_cased/checkpoint-45484/optimizer.pt", "qqp_#1_glue_cased/checkpoint-45484/pytorch_model.bin", "qqp_#1_glue_cased/checkpoint-45484/scheduler.pt", "qqp_#1_glue_cased/checkpoint-45484/special_tokens_map.json", "qqp_#1_glue_cased/checkpoint-45484/tokenizer_config.json", "qqp_#1_glue_cased/checkpoint-45484/trainer_state.json", "qqp_#1_glue_cased/checkpoint-45484/training_args.bin", "qqp_#1_glue_cased/checkpoint-45484/vocab.txt", "qqp_#1_glue_cased/checkpoint-56855/config.json", "qqp_#1_glue_cased/checkpoint-56855/optimizer.pt", "qqp_#1_glue_cased/checkpoint-56855/pytorch_model.bin", "qqp_#1_glue_cased/checkpoint-56855/scheduler.pt", "qqp_#1_glue_cased/checkpoint-56855/special_tokens_map.json", "qqp_#1_glue_cased/checkpoint-56855/tokenizer_config.json", "qqp_#1_glue_cased/checkpoint-56855/trainer_state.json", "qqp_#1_glue_cased/checkpoint-56855/training_args.bin", "qqp_#1_glue_cased/checkpoint-56855/vocab.txt" ]
GD
0
GD/qqp_multi_glue_cased_finish_5_epochs_only_qqp_repo
2021-04-02T13:30:26.000Z
[]
[ ".gitattributes" ]
GD
0
GHP/Jocker
2021-05-10T14:53:19.000Z
[]
[ ".gitattributes" ]
GHP
0
GHP/gpt2-fine-tuned
2021-05-11T14:20:38.000Z
[]
[ ".gitattributes" ]
GHP
0
Galuh/wav2vec2-large-xlsr-indonesian
2021-03-30T10:39:00.000Z
[ "pytorch", "wav2vec2", "id", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Galuh
10
transformers
--- language: id datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Indonesian by Galuh results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice id type: common_voice args: id metrics: - name: Test WER type: wer value: 21.07 --- # Wav2Vec2-Large-XLSR-Indonesian This is the model for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 18.32 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/galuhsahid/wav2vec2-indonesian) (will be available soon)
Galuh/xlsr-indonesian
2021-03-27T12:49:46.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".DS_Store", ".gitattributes", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
Galuh
8
transformers
GanjinZero/UMLSBert_ALL
2021-05-19T11:16:13.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "vocab.txt" ]
GanjinZero
125
transformers
GanjinZero/UMLSBert_ENG
2021-05-19T11:16:23.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "vocab.txt" ]
GanjinZero
890
transformers
Gantenbein/ADDI-CH-GPT2
2021-06-02T13:58:54.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
35
transformers
Gantenbein/ADDI-CH-RoBERTa
2021-06-01T13:54:05.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
44
transformers
Gantenbein/ADDI-CH-XLM-R
2021-06-01T13:55:25.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin" ]
Gantenbein
14
transformers
Gantenbein/ADDI-DE-GPT2
2021-06-01T14:29:34.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
9
transformers
Gantenbein/ADDI-DE-RoBERTa
2021-06-01T14:30:17.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
23
transformers
Gantenbein/ADDI-DE-XLM-R
2021-06-01T14:31:33.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin" ]
Gantenbein
4
transformers
Gantenbein/ADDI-FI-GPT2
2021-06-01T14:11:36.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
6
transformers
Gantenbein/ADDI-FI-RoBERTa
2021-06-01T14:12:02.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
7
transformers
Gantenbein/ADDI-FI-XLM-R
2021-06-01T14:12:53.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin" ]
Gantenbein
9
transformers
Gantenbein/ADDI-FR-GPT2
2021-06-01T14:07:50.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
79
transformers
Gantenbein/ADDI-FR-RoBERTa
2021-06-01T14:07:22.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
7
transformers
Gantenbein/ADDI-FR-XLM-R
2021-06-01T14:06:53.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
5
transformers
Gantenbein/ADDI-IT-GPT2
2021-06-01T14:25:36.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
4
transformers
Gantenbein/ADDI-IT-RoBERTa
2021-06-01T14:25:12.000Z
[ "pytorch", "roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
Gantenbein
13
transformers
Gantenbein/ADDI-IT-XLM-R
2021-06-01T14:24:52.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "all_results.json", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin" ]
Gantenbein
9
transformers
Gastron/asr-crdnn-librispeech
2021-02-26T15:23:04.000Z
[ "en", "dataset:librispeech", "ASR", "CTC", "Attention", "pytorch", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "asr.ckpt", "hyperparams.yaml", "lm.ckpt", "normalizer.ckpt", "tokenizer.ckpt" ]
Gastron
7
--- language: "en" thumbnail: tags: - ASR - CTC - Attention - pytorch license: "apache-2.0" datasets: - librispeech metrics: - wer - cer --- # CRDNN with CTC/Attention and RNNLM trained on LibriSpeech This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on LibriSpeech (EN) within SpeechBrain. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given ASR model performance are: | Release | hyperparams file | Test WER | Model link | GPUs | |:-------------:|:---------------------------:| -----:| -----:| --------:| | 20-05-22 | BPE_1000.yaml | 3.08 | Not Available | 1xV100 32GB | | 20-05-22 | BPE_5000.yaml | 2.89 | Not Available | 1xV100 32GB | ## Pipeline description This ASR system is composed with 3 different but linked blocks: 1. Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. 2. Neural language model (RNNLM) trained on the full 10M words dataset. 3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalisation and pooling on the frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders. ## Intended uses & limitations This model has been primilarly developed to be run within SpeechBrain as a pretrained ASR model for the english language. Thanks to the flexibility of SpeechBrain, any of the 3 blocks detailed above can be extracted and connected to you custom pipeline as long as SpeechBrain is installed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install \\we hide ! SpeechBrain is still private :p ``` Also, for this model, you need SentencePiece. Install with ``` pip install sentencepiece ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="Gastron/asr-crdnn-librispeech") asr_model.transcribe_file("path_to_your_file.wav") ``` ### Obtaining encoded features The SpeechBrain EncoderDecoderASR() class also provides an easy way to encode the speech signal without running the decoding phase by calling ``EncoderDecoderASR.encode_batch()`` #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/speechbrain/speechbrain}}, } ```
Ge/model_name
2021-05-08T04:33:20.000Z
[]
[ ".gitattributes" ]
Ge
0
Geotrend/bert-base-10lang-cased
2021-05-18T18:42:35.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
13
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-10lang-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. This model handles the following languages: english, french, spanish, german, chinese, arabic, russian, portuguese, italian, and urdu. It produces the same representations as [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) while being 22.5% smaller in size. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-10lang-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-10lang-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-15lang-cased
2021-05-18T18:45:34.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
73
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-15lang-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. The measurements below have been computed on a [Google Cloud n1-standard-1 machine (1 vCPU, 3.75 GB)](https://cloud.google.com/compute/docs/machine-types\#n1_machine_type): | Model | Num parameters | Size | Memory | Loading time | | ------------------------------- | -------------- | -------- | -------- | ------------ | | bert-base-multilingual-cased | 178 million | 714 MB | 1400 MB | 4.2 sec | | Geotrend/bert-base-15lang-cased | 141 million | 564 MB | 1098 MB | 3.1 sec | Handled languages: en, fr, es, de, zh, ar, ru, vi, el, bg, th, tr, hi, ur and sw. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-15lang-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-15lang-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-25lang-cased
2021-05-18T18:46:59.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
11
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-25lang-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. Handled languages: en, fr, es, de, zh, ar, ru, vi, el, bg, th, tr, hi, ur, sw, nl, uk, ro, pt, it, lt, no, pl, da and ja. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-25lang-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-25lang-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-ar-cased
2021-05-18T18:47:56.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "ar", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
24
transformers
--- language: ar datasets: wikipedia license: apache-2.0 widget: - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-ar-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-ar-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-bg-cased
2021-05-18T18:48:47.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "bg", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
26
transformers
--- language: bg datasets: wikipedia license: apache-2.0 --- # bert-base-bg-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-bg-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-da-cased
2021-05-18T18:49:40.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "da", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
12
transformers
--- language: da datasets: wikipedia license: apache-2.0 --- # bert-base-da-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-da-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-de-cased
2021-05-18T18:58:49.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "de", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
30
transformers
--- language: de datasets: wikipedia license: apache-2.0 --- # bert-base-de-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-de-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-el-cased
2021-05-18T19:00:19.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "el", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
37
transformers
--- language: el datasets: wikipedia license: apache-2.0 --- # bert-base-el-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-el-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-ar-cased
2021-05-18T19:01:15.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
19
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-en-ar-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-ar-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-bg-cased
2021-05-18T19:02:31.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
22
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-bg-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-bg-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-cased
2021-05-18T19:03:33.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "en", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
51
transformers
--- language: en datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-da-cased
2021-05-18T19:04:34.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
11
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-da-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-da-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-de-cased
2021-05-18T19:05:53.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
263
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-de-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-de-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-el-cased
2021-05-18T19:06:56.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
24
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-el-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-el-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-el-ru-cased
2021-05-18T19:07:56.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
10
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-el-ru-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-el-ru-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-el-ru-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-es-cased
2021-05-18T19:08:56.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
36
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-es-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-es-it-cased
2021-05-18T19:10:03.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
10
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-es-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-es-pt-cased
2021-05-18T19:11:40.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
9
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-es-pt-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-pt-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-pt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-es-zh-cased
2021-05-18T19:13:08.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
10
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-es-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-ar-cased
2021-05-18T19:14:08.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
55
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-ar-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-ar-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-cased
2021-05-18T19:15:20.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
382
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." --- # bert-base-en-fr-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-da-ja-vi-cased
2021-05-18T19:17:37.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
9
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-da-ja-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-da-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-da-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-de-cased
2021-05-18T19:18:39.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
10
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-de-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-de-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-de-no-da-cased
2021-05-18T19:19:41.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
12
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-de-no-da-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-de-no-da-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-de-no-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-es-cased
2021-05-18T19:21:01.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
55
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-es-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-es-de-zh-cased
2021-05-18T19:22:08.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
9
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-es-de-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-de-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-de-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-es-pt-it-cased
2021-05-18T19:23:18.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
9
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-es-pt-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-pt-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-pt-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-it-cased
2021-05-18T19:24:24.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
12
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-lt-no-pl-cased
2021-05-18T19:25:38.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
10
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-lt-no-pl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-lt-no-pl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-lt-no-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-nl-ru-ar-cased
2021-05-18T19:26:42.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
10
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-nl-ru-ar-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-nl-ru-ar-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-nl-ru-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-uk-el-ro-cased
2021-05-18T19:27:52.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
11
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-uk-el-ro-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-uk-el-ro-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-uk-el-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-zh-cased
2021-05-18T19:29:01.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
Geotrend
12
transformers
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.