modelId
stringlengths 4
112
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 21
values | files
sequence | publishedBy
stringlengths 2
37
| downloads_last_month
int32 0
9.44M
| library
stringclasses 15
values | modelCard
large_stringlengths 0
100k
|
---|---|---|---|---|---|---|---|---|
AlexaRyck/KEITH | 2021-01-21T15:42:09.000Z | [] | [
".gitattributes"
] | AlexaRyck | 0 | |||
AlexeyIgnatov/albert-xlarge-v2-squad-v2 | 2021-03-26T11:37:40.000Z | [] | [
".gitattributes"
] | AlexeyIgnatov | 1 | |||
Alfia/anekdotes | 2021-02-28T21:02:56.000Z | [] | [
".gitattributes"
] | Alfia | 0 | |||
Amir99/toxic | 2021-04-09T10:47:58.000Z | [] | [
".gitattributes"
] | Amir99 | 0 | |||
AmirServi/MyModel | 2021-03-24T12:57:36.000Z | [] | [
".gitattributes",
"README.md"
] | AmirServi | 0 | |||
Amro-Kamal/gpt | 2020-12-19T13:24:23.000Z | [] | [
".gitattributes"
] | Amro-Kamal | 0 | |||
Amrrs/wav2vec2-large-xlsr-53-tamil | 2021-03-22T07:04:07.000Z | [
"pytorch",
"wav2vec2",
"ta",
"dataset:common_voice",
"transformers",
"audio",
"automatic-speech-recognition",
"speech",
"xlsr-fine-tuning-week",
"license:apache-2.0"
] | automatic-speech-recognition | [
".gitattributes",
"README.md",
"config.json",
"preprocessor_config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"vocab.json"
] | Amrrs | 18 | transformers | ---
language: ta
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Tamil by Amrrs
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ta
type: common_voice
args: ta
metrics:
- name: Test WER
type: wer
value: 82.94
---
# Wav2Vec2-Large-XLSR-53-Tamil
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the {language} test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ta", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 82.94 %
## Training
The Common Voice `train`, `validation` datasets were used for training.
The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)
|
AnnettJaeger/AnneJae | 2021-01-19T17:24:27.000Z | [] | [
".gitattributes"
] | AnnettJaeger | 0 | |||
Anonymous/ReasonBERT-BERT | 2021-05-23T02:33:35.000Z | [
"pytorch",
"bert",
"transformers"
] | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin"
] | Anonymous | 13 | transformers | Pre-trained to have better reasoning ability, try this if you are working with task like QA. For more details please see https://openreview.net/forum?id=cGB7CMFtrSx
This is based on bert-base-uncased model and pre-trained for text input |
|
Anonymous/ReasonBERT-RoBERTa | 2021-05-23T02:34:08.000Z | [
"pytorch",
"roberta",
"transformers"
] | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin"
] | Anonymous | 9 | transformers | Pre-trained to have better reasoning ability, try this if you are working with task like QA. For more details please see https://openreview.net/forum?id=cGB7CMFtrSx
This is based on roberta-base model and pre-trained for text input |
|
Anonymous/ReasonBERT-TAPAS | 2021-05-23T02:34:38.000Z | [
"pytorch",
"tapas",
"transformers"
] | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin"
] | Anonymous | 10 | transformers | Pre-trained to have better reasoning ability, try this if you are working with task like QA. For more details please see https://openreview.net/forum?id=cGB7CMFtrSx
This is based on tapas-base(no_reset) model and pre-trained for table input |
|
AnonymousNLP/pretrained-model-1 | 2021-05-21T09:27:54.000Z | [
"pytorch",
"gpt2",
"transformers"
] | [
".gitattributes",
"added_tokens.json",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] | AnonymousNLP | 10 | transformers | ||
AnonymousNLP/pretrained-model-2 | 2021-05-21T09:28:24.000Z | [
"pytorch",
"gpt2",
"transformers"
] | [
".gitattributes",
"added_tokens.json",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] | AnonymousNLP | 9 | transformers | ||
AnonymousSubmission/pretrained-model-1 | 2021-02-01T09:22:13.000Z | [] | [
".gitattributes"
] | AnonymousSubmission | 0 | |||
Aries/T5_question_answering | 2020-12-11T17:10:33.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"added_tokens.json",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] | Aries | 12 | transformers | |
Aries/T5_question_generation | 2020-11-28T20:11:38.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"added_tokens.json",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] | Aries | 73 | transformers | |
ArseniyBolotin/bert-multi-PAD-ner | 2021-05-18T17:06:50.000Z | [
"pytorch",
"jax",
"bert",
"token-classification",
"transformers"
] | token-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.txt"
] | ArseniyBolotin | 20 | transformers | |
Ashl3y/model_name | 2021-05-14T15:54:02.000Z | [] | [
".gitattributes"
] | Ashl3y | 0 | |||
Ateeb/EmotionDetector | 2021-03-22T18:03:50.000Z | [
"pytorch",
"funnel",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | Ateeb | 32 | transformers | |
Ateeb/FullEmotionDetector | 2021-03-22T19:28:37.000Z | [
"pytorch",
"funnel",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | Ateeb | 22 | transformers | |
Ateeb/QA | 2021-05-03T11:41:12.000Z | [
"pytorch",
"distilbert",
"question-answering",
"transformers"
] | question-answering | [
".gitattributes",
"__init__.py",
"config.json",
"main.py",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt",
"__pycache__/preprocess.cpython-37.pyc"
] | Ateeb | 21 | transformers | |
Ateeb/SquadQA | 2021-05-03T09:47:52.000Z | [] | [
".gitattributes"
] | Ateeb | 0 | |||
Ateeb/asd | 2021-05-03T09:31:28.000Z | [] | [
".gitattributes"
] | Ateeb | 0 | |||
Atlasky/Turkish-Negator | 2021-01-24T09:27:53.000Z | [] | [
".gitattributes",
"README.md"
] | Atlasky | 0 | Placeholder |
||
Atlasky/turkish-negator-nn | 2021-01-24T09:57:49.000Z | [] | [
".gitattributes"
] | Atlasky | 0 | |||
Aurora/asdawd | 2021-04-06T19:15:11.000Z | [] | [
".gitattributes",
"README.md"
] | Aurora | 0 | https://www.geogebra.org/m/bbuczchu
https://www.geogebra.org/m/xwyasqje
https://www.geogebra.org/m/mx2cqkwr
https://www.geogebra.org/m/tkqqqthm
https://www.geogebra.org/m/asdaf9mj
https://www.geogebra.org/m/ywuaj7p5
https://www.geogebra.org/m/jkfkayj3
https://www.geogebra.org/m/hptnn7ar
https://www.geogebra.org/m/de9cwmrf
https://www.geogebra.org/m/yjc5hdep
https://www.geogebra.org/m/nm8r56w5
https://www.geogebra.org/m/j7wfcpxj |
||
Aurora/community.afpglobal | 2021-04-08T08:34:53.000Z | [] | [
".gitattributes",
"README.md"
] | Aurora | 0 | https://community.afpglobal.org/network/members/profile?UserKey=b0b38adc-86c7-4d30-85c6-ac7d15c5eeb0
https://community.afpglobal.org/network/members/profile?UserKey=f4ddef89-b508-4695-9d1e-3d4d1a583279
https://community.afpglobal.org/network/members/profile?UserKey=36081479-5e7b-41ba-8370-ecf72989107a
https://community.afpglobal.org/network/members/profile?UserKey=e1a88332-be7f-4997-af4e-9fcb7bb366da
https://community.afpglobal.org/network/members/profile?UserKey=4738b405-2017-4025-9e5f-eadbf7674840
https://community.afpglobal.org/network/members/profile?UserKey=eb96d91c-31ae-46e1-8297-a3c8551f2e6a
https://u.mpi.org/network/members/profile?UserKey=9867e2d9-d22a-4dab-8bcf-3da5c2f30745
https://u.mpi.org/network/members/profile?UserKey=5af232f2-a66e-438f-a5ab-9768321f791d
https://community.afpglobal.org/network/members/profile?UserKey=481305df-48ea-4c50-bca4-a82008efb427
https://u.mpi.org/network/members/profile?UserKey=039fbb91-52c6-40aa-b58d-432fb4081e32
https://www.geogebra.org/m/jkfkayj3
https://www.geogebra.org/m/hptnn7ar
https://www.geogebra.org/m/de9cwmrf
https://www.geogebra.org/m/yjc5hdep
https://www.geogebra.org/m/nm8r56w5
https://www.geogebra.org/m/j7wfcpxj
https://www.geogebra.org/m/bbuczchu
https://www.geogebra.org/m/xwyasqje
https://www.geogebra.org/m/mx2cqkwr
https://www.geogebra.org/m/tkqqqthm
https://www.geogebra.org/m/asdaf9mj
https://www.geogebra.org/m/ywuaj7p5 |
||
Aviora/news2vec | 2021-01-29T08:11:40.000Z | [] | [
".gitattributes",
"README.md"
] | Aviora | 0 | # w2v with news |
||
Aviora/phobert-ner | 2021-04-29T06:49:47.000Z | [] | [
".gitattributes"
] | Aviora | 0 | |||
Azura/data | 2021-03-01T08:08:20.000Z | [] | [
".gitattributes",
"README.md"
] | Azura | 0 | |||
BOON/electra-xlnet | 2021-02-11T05:57:07.000Z | [] | [
".gitattributes"
] | BOON | 0 | |||
BOON/electra_qa | 2021-02-11T05:45:36.000Z | [] | [
".gitattributes"
] | BOON | 0 | |||
Bakkes/BakkesModWiki | 2021-04-06T17:04:42.000Z | [] | [
".gitattributes",
"README.md"
] | Bakkes | 0 | |||
BaptisteDoyen/camembert-base-xlni | 2021-04-08T14:11:55.000Z | [
"pytorch",
"camembert",
"text-classification",
"fr",
"dataset:xnli",
"transformers",
"zero-shot-classification",
"xnli",
"nli",
"license:mit",
"pipeline_tag:zero-shot-classification"
] | zero-shot-classification | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"sentencepiece.bpe.model",
"special_tokens_map.json",
"tokenizer_config.json"
] | BaptisteDoyen | 3,725 | transformers | ---
language:
- fr
thumbnail:
tags:
- zero-shot-classification
- xnli
- nli
- fr
license: mit
pipeline_tag: zero-shot-classification
datasets:
- xnli
metrics:
- accuracy
---
# camembert-base-xnli
## Model description
Camembert-base model fine-tuned on french part of XNLI dataset. <br>
One of the few Zero-Shot classification model working on french 🇫🇷
## Intended uses & limitations
#### How to use
Two different usages :
- As a Zero-Shot sequence classifier :
```python
classifier = pipeline("zero-shot-classification",
model="BaptisteDoyen/camembert-base-xnli")
sequence = "L'équipe de France joue aujourd'hui au Parc des Princes"
candidate_labels = ["sport","politique","science"]
hypothesis_template = "Ce texte parle de {}."
classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template)
# outputs :
# {'sequence': "L'équipe de France joue aujourd'hui au Parc des Princes",
# 'labels': ['sport', 'politique', 'science'],
# 'scores': [0.8595073223114014, 0.10821866989135742, 0.0322740375995636]}
```
- As a premise/hypothesis checker : <br>
The idea is here to compute a probability of the form \\( P(premise|hypothesis ) \\)
```python
# load model and tokenizer
nli_model = AutoModelForSequenceClassification.from_pretrained("BaptisteDoyen/camembert-base-xnli")
tokenizer = AutoTokenizer.from_pretrained("BaptisteDoyen/camembert-base-xnli")
# sequences
premise = "le score pour les bleus est élevé"
hypothesis = "L'équipe de France a fait un bon match"
# tokenize and run through model
x = tokenizer.encode(premise, hypothesis, return_tensors='pt')
logits = nli_model(x)[0]
# we throw away "neutral" (dim 1) and take the probability of
# "entailment" (0) as the probability of the label being true
entail_contradiction_logits = logits[:,::2]
probs = entail_contradiction_logits.softmax(dim=1)
prob_label_is_true = probs[:,0]
prob_label_is_true[0].tolist() * 100
# outputs
# 86.40775084495544
```
## Training data
Training data is the french fold of the [XNLI](https://research.fb.com/publications/xnli-evaluating-cross-lingual-sentence-representations/) dataset released in 2018 by Facebook. <br>
Available with great ease using the ```datasets``` library :
```python
from datasets import load_dataset
dataset = load_dataset('xnli', 'fr')
```
## Training/Fine-Tuning procedure
Training procedure is here pretty basic and was performed on the cloud using a single GPU. <br>
Main training parameters :
- ```lr = 2e-5``` with ```lr_scheduler_type = "linear"```
- ```num_train_epochs = 4```
- ```batch_size = 12``` (limited by GPU-memory)
- ```weight_decay = 0.01```
- ```metric_for_best_model = "eval_accuracy"```
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | Accuracy |
| ---------- |-------------|
| validation | 81.4 |
| test | 81.7 |
|
BeIR/query-gen-msmarco-t5-base-v1 | 2021-03-01T15:25:52.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] | BeIR | 241 | transformers | # Query Generation
This model is the t5-base model from [docTTTTTquery](https://github.com/castorini/docTTTTTquery).
The T5-base model was trained on the [MS MARCO Passage Dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking), which consists of about 500k real search queries from Bing together with the relevant passage.
The model can be used for query generation to learn semantic search models without requiring annotated training data: [Synthetic Query Generation](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/query_generation).
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained('model-name')
model = T5ForConditionalGeneration.from_pretrained('model-name')
para = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
input_ids = tokenizer.encode(para, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
num_return_sequences=3)
print("Paragraph:")
print(para)
print("\nGenerated Queries:")
for i in range(len(outputs)):
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
``` |
BeIR/query-gen-msmarco-t5-large-v1 | 2021-03-01T15:27:56.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json"
] | BeIR | 260 | transformers | # Query Generation
This model is the t5-base model from [docTTTTTquery](https://github.com/castorini/docTTTTTquery).
The T5-base model was trained on the [MS MARCO Passage Dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking), which consists of about 500k real search queries from Bing together with the relevant passage.
The model can be used for query generation to learn semantic search models without requiring annotated training data: [Synthetic Query Generation](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/query_generation).
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained('model-name')
model = T5ForConditionalGeneration.from_pretrained('model-name')
para = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects."
input_ids = tokenizer.encode(para, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
num_return_sequences=3)
print("Paragraph:")
print(para)
print("\nGenerated Queries:")
for i in range(len(outputs)):
query = tokenizer.decode(outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
``` |
BeIR/sparta-msmarco-distilbert-base-v1 | 2021-04-20T14:54:42.000Z | [
"pytorch",
"distilbert",
"transformers"
] | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"train_script.py",
"vocab.txt"
] | BeIR | 63 | transformers | ||
Belin/T5-Terms-and-Conditions | 2021-06-10T15:22:15.000Z | [] | [
".gitattributes"
] | Belin | 0 | |||
BenDavis71/GPT-2-Finetuning-AIRaid | 2021-05-21T09:29:22.000Z | [
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] | BenDavis71 | 26 | transformers | |
BenQLange/HF_bot | 2021-02-12T17:40:17.000Z | [] | [
".gitattributes"
] | BenQLange | 0 | |||
BigBoy/model | 2021-04-09T13:12:58.000Z | [] | [
".gitattributes"
] | BigBoy | 0 | |||
BigSalmon/BlankSlots | 2021-03-27T18:50:29.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | BigSalmon | 14 | transformers | |
BigSalmon/DaBlank | 2021-03-20T03:53:42.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | BigSalmon | 8 | transformers | |
BigSalmon/Flowberta | 2021-06-12T01:20:12.000Z | [
"pytorch",
"roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"training_args.bin"
] | BigSalmon | 2,048 | transformers | |
BigSalmon/GPT2HardArticleEasyArticle | 2021-05-21T09:31:52.000Z | [
"pytorch",
"jax",
"tensorboard",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"events.out.tfevents.1619624233.d987fc993321.71.0",
"flax_model.msgpack",
"pytorch_model.bin",
"training_args.bin",
"1619624233.34817/events.out.tfevents.1619624233.d987fc993321.71.1"
] | BigSalmon | 14 | transformers | |
BigSalmon/Neo | 2021-04-07T15:05:25.000Z | [
"pytorch",
"gpt_neo",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"training_args.bin"
] | BigSalmon | 20 | transformers | |
BigSalmon/Robertsy | 2021-06-10T23:23:33.000Z | [
"pytorch",
"roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"training_args.bin"
] | BigSalmon | 15 | transformers | |
BigSalmon/Rowerta | 2021-06-11T01:07:05.000Z | [
"pytorch",
"roberta",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"config.json",
"pytorch_model.bin",
"training_args.bin"
] | BigSalmon | 9 | transformers | |
BigSalmon/T5Salmon | 2021-03-12T07:18:37.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | BigSalmon | 8 | transformers | |
BigSalmon/T5Salmon2 | 2021-03-15T23:17:03.000Z | [
"pytorch",
"t5",
"seq2seq",
"transformers",
"text2text-generation"
] | text2text-generation | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | BigSalmon | 9 | transformers | |
Binbin/test | 2021-03-19T10:17:22.000Z | [] | [
".gitattributes"
] | Binbin | 0 | |||
BinksSachary/DialoGPT-small-shaxx | 2021-06-03T04:48:29.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"conversational",
"text-generation"
] | conversational | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | BinksSachary | 40 | transformers | ---
tags:
- conversational
---
# My Awesome Model |
BinksSachary/ShaxxBot | 2021-06-03T04:51:56.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"conversational",
"text-generation"
] | conversational | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | BinksSachary | 32 | transformers | ---
tags:
- conversational
---
# My Awesome Model |
BinksSachary/ShaxxBot2 | 2021-06-03T04:37:46.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"conversational",
"text-generation"
] | conversational | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | BinksSachary | 45 | transformers | ---
tags:
- conversational
---
# My Awesome Model
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
Blazeolmo/Scrabunzi | 2021-06-12T17:05:19.000Z | [] | [
".gitattributes"
] | Blazeolmo | 0 | |||
BonjinKim/dst_kor_bert | 2021-05-19T05:35:57.000Z | [
"pytorch",
"jax",
"bert",
"pretraining",
"transformers"
] | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.txt"
] | BonjinKim | 23 | transformers | # Korean bert base model for DST
- This is ConversationBert for dsksd/bert-ko-small-minimal(base-module) + 5 datasets
- Use dsksd/bert-ko-small-minimal tokenizer
- 5 datasets
- tweeter_dialogue : xlsx
- speech : trn
- office_dialogue : json
- KETI_dialogue : txt
- WOS_dataset : json
```python
tokenizer = AutoTokenizer.from_pretrained("BonjinKim/dst_kor_bert")
model = AutoModel.from_pretrained("BonjinKim/dst_kor_bert")
``` |
|
Boondong/Wandee | 2021-03-18T11:13:33.000Z | [] | [
".gitattributes"
] | Boondong | 0 | |||
BrianTin/MTBERT | 2021-05-18T17:08:50.000Z | [
"pytorch",
"jax",
"bert",
"masked-lm",
"transformers",
"fill-mask"
] | fill-mask | [
".DS_Store",
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | BrianTin | 27 | transformers | |
CAMeL-Lab/bert-base-camelbert-ca | 2021-05-18T17:09:46.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 72 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
|✔|`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-CA** (`bert-base-camelbert-ca`), a model pre-trained on the CA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-ca')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.11048116534948349,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو الإسلام. [SEP]',
'score': 0.03481195122003555,
'token': 4677,
'token_str': 'الإسلام'},
{'sequence': '[CLS] الهدف من الحياة هو الموت. [SEP]',
'score': 0.03402028977870941,
'token': 4295,
'token_str': 'الموت'},
{'sequence': '[CLS] الهدف من الحياة هو العلم. [SEP]',
'score': 0.027655426412820816,
'token': 2789,
'token_str': 'العلم'},
{'sequence': '[CLS] الهدف من الحياة هو هذا. [SEP]',
'score': 0.023059621453285217,
'token': 2085,
'token_str': 'هذا'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-ca')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-ca')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-ca')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-ca')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- CA
- [OpenITI (Version 2020.1.2)](https://zenodo.org/record/3891466#.YEX4-F0zbzc)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-da | 2021-05-18T17:11:39.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 131 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
|✔|`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-DA** (`bert-base-camelbert-da`), a model pre-trained on the DA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-da')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو.. [SEP]',
'score': 0.062508225440979,
'token': 18,
'token_str': '.'},
{'sequence': '[CLS] الهدف من الحياة هو الموت. [SEP]',
'score': 0.033172328025102615,
'token': 4295,
'token_str': 'الموت'},
{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.029575437307357788,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو الرحيل. [SEP]',
'score': 0.02724040113389492,
'token': 11449,
'token_str': 'الرحيل'},
{'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]',
'score': 0.01564178802073002,
'token': 3088,
'token_str': 'الحب'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-da')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-da')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-da')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-da')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- DA
- A collection of dialectal Arabic data described in [our paper](https://arxiv.org/abs/2103.06678).
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-mix | 2021-05-18T17:14:22.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 1,283 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
|✔|`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-Mix** (`bert-base-camelbert-mix`), a model pre-trained on a mixture of these variants: CA, DA, and MSA.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-mix')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
'score': 0.10861027985811234,
'token': 6232,
'token_str': 'النجاح'},
{'sequence': '[CLS] الهدف من الحياة هو.. [SEP]',
'score': 0.07626965641975403,
'token': 18,
'token_str': '.'},
{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.05131986364722252,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو الموت. [SEP]',
'score': 0.03734956309199333,
'token': 4295,
'token_str': 'الموت'},
{'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]',
'score': 0.027189988642930984,
'token': 2854,
'token_str': 'العمل'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- MSA
- [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11)
- [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus)
- [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian)
- [Arabic Wikipedia](https://archive.org/details/arwiki-20190201)
- The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/)
- DA
- A collection of dialectal Arabic data described in [our paper](https://arxiv.org/abs/2103.06678).
- CA
- [OpenITI (Version 2020.1.2)](https://zenodo.org/record/3891466#.YEX4-F0zbzc)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-msa-eighth | 2021-05-18T17:15:20.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 76 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
|✔|`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-MSA-eighth** (`bert-base-camelbert-msa-eighth`), a model pre-trained on an eighth of the full MSA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-msa-eighth')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.057812128216028214,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
'score': 0.05573025345802307,
'token': 6232,
'token_str': 'النجاح'},
{'sequence': '[CLS] الهدف من الحياة هو الكمال. [SEP]',
'score': 0.035942986607551575,
'token': 17188,
'token_str': 'الكمال'},
{'sequence': '[CLS] الهدف من الحياة هو التعلم. [SEP]',
'score': 0.03375256434082985,
'token': 12554,
'token_str': 'التعلم'},
{'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]',
'score': 0.030303971841931343,
'token': 2854,
'token_str': 'العمل'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-eighth')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-eighth')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-eighth')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-eighth')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- MSA
- [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11)
- [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus)
- [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian)
- [Arabic Wikipedia](https://archive.org/details/arwiki-20190201)
- The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-msa-half | 2021-05-18T17:16:22.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 18 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
|✔|`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-MSA-half** (`bert-base-camelbert-msa-half`), a model pre-trained on a half of the full MSA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-msa-half')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.09132730215787888,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو.. [SEP]',
'score': 0.08282623440027237,
'token': 18,
'token_str': '.'},
{'sequence': '[CLS] الهدف من الحياة هو البقاء. [SEP]',
'score': 0.04031957685947418,
'token': 9331,
'token_str': 'البقاء'},
{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
'score': 0.032019514590501785,
'token': 6232,
'token_str': 'النجاح'},
{'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]',
'score': 0.028731243684887886,
'token': 3088,
'token_str': 'الحب'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-half')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-half')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-half')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-half')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- MSA
- [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11)
- [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus)
- [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian)
- [Arabic Wikipedia](https://archive.org/details/arwiki-20190201)
- The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-msa-quarter | 2021-05-18T17:18:06.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 13 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
|✔|`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-MSA-quarter** (`bert-base-camelbert-msa-quarter`), a model pre-trained on a quarter of the full MSA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-msa-quarter')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.17437894642353058,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
'score': 0.042852893471717834,
'token': 6232,
'token_str': 'النجاح'},
{'sequence': '[CLS] الهدف من الحياة هو البقاء. [SEP]',
'score': 0.030925093218684196,
'token': 9331,
'token_str': 'البقاء'},
{'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]',
'score': 0.02964409440755844,
'token': 3088,
'token_str': 'الحب'},
{'sequence': '[CLS] الهدف من الحياة هو الكمال. [SEP]',
'score': 0.028030086308717728,
'token': 17188,
'token_str': 'الكمال'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-quarter')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-quarter')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-quarter')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-quarter')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- MSA
- [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11)
- [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus)
- [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian)
- [Arabic Wikipedia](https://archive.org/details/arwiki-20190201)
- The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-msa-sixteenth | 2021-05-18T17:19:03.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 18 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
|✔|`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-MSA-sixteenth** (`bert-base-camelbert-msa-sixteenth`), a model pre-trained on a sixteenth of the full MSA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو التغيير. [SEP]',
'score': 0.08320745080709457,
'token': 7946,
'token_str': 'التغيير'},
{'sequence': '[CLS] الهدف من الحياة هو التعلم. [SEP]',
'score': 0.04305094853043556,
'token': 12554,
'token_str': 'التعلم'},
{'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]',
'score': 0.0417640283703804,
'token': 2854,
'token_str': 'العمل'},
{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.041371218860149384,
'token': 3696,
'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو المعرفة. [SEP]',
'score': 0.039794355630874634,
'token': 7344,
'token_str': 'المعرفة'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- MSA
- [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11)
- [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus)
- [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian)
- [Arabic Wikipedia](https://archive.org/details/arwiki-20190201)
- The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-camelbert-msa | 2021-05-18T17:19:58.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"masked-lm",
"ar",
"arxiv:2103.06678",
"transformers",
"license:apache-2.0",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | CAMeL-Lab | 385 | transformers | ---
language:
- ar
license: apache-2.0
widget:
- text: "الهدف من الحياة هو [MASK] ."
---
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks
## Model description
**CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants.
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
We release eight models with different sizes and variants as follows:
||Model|Variant|Size|#Word|
|-|-|:-:|-:|-:|
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
||`bert-base-camelbert-ca`|CA|6GB|847M|
||`bert-base-camelbert-da`|DA|54GB|5.8B|
|✔|`bert-base-camelbert-msa`|MSA|107GB|12.6B|
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
||`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
This model card describes **CAMeLBERT-MSA** (`bert-base-camelbert-msa`), a model pre-trained on the entire MSA dataset.
## Intended uses
You can use the released model for either masked language modeling or next sentence prediction.
However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
#### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-msa')
>>> unmasker("الهدف من الحياة هو [MASK] .")
[{'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]',
'score': 0.08507660031318665,
'token': 2854,
'token_str': 'العمل'},
{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]',
'score': 0.058905381709337234,
'token': 3696, 'token_str': 'الحياة'},
{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
'score': 0.04660581797361374, 'token': 6232,
'token_str': 'النجاح'},
{'sequence': '[CLS] الهدف من الحياة هو الربح. [SEP]',
'score': 0.04156001657247543,
'token': 12413, 'token_str': 'الربح'},
{'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]',
'score': 0.03534102067351341,
'token': 3088,
'token_str': 'الحب'}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa')
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa')
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa')
text = "مرحبا يا عالم."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
- MSA
- [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11)
- [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus)
- [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian)
- [Arabic Wikipedia](https://archive.org/details/arwiki-20190201)
- The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/)
## Training procedure
We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training.
We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified.
### Preprocessing
- After extracting the raw text from each corpus, we apply the following pre-processing.
- We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297).
- We also remove lines without any Arabic characters.
- We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools).
- Finally, we split each line into sentences with a heuristics-based sentence segmenter.
- We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers).
- We do not lowercase letters nor strip accents.
### Pre-training
- The model was trained on a single cloud TPU (`v3-8`) for one million steps in total.
- The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256.
- The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%.
- We use whole word masking and a duplicate factor of 10.
- We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens.
- We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1.
- The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Evaluation results
- We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification.
- We fine-tune and evaluate the models using 12 dataset.
- We used Hugging Face's transformers to fine-tune our CAMeLBERT models.
- We used transformers `v3.1.0` along with PyTorch `v1.5.1`.
- The fine-tuning was done by adding a fully connected linear layer to the last hidden state.
- We use \\(F_{1}\\) score as a metric for all tasks.
- Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT).
### Results
| Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| NER | ANERcorp | MSA | 80.2% | 66.2% | 74.2% | 82.4% | 82.3% | 82.0% | 82.3% | 80.5% |
| POS | PATB (MSA) | MSA | 97.3% | 96.6% | 96.5% | 97.4% | 97.4% | 97.4% | 97.4% | 97.4% |
| | ARZTB (EGY) | DA | 90.1% | 88.6% | 89.4% | 90.8% | 90.3% | 90.5% | 90.5% | 90.4% |
| | Gumar (GLF) | DA | 97.3% | 96.5% | 97.0% | 97.1% | 97.0% | 97.0% | 97.1% | 97.0% |
| SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% |
| | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% |
| | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% |
| DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% |
| | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% |
| | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% |
| | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% |
| Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
### Results (Average)
| | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 |
| -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- |
| Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 81.9% | 75.3% | 79.9% | 83.2% | 82.9% | 83.1% | 83.0% | 82.1% |
| | DA | 73.5% | 71.1% | 72.1% | 73.5% | 73.1% | 73.4% | 73.3% | 73.1% |
| | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% |
| Macro-Average | ALL | 78.2% | 74.0% | 76.6% | 78.9% | 78.6% | 78.8% | 78.7% | 78.2% |
<a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant.
## Acknowledgements
This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CLEE/CLEE | 2021-05-17T13:29:33.000Z | [] | [
".gitattributes"
] | CLEE | 0 | |||
CTBC/ATS | 2020-12-12T15:10:21.000Z | [] | [
".gitattributes"
] | CTBC | 0 | |||
Callidior/bert2bert-base-arxiv-titlegen | 2021-03-04T09:49:47.000Z | [
"pytorch",
"encoder-decoder",
"seq2seq",
"en",
"dataset:arxiv_dataset",
"transformers",
"summarization",
"license:apache-2.0",
"text2text-generation"
] | summarization | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | Callidior | 103 | transformers | ---
language:
- en
tags:
- summarization
license: apache-2.0
datasets:
- arxiv_dataset
metrics:
- rouge
widget:
- text: "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data."
---
# Paper Title Generator
Generates titles for computer science papers given an abstract.
The model is a BERT2BERT Encoder-Decoder using the official `bert-base-uncased` checkpoint as initialization for the encoder and decoder.
It was fine-tuned on 318,500 computer science papers posted on arXiv.org between 2007 and 2020 and achieved a 26.3% Rouge2 F1-Score on held-out validation data.
**Live Demo:** [https://paper-titles.ey.r.appspot.com/](https://paper-titles.ey.r.appspot.com/) |
CallumRai/HansardGPT2 | 2021-05-21T09:33:25.000Z | [
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
".gitignore",
"README.md",
"added_tokens.json",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] | CallumRai | 18 | transformers | A PyTorch GPT-2 model trained on hansard from 2019-01-01 to 2020-06-01
For more information see: https://github.com/CallumRai/Hansard/ |
Cameron/BERT-Jigsaw | 2021-05-18T17:21:10.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 17 | transformers | |
Cameron/BERT-SBIC-offensive | 2021-05-18T17:22:32.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 10 | transformers | |
Cameron/BERT-SBIC-targetcategory | 2021-05-18T17:23:42.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 17 | transformers | |
Cameron/BERT-eec-emotion | 2021-05-18T17:25:51.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 19 | transformers | |
Cameron/BERT-jigsaw-identityhate | 2021-05-18T17:27:44.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 32 | transformers | |
Cameron/BERT-jigsaw-severetoxic | 2021-05-18T17:28:58.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 15 | transformers | |
Cameron/BERT-mdgender-convai-binary | 2021-05-18T17:30:21.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 11 | transformers | |
Cameron/BERT-mdgender-convai-ternary | 2021-05-18T17:31:21.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 7 | transformers | |
Cameron/BERT-mdgender-wizard | 2021-05-18T17:33:48.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 11 | transformers | |
Cameron/BERT-rtgender-opgender-annotations | 2021-05-18T17:34:57.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"special_tokens_map.json",
"tokenizer_config.json",
"trainer_state.json",
"training_args.bin",
"vocab.txt"
] | Cameron | 16 | transformers | |
Capreolus/bert-base-msmarco | 2021-05-18T17:35:58.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"text-classification",
"arxiv:2008.09093",
"transformers"
] | text-classification | [
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | Capreolus | 143 | transformers | # capreolus/bert-base-msmarco
## Model description
BERT-Base model (`google/bert_uncased_L-12_H-768_A-12`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model; see the [Capreolus BERT-MaxP implementation](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) for a usage example.
This corresponds to the BERT-Base model used to initialize BERT-MaxP and PARADE variants in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_bert_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
|
Capreolus/birch-bert-large-car_mb | 2021-05-18T17:38:06.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"transformers"
] | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | Capreolus | 17 | transformers | ||
Capreolus/birch-bert-large-mb | 2021-05-18T17:40:31.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"transformers"
] | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | Capreolus | 14 | transformers | ||
Capreolus/birch-bert-large-msmarco_mb | 2021-05-18T17:43:33.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"transformers"
] | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | Capreolus | 75 | transformers | ||
Capreolus/electra-base-msmarco | 2020-09-08T14:53:10.000Z | [
"pytorch",
"tf",
"electra",
"text-classification",
"arxiv:2008.09093",
"transformers"
] | text-classification | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tf_model.h5",
"tokenizer_config.json",
"vocab.txt"
] | Capreolus | 360 | transformers | # capreolus/electra-base-msmarco
## Model description
ELECTRA-Base model (`google/electra-base-discriminator`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model, but requires some modification since it contains a BERT classification head rather than the standard ELECTRA classification head. See the [TFElectraRelevanceHead](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) in the Capreolus BERT-MaxP implementation for a usage example.
This corresponds to the ELECTRA-Base model used to initialize PARADE (ELECTRA) in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_electra_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
|
Cat/Kitty | 2020-12-21T15:44:34.000Z | [] | [
".gitattributes"
] | Cat | 0 | |||
Chaima/TunBerto | 2021-04-01T12:56:56.000Z | [] | [
".gitattributes"
] | Chaima | 0 | |||
ChaitanyaU/FineTuneLM | 2021-01-13T10:27:29.000Z | [] | [
".gitattributes",
"FineTuneLM/config.json",
"FineTuneLM/pytorch_model.bin",
"FineTuneLM/special_tokens_map.json",
"FineTuneLM/tokenizer_config.json",
"FineTuneLM/training_args.bin",
"FineTuneLM/vocab.txt"
] | ChaitanyaU | 0 | |||
Chakita/Friends | 2021-06-04T10:36:40.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"conversational",
"text-generation"
] | conversational | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | Chakita | 67 | transformers | ---
tags:
- conversational
---
# Model trained on F.R.I.E.N.D.S dialogue |
Charlotte/text2dm_models | 2021-04-28T15:42:33.000Z | [] | [
".gitattributes"
] | Charlotte | 0 | |||
ChristopherA08/IndoELECTRA | 2021-02-04T06:23:59.000Z | [
"pytorch",
"electra",
"pretraining",
"id",
"dataset:oscar",
"transformers"
] | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"vocab.txt"
] | ChristopherA08 | 180 | transformers | ---
language: id
datasets:
- oscar
---
# IndoBERT (Indonesian BERT Model)
## Model description
ELECTRA is a new method for self-supervised language representation learning. This repository contains the pre-trained Electra Base model (tensorflow 1.15.0) trained in a Large Indonesian corpus (~16GB of raw text | ~2B indonesian words).
IndoELECTRA is a pre-trained language model based on ELECTRA architecture for the Indonesian Language.
This model is base version which use electra-base config.
## Intended uses & limitations
#### How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("ChristopherA08/IndoELECTRA")
model = AutoModel.from_pretrained("ChristopherA08/IndoELECTRA")
tokenizer.encode("hai aku mau makan.")
[2, 8078, 1785, 2318, 1946, 18, 4]
```
## Training procedure
The training of the model has been performed using Google's original Tensorflow code on eight core Google Cloud TPU v2.
We used a Google Cloud Storage bucket, for persistent storage of training data and models.
|
|
Cinnamon/electra-small-japanese-discriminator | 2020-12-11T21:26:13.000Z | [
"pytorch",
"electra",
"pretraining",
"ja",
"transformers",
"license:apache-2.0"
] | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | Cinnamon | 189 | transformers | ---
language: ja
license: apache-2.0
---
## Japanese ELECTRA-small
We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately.
## How to use the discriminator in `transformers`
```
from transformers import BertJapaneseTokenizer, ElectraForPreTraining
tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"})
model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator')
```
|
|
Cinnamon/electra-small-japanese-generator | 2020-12-11T21:26:17.000Z | [
"pytorch",
"electra",
"masked-lm",
"ja",
"transformers",
"fill-mask"
] | fill-mask | [
".gitattributes",
"README.md",
"config.json",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.txt"
] | Cinnamon | 435 | transformers | ---
language: ja
---
## Japanese ELECTRA-small
We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately.
```
# ELECTRA-small generator usage
from transformers import BertJapaneseTokenizer, ElectraForMaskedLM
tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"})
model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator')
```
|
CodeNinja1126/bert-p-encoder | 2021-05-12T01:26:46.000Z | [
"pytorch"
] | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | CodeNinja1126 | 6 | |||
CodeNinja1126/bert-q-encoder | 2021-05-12T01:31:17.000Z | [
"pytorch"
] | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | CodeNinja1126 | 5 | |||
CodeNinja1126/koelectra-model | 2021-04-18T07:34:52.000Z | [] | [
".gitattributes"
] | CodeNinja1126 | 0 | |||
CodeNinja1126/test-model | 2021-05-18T17:45:32.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | [
".gitattributes",
"config.json",
"flax_model.msgpack",
"optimizer.pt",
"pytorch_model.bin",
"scheduler.pt",
"trainer_state.json",
"training_args.bin"
] | CodeNinja1126 | 12 | transformers | |
CodeNinja1126/xlm-roberta-large-kor-mrc | 2021-05-19T06:11:31.000Z | [
"pytorch",
"xlm-roberta",
"question-answering",
"transformers"
] | question-answering | [
".gitattributes",
"config.json",
"pytorch_model.bin"
] | CodeNinja1126 | 35 | transformers | |
CoderEFE/DialoGPT-marxbot | 2021-06-07T01:24:25.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"conversational",
"text-generation"
] | conversational | [
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | CoderEFE | 125 | transformers | ---
tags:
- conversational
---
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-marxbot")
model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-marxbot")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("MarxBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
``` |
CoderEFE/DialoGPT-medium-marx | 2021-06-05T07:08:34.000Z | [
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"transformers",
"text-generation"
] | text-generation | [
".gitattributes",
"README.md",
"TAGS.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json"
] | CoderEFE | 19 | transformers |