Datasets:

Languages:
English
License:
sanchit-gandhi HF staff commited on
Commit
693cf23
1 Parent(s): 575441a
Files changed (1) hide show
  1. tedlium.py +28 -2
tedlium.py CHANGED
@@ -31,6 +31,9 @@ _DL_URL = "https://huggingface.co/datasets/LIUM/tedlium/resolve/main/"
31
 
32
  _LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
33
 
 
 
 
34
 
35
  class TedliumReleaseConfig(datasets.BuilderConfig):
36
  """BuilderConfig for a release of the TED-LIUM dataset."""
@@ -232,6 +235,7 @@ class TedLium(datasets.GeneratorBasedBuilder):
232
  "gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
233
  "file": datasets.Value("string"),
234
  "id": datasets.Value("string"),
 
235
  }
236
  )
237
  return datasets.DatasetInfo(
@@ -245,20 +249,35 @@ class TedLium(datasets.GeneratorBasedBuilder):
245
  )
246
 
247
  def _split_generators(self, dl_manager):
 
 
 
248
  archive_path = dl_manager.download(self.config.download_urls)
249
  # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
250
  local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
 
 
 
 
251
  splits = []
252
  for split, path in self.config.split_paths:
253
  kwargs = {
254
  "filepath": [dl_manager.iter_archive(sharded_path) for sharded_path in archive_path[split]],
255
  "local_extracted_archive": local_extracted_archive.get(split),
256
  "split_path": path,
 
257
  }
258
  splits.append(datasets.SplitGenerator(name=split, gen_kwargs=kwargs))
259
  return splits
260
 
261
- def _generate_examples(self, filepath, local_extracted_archive, split_path):
 
 
 
 
 
 
 
262
  """Generate examples from a TED-LIUM stm file."""
263
  if local_extracted_archive:
264
  for local_archive in local_extracted_archive:
@@ -289,8 +308,10 @@ class TedLium(datasets.GeneratorBasedBuilder):
289
  "gender": _parse_gender(label),
290
  "file": audio_file,
291
  "id": key,
 
292
  }
293
  yield key, example
 
294
 
295
  else:
296
  audio_data = {}
@@ -337,14 +358,19 @@ class TedLium(datasets.GeneratorBasedBuilder):
337
  )
338
  audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
339
  key = transcript["id"]
 
 
340
  yield key, {
341
  "audio": audio,
342
- "text": transcript["text"],
343
  "speaker_id": transcript["speaker_id"],
344
  "gender": transcript["gender"],
345
  "file": transcript["file"],
346
  "id": transcript["id"],
 
347
  }
 
 
348
  audio_data = {}
349
  transcripts = defaultdict(list)
350
 
 
31
 
32
  _LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
33
 
34
+ _WHISPER_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/tedlium/resolve/main/transcription_data/greedy_search/"
35
+ _WHISPER_TRANSCRIPT_URLs = _WHISPER_TRANSCRIPT_URL + "/{split}-transcription.txt"
36
+
37
 
38
  class TedliumReleaseConfig(datasets.BuilderConfig):
39
  """BuilderConfig for a release of the TED-LIUM dataset."""
 
235
  "gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
236
  "file": datasets.Value("string"),
237
  "id": datasets.Value("string"),
238
+ "whisper_transcript": datasets.Value("string"),
239
  }
240
  )
241
  return datasets.DatasetInfo(
 
249
  )
250
 
251
  def _split_generators(self, dl_manager):
252
+ if self.config.name != "release3":
253
+ raise ValueError("This dataset is only compatible with the `release3` config.")
254
+
255
  archive_path = dl_manager.download(self.config.download_urls)
256
  # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
257
  local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
258
+
259
+ transcription_urls = {split: _WHISPER_TRANSCRIPT_URLs.format(split=split) for split in ["train", "validation", "test"]}
260
+ transcript_archive_path = dl_manager.download(transcription_urls)
261
+
262
  splits = []
263
  for split, path in self.config.split_paths:
264
  kwargs = {
265
  "filepath": [dl_manager.iter_archive(sharded_path) for sharded_path in archive_path[split]],
266
  "local_extracted_archive": local_extracted_archive.get(split),
267
  "split_path": path,
268
+ "whisper_transcript": transcript_archive_path[split if split != "dev" else "validation"]
269
  }
270
  splits.append(datasets.SplitGenerator(name=split, gen_kwargs=kwargs))
271
  return splits
272
 
273
+ def _generate_examples(self, filepath, local_extracted_archive, split_path, whisper_transcript):
274
+ whisper_transcripts = []
275
+
276
+ with open(whisper_transcript, encoding="utf-8") as f:
277
+ for row in f:
278
+ whisper_transcripts.append(row.rstrip("\n"))
279
+ idx = 0
280
+
281
  """Generate examples from a TED-LIUM stm file."""
282
  if local_extracted_archive:
283
  for local_archive in local_extracted_archive:
 
308
  "gender": _parse_gender(label),
309
  "file": audio_file,
310
  "id": key,
311
+ "whisper_transcript": whisper_transcripts[idx]
312
  }
313
  yield key, example
314
+ idx += 1
315
 
316
  else:
317
  audio_data = {}
 
358
  )
359
  audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
360
  key = transcript["id"]
361
+ transcript_text = transcript["text"]
362
+ whisper_transcription = whisper_transcripts[idx] if transcript_text != "ignore_time_segment_in_scoring" else "ignore_time_segment_in_scoring"
363
  yield key, {
364
  "audio": audio,
365
+ "text": transcript_text,
366
  "speaker_id": transcript["speaker_id"],
367
  "gender": transcript["gender"],
368
  "file": transcript["file"],
369
  "id": transcript["id"],
370
+ "whisper_transcript": whisper_transcription
371
  }
372
+ idx += 1
373
+
374
  audio_data = {}
375
  transcripts = defaultdict(list)
376