| import json | |
| import asyncio | |
| import gradio as gr | |
| import os | |
| os.environ['CIVITAI_API_TOKEN'] = 'kunkun' | |
| os.environ['FAL_KEY'] = 'Daisuki' | |
| os.environ['CONF_PATH'] = './config.yaml' | |
| from PIL import Image | |
| import io | |
| import base64 | |
| import httpx | |
| from .base_config import init_instance | |
| from .backend import TaskHandler | |
| from .locales import _ | |
| class Gradio: | |
| def __init__(self, host, port): | |
| self.host = '127.0.0.1' if host == '0.0.0.0' else host | |
| self.port = port | |
| def get_caption(self, image): | |
| caption = httpx.post( | |
| f"http://{self.host}:{self.port}/tagger/v1/interrogate", | |
| json=json.loads({"image": image}), timeout=600).json() | |
| return caption | |
| def format_caption_output(caption_result): | |
| llm_text = caption_result.get("llm", '') | |
| word_scores = "\n".join([f"{word}: {score}" for word, score in caption_result["caption"].items()]) | |
| word_ = ",".join([f"{word}" for word in caption_result["caption"].keys()]) | |
| return llm_text, word_scores, word_ | |
| async def create_gradio_interface(host, port): | |
| gradio_api = Gradio(host, port) | |
| from .api_server import api_instance | |
| all_models = [i['title'] for i in await api_instance.get_sd_models()] | |
| init_instance.logger.info(f"{_('Server is ready!')} Listen on {host}:{port}") | |
| async def get_image(model, prompt, negative_prompt, width, height, cfg_scale, steps): | |
| payload = { | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "width": width, | |
| "height": height, | |
| "steps": steps, | |
| "cfg_scale": cfg_scale | |
| } | |
| task_handler = TaskHandler(payload, model_to_backend=model) | |
| result = await task_handler.txt2img() | |
| image_data = result.get("images")[0] | |
| image = Image.open(io.BytesIO(base64.b64decode(image_data))) | |
| return image | |
| with gr.Blocks() as demo: | |
| with gr.Tab("txt2img"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| model = gr.Dropdown(label="Model", choices=all_models) | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", | |
| placeholder="Enter your negative prompt here...") | |
| width = gr.Slider(label="Width", minimum=64, maximum=2048, step=1, value=512) | |
| height = gr.Slider(label="Height", minimum=64, maximum=2048, step=1, value=512) | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=30, step=0.1, value=7.5) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=200, step=1, value=20) | |
| generate_button = gr.Button("Generate Image") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image") | |
| generate_button.click(get_image, [model, prompt, negative_prompt, width, height, cfg_scale, steps], | |
| output_image) | |
| with gr.Tab("Caption"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image") | |
| caption_button = gr.Button("Get Caption") | |
| with gr.Column(): | |
| llm_output = gr.Textbox(label="Natural Language Description") | |
| word_output_ = gr.Textbox(label="Keywords", lines=6) | |
| word_output = gr.Textbox(label="Keywords with Scores", lines=6) | |
| caption_button.click( | |
| lambda image: format_caption_output(gradio_api.get_caption(image)), | |
| inputs=[input_image], | |
| outputs=[llm_output, word_output, word_output_] | |
| ) | |
| return demo | |
| async def run_gradio(host, port): | |
| interface = await create_gradio_interface(host, port) | |
| interface.launch(server_name=host, server_port=port+1) | |
| asyncio.run(run_gradio("127.0.0.1", 5421)) | |