Datasets:
Commit
·
e7dd1ad
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +173 -0
- eli5.py +398 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"LFQA_reddit": {
|
3 |
+
"description": "Explain Like I'm 5 long form QA dataset\n",
|
4 |
+
"citation": "@inproceedings{DBLP:conf/acl/FanJPGWA19,\n author = {Angela Fan and\n Yacine Jernite and\n Ethan Perez and\n David Grangier and\n Jason Weston and\n Michael Auli},\n editor = {Anna Korhonen and\n David R. Traum and\n Lluis Marquez},\n title = {{ELI5:} Long Form Question Answering},\n booktitle = {Proceedings of the 57th Conference of the Association for Computational\n Linguistics, {ACL} 2019, Florence, Italy, July 28- August 2, 2019,\n Volume 1: Long Papers},\n pages = {3558--3567},\n publisher = {Association for Computational Linguistics},\n year = {2019},\n url = {https://doi.org/10.18653/v1/p19-1346},\n doi = {10.18653/v1/p19-1346},\n}\n",
|
5 |
+
"homepage": "https://facebookresearch.github.io/ELI5/explore.html",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"q_id": {
|
9 |
+
"dtype": "string",
|
10 |
+
"id": null,
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"title": {
|
14 |
+
"dtype": "string",
|
15 |
+
"id": null,
|
16 |
+
"_type": "Value"
|
17 |
+
},
|
18 |
+
"selftext": {
|
19 |
+
"dtype": "string",
|
20 |
+
"id": null,
|
21 |
+
"_type": "Value"
|
22 |
+
},
|
23 |
+
"document": {
|
24 |
+
"dtype": "string",
|
25 |
+
"id": null,
|
26 |
+
"_type": "Value"
|
27 |
+
},
|
28 |
+
"subreddit": {
|
29 |
+
"dtype": "string",
|
30 |
+
"id": null,
|
31 |
+
"_type": "Value"
|
32 |
+
},
|
33 |
+
"answers": {
|
34 |
+
"feature": {
|
35 |
+
"a_id": {
|
36 |
+
"dtype": "string",
|
37 |
+
"id": null,
|
38 |
+
"_type": "Value"
|
39 |
+
},
|
40 |
+
"text": {
|
41 |
+
"dtype": "string",
|
42 |
+
"id": null,
|
43 |
+
"_type": "Value"
|
44 |
+
},
|
45 |
+
"score": {
|
46 |
+
"dtype": "int32",
|
47 |
+
"id": null,
|
48 |
+
"_type": "Value"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"length": -1,
|
52 |
+
"id": null,
|
53 |
+
"_type": "Sequence"
|
54 |
+
},
|
55 |
+
"title_urls": {
|
56 |
+
"feature": {
|
57 |
+
"url": {
|
58 |
+
"dtype": "string",
|
59 |
+
"id": null,
|
60 |
+
"_type": "Value"
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"length": -1,
|
64 |
+
"id": null,
|
65 |
+
"_type": "Sequence"
|
66 |
+
},
|
67 |
+
"selftext_urls": {
|
68 |
+
"feature": {
|
69 |
+
"url": {
|
70 |
+
"dtype": "string",
|
71 |
+
"id": null,
|
72 |
+
"_type": "Value"
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"length": -1,
|
76 |
+
"id": null,
|
77 |
+
"_type": "Sequence"
|
78 |
+
},
|
79 |
+
"answers_urls": {
|
80 |
+
"feature": {
|
81 |
+
"url": {
|
82 |
+
"dtype": "string",
|
83 |
+
"id": null,
|
84 |
+
"_type": "Value"
|
85 |
+
}
|
86 |
+
},
|
87 |
+
"length": -1,
|
88 |
+
"id": null,
|
89 |
+
"_type": "Sequence"
|
90 |
+
}
|
91 |
+
},
|
92 |
+
"supervised_keys": null,
|
93 |
+
"builder_name": "eli5",
|
94 |
+
"config_name": "LFQA_reddit",
|
95 |
+
"version": {
|
96 |
+
"version_str": "1.0.0",
|
97 |
+
"description": null,
|
98 |
+
"datasets_version_to_prepare": null,
|
99 |
+
"major": 1,
|
100 |
+
"minor": 0,
|
101 |
+
"patch": 0
|
102 |
+
},
|
103 |
+
"splits": {
|
104 |
+
"train_eli5": {
|
105 |
+
"name": "train_eli5",
|
106 |
+
"num_bytes": 577188173,
|
107 |
+
"num_examples": 272634,
|
108 |
+
"dataset_name": "eli5"
|
109 |
+
},
|
110 |
+
"validation_eli5": {
|
111 |
+
"name": "validation_eli5",
|
112 |
+
"num_bytes": 21117891,
|
113 |
+
"num_examples": 9812,
|
114 |
+
"dataset_name": "eli5"
|
115 |
+
},
|
116 |
+
"test_eli5": {
|
117 |
+
"name": "test_eli5",
|
118 |
+
"num_bytes": 53099796,
|
119 |
+
"num_examples": 24512,
|
120 |
+
"dataset_name": "eli5"
|
121 |
+
},
|
122 |
+
"train_asks": {
|
123 |
+
"name": "train_asks",
|
124 |
+
"num_bytes": 286464210,
|
125 |
+
"num_examples": 131778,
|
126 |
+
"dataset_name": "eli5"
|
127 |
+
},
|
128 |
+
"validation_asks": {
|
129 |
+
"name": "validation_asks",
|
130 |
+
"num_bytes": 9662481,
|
131 |
+
"num_examples": 2281,
|
132 |
+
"dataset_name": "eli5"
|
133 |
+
},
|
134 |
+
"test_asks": {
|
135 |
+
"name": "test_asks",
|
136 |
+
"num_bytes": 17713920,
|
137 |
+
"num_examples": 4462,
|
138 |
+
"dataset_name": "eli5"
|
139 |
+
},
|
140 |
+
"train_askh": {
|
141 |
+
"name": "train_askh",
|
142 |
+
"num_bytes": 330483260,
|
143 |
+
"num_examples": 98525,
|
144 |
+
"dataset_name": "eli5"
|
145 |
+
},
|
146 |
+
"validation_askh": {
|
147 |
+
"name": "validation_askh",
|
148 |
+
"num_bytes": 18690845,
|
149 |
+
"num_examples": 4901,
|
150 |
+
"dataset_name": "eli5"
|
151 |
+
},
|
152 |
+
"test_askh": {
|
153 |
+
"name": "test_askh",
|
154 |
+
"num_bytes": 36246784,
|
155 |
+
"num_examples": 9764,
|
156 |
+
"dataset_name": "eli5"
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"download_checksums": {
|
160 |
+
"https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets_experimental/explainlikeimfive/reddit_data_split.json": {
|
161 |
+
"num_bytes": 6326543,
|
162 |
+
"checksum": "e605c4854787f3db85415b90ab80bb9ca2e2bd5208391e02aff081be2690923f"
|
163 |
+
},
|
164 |
+
"https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/eli5/reddit_data_split.json": {
|
165 |
+
"checksum": "e605c4854787f3db85415b90ab80bb9ca2e2bd5208391e02aff081be2690923f",
|
166 |
+
"num_bytes": 6326543
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"download_size": 6326543,
|
170 |
+
"dataset_size": 1350667360,
|
171 |
+
"size_in_bytes": 1356993903
|
172 |
+
}
|
173 |
+
}
|
eli5.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Facebook, Inc. and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""ELI5: Long Form Question Answering dataset"""
|
18 |
+
from __future__ import absolute_import, division, print_function
|
19 |
+
|
20 |
+
import bz2
|
21 |
+
import io
|
22 |
+
import json
|
23 |
+
import logging
|
24 |
+
import lzma
|
25 |
+
import os
|
26 |
+
import re
|
27 |
+
from os.path import isfile
|
28 |
+
from os.path import join as pjoin
|
29 |
+
from time import time
|
30 |
+
|
31 |
+
import datasets
|
32 |
+
|
33 |
+
|
34 |
+
_SUB_REDDITS = ["explainlikeimfive", "askscience", "AskHistorians"]
|
35 |
+
_REDDIT_URL = "https://files.pushshift.io/reddit/"
|
36 |
+
|
37 |
+
# pylint: disable=line-too-long
|
38 |
+
_URL_REGEX = r"""(?i)\b((?:https?:(?:/{1,3}|[a-z0-9%])|[a-z0-9.\-]+[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)/)(?:[^\s()<>{}\[\]]+|\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\))+(?:\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’])|(?:(?<!@)[a-z0-9]+(?:[.\-][a-z0-9]+)*[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)\b/?(?!@)))"""
|
39 |
+
# pylint: enable=line-too-long
|
40 |
+
|
41 |
+
_HTML_PAIRS = [
|
42 |
+
("&", " & "),
|
43 |
+
(""", ' " '),
|
44 |
+
("&apos", " ' "),
|
45 |
+
(">", " > "),
|
46 |
+
("<", " < "),
|
47 |
+
]
|
48 |
+
|
49 |
+
|
50 |
+
# removes URLs (kept in separate list)
|
51 |
+
def _extract_urls_from_text(stp):
|
52 |
+
url_list = list(set(re.findall(_URL_REGEX, stp)))
|
53 |
+
for i, url in enumerate(url_list):
|
54 |
+
stp = stp.replace(url, "_URL_%d_" % (i,))
|
55 |
+
for a, b in _HTML_PAIRS:
|
56 |
+
stp = stp.replace(a, b)
|
57 |
+
return (stp, url_list)
|
58 |
+
|
59 |
+
|
60 |
+
# collects URLs for monthly dumps, has to be robust to file type changes
|
61 |
+
def _gather_dump_urls(base_url, mode, dl_manager):
|
62 |
+
from bs4 import BeautifulSoup
|
63 |
+
|
64 |
+
page_path = dl_manager.download(_REDDIT_URL + mode)
|
65 |
+
page_f = open(page_path, encoding="utf-8")
|
66 |
+
page_content = page_f.read()
|
67 |
+
page_f.close()
|
68 |
+
soup = BeautifulSoup(page_content, "lxml")
|
69 |
+
files = [it for it in soup.find_all(attrs={"class": "file"})]
|
70 |
+
f_urls = [
|
71 |
+
tg.find_all(lambda x: x.has_attr("href"))[0]["href"]
|
72 |
+
for tg in files
|
73 |
+
if len(tg.find_all(lambda x: x.has_attr("href"))) > 0
|
74 |
+
]
|
75 |
+
date_to_url = {}
|
76 |
+
for url_st in f_urls:
|
77 |
+
ls = re.findall(r"20[0-9]{2}-[0-9]{2}", url_st)
|
78 |
+
if len(ls) > 0:
|
79 |
+
yr, mt = ls[0].split("-")
|
80 |
+
date_to_url[(int(yr), int(mt))] = base_url + mode + url_st[1:]
|
81 |
+
return date_to_url
|
82 |
+
|
83 |
+
|
84 |
+
# select valid top-level comments
|
85 |
+
def _valid_line(dct, mode):
|
86 |
+
top_level = (mode == "submissions") or (
|
87 |
+
len(dct["body"].split()) > 2
|
88 |
+
and not dct["body"].startswith("Your submission has been removed")
|
89 |
+
and dct["author"] != "AutoModerator"
|
90 |
+
and dct["parent_id"] == dct["link_id"]
|
91 |
+
)
|
92 |
+
res = dct.get("num_comments", 1) > 0 and dct.get("score", 0) and dct.get("score", 0) >= 2 and top_level
|
93 |
+
return res
|
94 |
+
|
95 |
+
|
96 |
+
def _open_compressed_file(f_name, f_type):
|
97 |
+
import zstandard as zstd
|
98 |
+
|
99 |
+
fh = None
|
100 |
+
if f_type == "xz":
|
101 |
+
f = lzma.open(f_name, "rt")
|
102 |
+
elif f_type == "bz2":
|
103 |
+
f = bz2.open(f_name, "rt")
|
104 |
+
elif f_type == "zst":
|
105 |
+
fh = open(f_name, "rb")
|
106 |
+
dctx = zstd.ZstdDecompressor()
|
107 |
+
stream_reader = dctx.stream_reader(fh)
|
108 |
+
f = io.TextIOWrapper(stream_reader, encoding="utf-8")
|
109 |
+
else:
|
110 |
+
raise NotImplementedError
|
111 |
+
return f, fh
|
112 |
+
|
113 |
+
|
114 |
+
# download a file, extract posts from desired subreddit, then remove from disk
|
115 |
+
def _download_and_select_lines(dl_manager, f_url, mode, st_time):
|
116 |
+
# download and pre-process original posts
|
117 |
+
print("downloading {} {:.2f}".format(f_url, time() - st_time))
|
118 |
+
f_downloaded_path = dl_manager.download(f_url)
|
119 |
+
print("decompressing and filtering {} {:.2f}".format(f_url, time() - st_time))
|
120 |
+
f, fh = _open_compressed_file(f_downloaded_path, f_url.split(".")[-1])
|
121 |
+
lines = dict([(name, []) for name in _SUB_REDDITS])
|
122 |
+
for line in f:
|
123 |
+
line_dct = json.loads(line)
|
124 |
+
if any([line_dct.get("subreddit", "") == name for name in _SUB_REDDITS]):
|
125 |
+
lines[line_dct["subreddit"]] += [line_dct]
|
126 |
+
f.close()
|
127 |
+
if f_url.split(".")[-1] == "zst":
|
128 |
+
fh.close()
|
129 |
+
os.remove(f_downloaded_path)
|
130 |
+
os.remove(f_downloaded_path + ".json")
|
131 |
+
os.remove(f_downloaded_path + ".lock")
|
132 |
+
print("tokenizing and selecting {} {:.2f}".format(f_url, time() - st_time))
|
133 |
+
processed_items = dict([(name, []) for name in _SUB_REDDITS])
|
134 |
+
if mode == "submissions":
|
135 |
+
key_list = ["id", "score", "url", "title", "selftext", "subreddit"]
|
136 |
+
else:
|
137 |
+
key_list = ["id", "link_id", "parent_id", "score", "body"]
|
138 |
+
for name in _SUB_REDDITS:
|
139 |
+
for line in lines[name]:
|
140 |
+
if _valid_line(line, mode):
|
141 |
+
reddit_res = {}
|
142 |
+
for k in key_list:
|
143 |
+
if k in ["title", "selftext", "body"]:
|
144 |
+
reddit_res[k] = _extract_urls_from_text(line[k])
|
145 |
+
else:
|
146 |
+
reddit_res[k] = line[k]
|
147 |
+
processed_items[name] += [reddit_res]
|
148 |
+
print("Total found {} {} {:.2f}".format(sum([len(ls) for ls in processed_items.values()]), mode, time() - st_time))
|
149 |
+
return processed_items
|
150 |
+
|
151 |
+
|
152 |
+
# post-process ELI5 questions and de-duplicate answers
|
153 |
+
def _post_process(reddit_dct, name=""):
|
154 |
+
# remove the ELI5 at the start of explainlikeimfive questions
|
155 |
+
start_re = re.compile(r"""\A[\[|\(]?[ ]?eli[5f][ ]?[\]|\)]?[]?[:,]?""", re.IGNORECASE)
|
156 |
+
if name == "explainlikeimfive":
|
157 |
+
title, uls = reddit_dct["title"]
|
158 |
+
title = start_re.sub("", title.strip()).strip()
|
159 |
+
reddit_dct["title"] = [title, uls]
|
160 |
+
# dedupe and filter comments
|
161 |
+
comments = [
|
162 |
+
c
|
163 |
+
for i, c in enumerate(reddit_dct["comments"])
|
164 |
+
if len(c["body"][0].split()) >= 8 and c["id"] not in [x["id"] for x in reddit_dct["comments"][:i]]
|
165 |
+
]
|
166 |
+
comments = sorted(comments, key=lambda c: (c["score"], len(c["body"][0].split()), c["id"]), reverse=True)
|
167 |
+
reddit_dct["comments"] = comments
|
168 |
+
return reddit_dct
|
169 |
+
|
170 |
+
|
171 |
+
def _download_and_filter_reddit(dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7):
|
172 |
+
# collect submissions and comments monthly URLs
|
173 |
+
date_to_url_submissions = _gather_dump_urls(_REDDIT_URL, "submissions", dl_manager)
|
174 |
+
date_to_url_comments = _gather_dump_urls(_REDDIT_URL, "comments", dl_manager)
|
175 |
+
# download, filter, process, remove
|
176 |
+
st_time = time()
|
177 |
+
qa_dict = dict([(name, {}) for name in _SUB_REDDITS])
|
178 |
+
# first download all questions
|
179 |
+
for year in range(start_year, end_year + 1):
|
180 |
+
start_mth = start_month if year == start_year else 1
|
181 |
+
end_mth = end_month if year == end_year else 12
|
182 |
+
months = range(start_mth, end_mth + 1)
|
183 |
+
for month in months:
|
184 |
+
if (year, month) in date_to_url_submissions:
|
185 |
+
f_url = date_to_url_submissions[(year, month)]
|
186 |
+
processed_submissions = _download_and_select_lines(dl_manager, f_url, "submissions", st_time)
|
187 |
+
for name in _SUB_REDDITS:
|
188 |
+
for dct in processed_submissions[name]:
|
189 |
+
qa_dict[name][dct["id"]] = dct
|
190 |
+
else:
|
191 |
+
print("Could not find submissions dump file for year {:4d} month {:2d}".format(year, month))
|
192 |
+
# then all answers
|
193 |
+
for year in range(start_year, end_year + 1):
|
194 |
+
start_mth = start_month if year == start_year else 1
|
195 |
+
end_mth = end_month if year == end_year else 12
|
196 |
+
months = range(start_mth, end_mth + 1)
|
197 |
+
for month in months:
|
198 |
+
if (year, month) in date_to_url_comments:
|
199 |
+
f_url = date_to_url_comments[(year, month)]
|
200 |
+
processed_comments = _download_and_select_lines(dl_manager, f_url, "comments", st_time)
|
201 |
+
# merge submissions and comments
|
202 |
+
for name in _SUB_REDDITS:
|
203 |
+
merged_comments = 0
|
204 |
+
for dct in processed_comments[name]:
|
205 |
+
did = dct["parent_id"].split("_")[-1]
|
206 |
+
if did in qa_dict[name]:
|
207 |
+
merged_comments += 1
|
208 |
+
qa_dict[name][did]["comments"] = qa_dict[name][did].get("comments", []) + [dct]
|
209 |
+
else:
|
210 |
+
print("Could not find comments dump file for year {:4d} month {:2d}".format(year, month))
|
211 |
+
# then post-process
|
212 |
+
res = {}
|
213 |
+
for name in _SUB_REDDITS:
|
214 |
+
qa_dct_list = [(k, _post_process(rdct, name)) for k, rdct in qa_dict[name].items() if "comments" in rdct]
|
215 |
+
qa_dct_list = [x for x in qa_dct_list if len(x[1]["comments"]) > 0 and name in x[1]["url"]]
|
216 |
+
res[name] = dict(qa_dct_list[:])
|
217 |
+
return res
|
218 |
+
|
219 |
+
|
220 |
+
_DESCRIPTION = """\
|
221 |
+
Explain Like I'm 5 long form QA dataset
|
222 |
+
"""
|
223 |
+
|
224 |
+
_CITATION = """\
|
225 |
+
@inproceedings{DBLP:conf/acl/FanJPGWA19,
|
226 |
+
author = {Angela Fan and
|
227 |
+
Yacine Jernite and
|
228 |
+
Ethan Perez and
|
229 |
+
David Grangier and
|
230 |
+
Jason Weston and
|
231 |
+
Michael Auli},
|
232 |
+
editor = {Anna Korhonen and
|
233 |
+
David R. Traum and
|
234 |
+
Lluis Marquez},
|
235 |
+
title = {{ELI5:} Long Form Question Answering},
|
236 |
+
booktitle = {Proceedings of the 57th Conference of the Association for Computational
|
237 |
+
Linguistics, {ACL} 2019, Florence, Italy, July 28- August 2, 2019,
|
238 |
+
Volume 1: Long Papers},
|
239 |
+
pages = {3558--3567},
|
240 |
+
publisher = {Association for Computational Linguistics},
|
241 |
+
year = {2019},
|
242 |
+
url = {https://doi.org/10.18653/v1/p19-1346},
|
243 |
+
doi = {10.18653/v1/p19-1346},
|
244 |
+
}
|
245 |
+
"""
|
246 |
+
|
247 |
+
|
248 |
+
class Eli5Config(datasets.BuilderConfig):
|
249 |
+
"""BuilderConfig for ExplainLikeImFive."""
|
250 |
+
|
251 |
+
def __init__(self, **kwargs):
|
252 |
+
"""BuilderConfig for ExplainLikeImFive.
|
253 |
+
Args:
|
254 |
+
**kwargs: keyword arguments forwarded to super.
|
255 |
+
"""
|
256 |
+
super(Eli5Config, self).__init__(**kwargs)
|
257 |
+
|
258 |
+
|
259 |
+
class Eli5(datasets.GeneratorBasedBuilder):
|
260 |
+
"""ELI5: Explain Like I'm Five long form question answering dataset."""
|
261 |
+
|
262 |
+
BUILDER_CONFIG_CLASS = Eli5Config
|
263 |
+
_DATA_SPLIT_URL = "https://s3.amazonaws.com/datasets.huggingface.co/nlp/datasets/eli5/reddit_data_split.json"
|
264 |
+
|
265 |
+
BUILDER_CONFIGS = [
|
266 |
+
Eli5Config(name="LFQA_reddit", version=datasets.Version("1.0.0"), description="long from QA subreddits"),
|
267 |
+
]
|
268 |
+
|
269 |
+
test_dummy_data = False
|
270 |
+
|
271 |
+
def _info(self):
|
272 |
+
return datasets.DatasetInfo(
|
273 |
+
description=_DESCRIPTION,
|
274 |
+
features=datasets.Features(
|
275 |
+
{
|
276 |
+
"q_id": datasets.Value("string"),
|
277 |
+
"title": datasets.Value("string"),
|
278 |
+
"selftext": datasets.Value("string"),
|
279 |
+
"document": datasets.Value("string"),
|
280 |
+
"subreddit": datasets.Value("string"),
|
281 |
+
"answers": datasets.features.Sequence(
|
282 |
+
{
|
283 |
+
"a_id": datasets.Value("string"),
|
284 |
+
"text": datasets.Value("string"),
|
285 |
+
"score": datasets.Value("int32"),
|
286 |
+
}
|
287 |
+
),
|
288 |
+
"title_urls": datasets.features.Sequence(datasets.Value("string")),
|
289 |
+
"selftext_urls": datasets.features.Sequence(datasets.Value("string")),
|
290 |
+
"answers_urls": datasets.features.Sequence(datasets.Value("string")),
|
291 |
+
}
|
292 |
+
),
|
293 |
+
supervised_keys=None,
|
294 |
+
homepage="https://facebookresearch.github.io/ELI5/explore.html",
|
295 |
+
citation=_CITATION,
|
296 |
+
)
|
297 |
+
|
298 |
+
def _split_generators(self, dl_manager):
|
299 |
+
qa_data_file = pjoin(
|
300 |
+
self._cache_dir_root, self._relative_data_dir(with_version=False), "reddit_downloaded_qa_lists.json"
|
301 |
+
)
|
302 |
+
if isfile(qa_data_file):
|
303 |
+
logging.info("loading pre-computed QA list")
|
304 |
+
self.filtered_reddit = json.load(open(qa_data_file))
|
305 |
+
else:
|
306 |
+
self.filtered_reddit = _download_and_filter_reddit(
|
307 |
+
dl_manager, start_year=2011, start_month=7, end_year=2019, end_month=7
|
308 |
+
)
|
309 |
+
logging.info("saving pre-computed QA list")
|
310 |
+
json.dump(self.filtered_reddit, open(qa_data_file, "w"))
|
311 |
+
# download data splits from AWS
|
312 |
+
fpath_splits = dl_manager.download(self._DATA_SPLIT_URL)
|
313 |
+
self.data_split = json.load(open(fpath_splits))
|
314 |
+
return [
|
315 |
+
datasets.SplitGenerator(
|
316 |
+
name=datasets.Split("train_eli5"),
|
317 |
+
gen_kwargs={"split": "train", "subreddit_name": "explainlikeimfive"},
|
318 |
+
),
|
319 |
+
datasets.SplitGenerator(
|
320 |
+
name=datasets.Split("validation_eli5"),
|
321 |
+
gen_kwargs={"split": "validation", "subreddit_name": "explainlikeimfive"},
|
322 |
+
),
|
323 |
+
datasets.SplitGenerator(
|
324 |
+
name=datasets.Split("test_eli5"),
|
325 |
+
gen_kwargs={"split": "test", "subreddit_name": "explainlikeimfive"},
|
326 |
+
),
|
327 |
+
datasets.SplitGenerator(
|
328 |
+
name=datasets.Split("train_asks"),
|
329 |
+
gen_kwargs={"split": "train", "subreddit_name": "askscience"},
|
330 |
+
),
|
331 |
+
datasets.SplitGenerator(
|
332 |
+
name=datasets.Split("validation_asks"),
|
333 |
+
gen_kwargs={"split": "validation", "subreddit_name": "askscience"},
|
334 |
+
),
|
335 |
+
datasets.SplitGenerator(
|
336 |
+
name=datasets.Split("test_asks"),
|
337 |
+
gen_kwargs={"split": "test", "subreddit_name": "askscience"},
|
338 |
+
),
|
339 |
+
datasets.SplitGenerator(
|
340 |
+
name=datasets.Split("train_askh"),
|
341 |
+
gen_kwargs={"split": "train", "subreddit_name": "AskHistorians"},
|
342 |
+
),
|
343 |
+
datasets.SplitGenerator(
|
344 |
+
name=datasets.Split("validation_askh"),
|
345 |
+
gen_kwargs={"split": "validation", "subreddit_name": "AskHistorians"},
|
346 |
+
),
|
347 |
+
datasets.SplitGenerator(
|
348 |
+
name=datasets.Split("test_askh"),
|
349 |
+
gen_kwargs={"split": "test", "subreddit_name": "AskHistorians"},
|
350 |
+
),
|
351 |
+
]
|
352 |
+
|
353 |
+
def _generate_examples(self, split, subreddit_name):
|
354 |
+
logging.info("generating examples from = {}, {} set".format(subreddit_name, split))
|
355 |
+
if split in self.data_split.get(subreddit_name, []):
|
356 |
+
id_list = self.data_split[subreddit_name][split]
|
357 |
+
data = [
|
358 |
+
self.filtered_reddit[subreddit_name][q_id]
|
359 |
+
for q_id in id_list
|
360 |
+
if q_id in self.filtered_reddit[subreddit_name]
|
361 |
+
]
|
362 |
+
elif split == "train":
|
363 |
+
data = [
|
364 |
+
self.filtered_reddit[subreddit_name][q_id]
|
365 |
+
for subreddit_name in self.filtered_reddit
|
366 |
+
for q_id in self.filtered_reddit[subreddit_name]
|
367 |
+
]
|
368 |
+
else:
|
369 |
+
data = []
|
370 |
+
for example in data:
|
371 |
+
id_ = example["id"]
|
372 |
+
title = example["title"][0]
|
373 |
+
title_urls = example["title"][1]
|
374 |
+
selftext = example["selftext"][0]
|
375 |
+
selftext_urls = example["selftext"][1]
|
376 |
+
answer_scores = [ans["score"] for ans in example["comments"]]
|
377 |
+
answer_ids = [ans["id"] for ans in example["comments"]]
|
378 |
+
# flatten list of URL mappings
|
379 |
+
url_maps = [(ul, i, j) for i, ans in enumerate(example["comments"]) for j, ul in enumerate(ans["body"][1])]
|
380 |
+
answers_urls = [ul for ul, _, _ in url_maps]
|
381 |
+
map_url_indices = dict([((i, j), k) for k, (_, i, j) in enumerate(url_maps)])
|
382 |
+
answer_texts = []
|
383 |
+
for i, ans in enumerate(example["comments"]):
|
384 |
+
txt = ans["body"][0]
|
385 |
+
for j, _ in enumerate(ans["body"][1]):
|
386 |
+
txt = txt.replace("_URL_{}_".format(j), "_URL_{}_".format(map_url_indices[(i, j)]))
|
387 |
+
answer_texts += [txt.strip()]
|
388 |
+
yield id_, {
|
389 |
+
"q_id": id_,
|
390 |
+
"title": title,
|
391 |
+
"selftext": selftext,
|
392 |
+
"document": "",
|
393 |
+
"subreddit": example.get("subreddit", subreddit_name),
|
394 |
+
"answers": {"a_id": answer_ids, "text": answer_texts, "score": answer_scores},
|
395 |
+
"title_urls": title_urls,
|
396 |
+
"selftext_urls": selftext_urls,
|
397 |
+
"answers_urls": answers_urls,
|
398 |
+
}
|