Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
Compact_Facts / evaluation_data /wire57 /wire57_evaluation.py
khulnasoft's picture
Upload 5 files
2bd4224 verified
import json
import re
import argparse
def load_WiRe_annotations():
save_path = "../data/WiRe57_343-manual-oie.json"
annotations = json.load(open(save_path))
return annotations
def get_extraction_wire57(arg1, rel, arg2):
return {'arg1': arg1, 'rel': rel, 'arg2': arg2}
def get_extraction_wire57_gold(arg1, rel, arg2):
extraction = {}
extraction['arg1'] = {'text': arg1, 'words': arg1.split()}
extraction['rel'] = {'text': rel, 'words': rel.split()}
extraction['arg2'] = {'text': arg2, 'words': arg2.split()}
return extraction
def get_allenlp_args(line):
assert len(re.findall("<arg1>.*</arg1>", line)) == 1
assert len(re.findall("<rel>.*</rel>", line)) == 1
assert len(re.findall("<arg2>.*</arg2>", line)) == 1
arg1 = re.findall("<arg1>.*</arg1>", line)[0].strip('<arg1>').strip('</arg1>').strip()
rel = re.findall("<rel>.*</rel>", line)[0].strip('<rel>').strip('</rel>').strip()
arg2 = re.findall("<arg2>.*</arg2>", line)[0].strip('<arg2>').strip('</arg2>').strip()
return arg1, rel, arg2
def process_allennlp_format(file, gold=False):
with open(file, 'r') as f:
lines = f.readlines()
extractions = {}
current_sentence = None
for l in lines:
if len(l.strip()) > 0:
items = l.strip().split('\t')
assert len(items) == 3
if current_sentence != items[0]:
current_sentence = items[0]
extractions[current_sentence] = []
arg1, rel, arg2 = get_allenlp_args(items[1])
if gold:
extr = get_extraction_wire57_gold(arg1, rel, arg2)
else:
extr = get_extraction_wire57(arg1, rel, arg2)
extractions[current_sentence].append(extr)
return extractions
def main(arguments):
gold = process_allennlp_format(arguments.gold, gold=True)
predictions_by_OIE = process_allennlp_format(arguments.system)
report = ""
metrics, raw_match_scores = eval_system(gold, predictions_by_OIE)
# with open("raw_scores/"+e+"_prec_scores.dat", "w") as f:
# f.write(str(raw_match_scores[0]))
# with open("raw_scores/"+e+"_rec_scores.dat", "w") as f:
# f.write(str(raw_match_scores[1]))
prec, rec = metrics['precision'], metrics['recall']
f1_score = f1(prec, rec)
exactmatch_prec = metrics['exactmatches_precision'][0] / metrics['exactmatches_precision'][1]
exactmatch_rec = metrics['exactmatches_recall'][0] / metrics['exactmatches_recall'][1]
report += ("prec/rec/f1: {:.1%} {:.1%} {:.3f}"
.format(prec, rec, f1_score))
report += ("\nprec/rec of matches only (non-matches): {:.0%} {:.0%} ({})"
.format(metrics['precision_of_matches'], metrics['recall_of_matches'], metrics['matches']))
report += ("\n{} were exactly correct, out of {} predicted / the reference {}."
.format(metrics['exactmatches_precision'][0],
metrics['exactmatches_precision'][1], metrics['exactmatches_recall'][1]))
report += ("\nExact-match prec/rec/f1: {:.1%} {:.1%} {:.3f}"
.format(exactmatch_prec, exactmatch_rec, f1(exactmatch_prec, exactmatch_rec)))
# prec, rec = metrics['precision'], metrics['recall']
# f1_score = f1(prec, rec)
#
# report += ("prec/rec/f1: {:.1%} {:.1%} {:.3f}".format(prec, rec, f1_score))
print(report)
def eval_system(gold, predictions):
results = {}
# Get a manytuples-to-manytuples match-score for each sentence,
# then gather the scores across sentences and compute the weighted-average
for s, reference_tuples in gold.items():
predicted_tuples = predictions.get(s, [])
results[s] = sentence_match(reference_tuples, predicted_tuples)
prec_num, prec_denom = 0, 0
rec_num, rec_denom = 0, 0
exactmatches_precnum, exactmatches_precdenom = 0,0
exactmatches_recnum, exactmatches_recdenom = 0,0
tot_prec_of_matches, tot_rec_of_matches = 0, 0
for s in results.values():
prec_num += s['precision'][0]
prec_denom += s['precision'][1]
rec_num += s['recall'][0]
rec_denom += s['recall'][1]
exactmatches_precnum += s['exact_match_precision'][0]
exactmatches_precdenom += s['exact_match_precision'][1]
exactmatches_recnum += s['exact_match_recall'][0]
exactmatches_recdenom += s['exact_match_recall'][1]
tot_prec_of_matches += sum(s['precision_of_matches'])
tot_rec_of_matches += sum(s['recall_of_matches'])
precision_scores = [v for s in results.values() for v in s['precision_of_matches']]
recall_scores = [v for s in results.values() for v in s['recall_of_matches']]
raw_match_scores = [precision_scores, recall_scores]
matches = len(precision_scores)
metrics = {
'precision': prec_num / prec_denom,
'recall': rec_num / rec_denom,
'matches': matches,
'precision_of_matches': tot_prec_of_matches / matches,
'recall_of_matches': tot_rec_of_matches / matches,
'exactmatches_precision': [exactmatches_precnum, exactmatches_precdenom],
'exactmatches_recall': [exactmatches_recnum, exactmatches_recdenom]
}
# raw_match_scores = None
return metrics, raw_match_scores
# TODO:
# - Implement half points for part-misplaced words.
# - Deal with prepositions possibly being the first token of an arg, especially for arg2.
# > It's fully ok for "any" prep to be last word of ref_rel or first_word of pred_arg
def avg(l):
return sum(l) / len(l)
def f1(prec, rec):
try:
return 2 * prec * rec / (prec + rec)
except ZeroDivisionError:
return 0
def sentence_match(gold, predicted):
"""For a given sentence, compute tuple-tuple matching scores, and gather them
at the sentence level. Return scoring metrics."""
score, maximum_score = 0, len(gold)
exact_match_scores = [[None for _ in predicted] for __ in gold]
scores = [[None for _ in predicted] for __ in gold]
for i, gt in enumerate(gold):
for j, pt in enumerate(predicted):
exact_match_scores[i][j] = tuple_exact_match(pt, gt)
scores[i][j] = tuple_match(pt, gt) # this is a pair [prec,rec] or False
scoring_metrics = aggregate_scores_greedily(scores)
exact_match_summary = aggregate_exact_matches(exact_match_scores)
scoring_metrics['exact_match_precision'] = exact_match_summary['precision']
scoring_metrics['exact_match_recall'] = exact_match_summary['recall']
return scoring_metrics
def str_list(thing):
return "\n".join([str(s) for s in thing])
def aggregate_scores_greedily(scores):
# Greedy match: pick the prediction/gold match with the best f1 and exclude
# them both, until nothing left matches. Each input square is a [prec, rec]
# pair. Returns precision and recall as score-and-denominator pairs.
matches = []
while True:
max_s = 0
gold, pred = None, None
for i, gold_ss in enumerate(scores):
if i in [m[0] for m in matches]:
# Those are already taken rows
continue
for j, pred_s in enumerate(scores[i]):
if j in [m[1] for m in matches]:
# Those are used columns
continue
if pred_s and f1(*pred_s) > max_s:
max_s = f1(*pred_s)
gold = i
pred = j
if max_s == 0:
break
matches.append([gold, pred])
# Now that matches are determined, compute final scores.
prec_scores = [scores[i][j][0] for i, j in matches]
rec_scores = [scores[i][j][1] for i, j in matches]
total_prec = sum(prec_scores)
total_rec = sum(rec_scores)
scoring_metrics = {"precision": [total_prec, len(scores[0])],
"recall": [total_rec, len(scores)],
"precision_of_matches": prec_scores,
"recall_of_matches": rec_scores
}
# print(scoring_metrics)
return scoring_metrics
def aggregate_exact_matches(match_matrix):
# For this agregation task, no predicted tuple can exact-match two gold
# ones, so it's easy, look at lines and columns looking for OR-total booleans.
recall = [sum([any(gold_matches) for gold_matches in match_matrix], 0), len(match_matrix)]
# ^ this is [3,5] for "3 out of 5", to be lumped together later.
if len(match_matrix[0]) == 0:
precision = [0, 0] # N/A
else:
precision = [sum([any([g[i] for g in match_matrix]) for i in range(len(match_matrix[0]))], 0),
len(match_matrix[0])]
# f1 = 2 * precision * recall / (precision + recall)
metrics = {'precision': precision,
'recall': recall}
return metrics
def part_to_string(p):
return " ".join(p['words'])
def gold_to_text(gt):
text = " ; ".join([part_to_string(gt['arg1']), part_to_string(gt['rel']), part_to_string(gt['arg2'])])
if gt['arg3+']:
text += " ; " + " ; ".join(gt['arg3+'])
return text
def tuple_exact_match(t, gt):
"""Without resolving coref and WITH the need to hallucinate humanly infered
words, does the tuple match the reference ? Returns a boolean."""
for part in ['arg1', 'rel', 'arg2']:
if not t[part] == ' '.join(gt[part]['words']):
# This purposedly ignores that some of the gt words are 'inf'
# print("Predicted '{}' is different from reference '{}'".format(t[part], ' '.join(gt[part]['words'])))
return False
return True
"""
Wire57 tuples are built like so:
t = {"attrib/spec?" : attrib,
"arg1" : {'text' : arg1, 'words': arg1_w, "words_indexes" : arg1_ind,
'dc_text' : arg1dc, 'decorefed_words' : arg1dc_w, 'decorefed_indexes' : arg1dc_ind},
"rel" : {'text' : rel, 'words': rel_w, "words_indexes" : rel_ind},
"arg2" : {'text' : arg2, 'words': arg2_w, "words_indexes" : arg2_ind,
'dc_text' : arg2dc, 'decorefed_words' : arg2dc_w, 'decorefed_indexes' : arg2dc_ind},
"""
def tuple_match(t, gt):
"""t is a predicted tuple, gt is the gold tuple. How well do they match ?
Yields precision and recall scores, a pair of non-zero values, if it's a match, and False if it's not.
"""
precision = [0, 0] # 0 out of 0 predicted words match
recall = [0, 0] # 0 out of 0 reference words match
# If, for each part, any word is the same as a reference word, then it's a match.
for part in ['arg1', 'rel', 'arg2']:
predicted_words = t[part].split()
gold_words = gt[part]['words']
if not predicted_words:
if gold_words:
return False
else:
continue
matching_words = sum(1 for w in predicted_words if w in gold_words)
if matching_words == 0:
return False # t <-> gt is not a match
precision[0] += matching_words
precision[1] += len(predicted_words)
# Currently this slightly penalises systems when the reference
# reformulates the sentence words, because the reformulation doesn't
# match the predicted word. It's a one-wrong-word penalty to precision,
# to all systems that correctly extracted the reformulated word.
recall[0] += matching_words
recall[1] += len(gold_words)
if recall[1] == 0 or precision[1] == 0:
return False
prec = precision[0] / precision[1]
rec = recall[0] / recall[1]
return [prec, rec]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--gold', help="file path for gold in allennlp format", required=True)
parser.add_argument('--system', help="file path for system in allennlp format", required=True)
arguments = parser.parse_args()
main(arguments)