JP-SystemsX
commited on
Commit
•
7a9ec4c
1
Parent(s):
758b62b
Prototype Init (MVP)
Browse files- meta_data/0.jsonl +0 -0
- super_eurlex.py +109 -76
- text_data/DE/0.zip +3 -0
meta_data/0.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
super_eurlex.py
CHANGED
@@ -18,26 +18,18 @@
|
|
18 |
import csv
|
19 |
import json
|
20 |
import os
|
|
|
21 |
|
22 |
import datasets
|
23 |
|
24 |
|
25 |
# TODO: Add BibTeX citation
|
26 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
-
_CITATION = """
|
28 |
-
@InProceedings{huggingface:dataset,
|
29 |
-
title = {A great new dataset},
|
30 |
-
author={huggingface, Inc.
|
31 |
-
},
|
32 |
-
year={2020}
|
33 |
-
}
|
34 |
-
"""
|
35 |
|
36 |
# TODO: Add description of the dataset here
|
37 |
# You can copy an official description
|
38 |
-
_DESCRIPTION = """
|
39 |
-
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
40 |
-
"""
|
41 |
|
42 |
# TODO: Add a link to an official homepage for the dataset here
|
43 |
_HOMEPAGE = ""
|
@@ -52,18 +44,64 @@ _URLS = {
|
|
52 |
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
53 |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
54 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
58 |
-
class
|
59 |
"""TODO: Short description of my dataset."""
|
60 |
|
61 |
VERSION = datasets.Version("1.1.0")
|
62 |
|
63 |
-
# This is an example of a dataset with multiple configurations.
|
64 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
65 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
66 |
-
|
67 |
# If you need to make complex sub-parts in the datasets with configurable options
|
68 |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
69 |
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
@@ -71,34 +109,24 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
71 |
# You will be able to load one or the other configurations in the following list with
|
72 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
73 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
|
|
74 |
BUILDER_CONFIGS = [
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
DEFAULT_CONFIG_NAME = "
|
80 |
|
81 |
def _info(self):
|
82 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
83 |
-
|
84 |
-
|
85 |
-
{
|
86 |
-
"sentence": datasets.Value("string"),
|
87 |
-
"option1": datasets.Value("string"),
|
88 |
-
"answer": datasets.Value("string")
|
89 |
-
# These are the features of your dataset like images, labels ...
|
90 |
-
}
|
91 |
-
)
|
92 |
-
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
93 |
-
features = datasets.Features(
|
94 |
-
{
|
95 |
-
"sentence": datasets.Value("string"),
|
96 |
-
"option2": datasets.Value("string"),
|
97 |
-
"second_domain_answer": datasets.Value("string")
|
98 |
-
# These are the features of your dataset like images, labels ...
|
99 |
-
}
|
100 |
-
)
|
101 |
-
return datasets.DatasetInfo(
|
102 |
# This is the description that will appear on the datasets page.
|
103 |
description=_DESCRIPTION,
|
104 |
# This defines the different columns of the dataset and their types
|
@@ -113,6 +141,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
113 |
# Citation for the dataset
|
114 |
citation=_CITATION,
|
115 |
)
|
|
|
116 |
|
117 |
def _split_generators(self, dl_manager):
|
118 |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
@@ -121,52 +150,56 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
121 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
122 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
123 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
124 |
-
urls =
|
|
|
125 |
data_dir = dl_manager.download_and_extract(urls)
|
126 |
return [
|
127 |
datasets.SplitGenerator(
|
128 |
name=datasets.Split.TRAIN,
|
129 |
# These kwargs will be passed to _generate_examples
|
130 |
gen_kwargs={
|
131 |
-
"
|
132 |
-
"
|
|
|
|
|
|
|
133 |
},
|
134 |
-
)
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.VALIDATION,
|
137 |
-
# These kwargs will be passed to _generate_examples
|
138 |
-
gen_kwargs={
|
139 |
-
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
140 |
-
"split": "dev",
|
141 |
-
},
|
142 |
-
),
|
143 |
-
datasets.SplitGenerator(
|
144 |
-
name=datasets.Split.TEST,
|
145 |
-
# These kwargs will be passed to _generate_examples
|
146 |
-
gen_kwargs={
|
147 |
-
"filepath": os.path.join(data_dir, "test.jsonl"),
|
148 |
-
"split": "test"
|
149 |
-
},
|
150 |
-
),
|
151 |
]
|
152 |
|
153 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
154 |
-
def _generate_examples(self,
|
155 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
156 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
import csv
|
19 |
import json
|
20 |
import os
|
21 |
+
import pandas as pd
|
22 |
|
23 |
import datasets
|
24 |
|
25 |
|
26 |
# TODO: Add BibTeX citation
|
27 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
28 |
+
_CITATION = """ """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# TODO: Add description of the dataset here
|
31 |
# You can copy an official description
|
32 |
+
_DESCRIPTION = """ """
|
|
|
|
|
33 |
|
34 |
# TODO: Add a link to an official homepage for the dataset here
|
35 |
_HOMEPAGE = ""
|
|
|
44 |
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
45 |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
46 |
}
|
47 |
+
AVAILABLE_LANGUAGES=['DE']#, 'EN'
|
48 |
+
SECTORS=['1']#, '1', '2', '3', '4', '5', '6', '7', '8', '9', 'C', 'E']
|
49 |
+
AVAILABLE_FEATURES={
|
50 |
+
'1': datasets.Features({
|
51 |
+
'celex_id': datasets.Value("string"),
|
52 |
+
'text_html_raw': datasets.Value("string"),
|
53 |
+
'text_html_cleaned': datasets.Value("string"),
|
54 |
+
'text_cleaned': datasets.Value("string"),
|
55 |
+
'form': datasets.Sequence(datasets.Value("string")),
|
56 |
+
'subject_matter': datasets.Sequence(datasets.Value("string")),
|
57 |
+
'current_consolidated_version': datasets.Sequence(datasets.Value("string")),
|
58 |
+
'harmonisation_of_customs_law_community_transit': datasets.Sequence(datasets.Value("string")),
|
59 |
+
'harmonisation_of_customs_law_customs_territory': datasets.Sequence(datasets.Value("string")),
|
60 |
+
'harmonisation_of_customs_law_value_for_customs_purposes': datasets.Sequence(datasets.Value("string")),
|
61 |
+
'directory_code': datasets.Sequence(datasets.Value("string")),
|
62 |
+
'eurovoc': datasets.Sequence(datasets.Value("string")),
|
63 |
+
'customs_duties_community_tariff_quotas': datasets.Sequence(datasets.Value("string")),
|
64 |
+
'customs_duties_authorisation_to_defer_application_of_cct': datasets.Sequence(datasets.Value("string")),
|
65 |
+
'harmonisation_of_customs_law_various': datasets.Sequence(datasets.Value("string")),
|
66 |
+
'customs_duties_suspensions': datasets.Sequence(datasets.Value("string"))})
|
67 |
+
}
|
68 |
+
SECTOR_DESCRIPTIONS={
|
69 |
+
'1':""
|
70 |
+
}
|
71 |
|
72 |
|
73 |
+
class SuperEurlexConfig(datasets.BuilderConfig):
|
74 |
+
"""BuilderConfig for SuperGLUE."""
|
75 |
+
|
76 |
+
def __init__(self, sector, language, features, citation, url, **kwargs):
|
77 |
+
"""BuilderConfig for SuperGLUE.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
sector: sector of the wanted data
|
81 |
+
language: the language code for the language in which the text shall
|
82 |
+
be written in
|
83 |
+
features: *list[string]*, list of the features that will appear in the
|
84 |
+
feature dict.
|
85 |
+
citation: *string*, citation for the data set.
|
86 |
+
url: *string*, url for information about the data set.
|
87 |
+
**kwargs: keyword arguments forwarded to super.
|
88 |
+
"""
|
89 |
+
name=sector+'.'+language
|
90 |
+
super().__init__(name=name, version=datasets.Version("0.1.0"), **kwargs)
|
91 |
+
self.features = features
|
92 |
+
self.language = language
|
93 |
+
self.sector = sector
|
94 |
+
self.text_data_url = f"text_data/{language}/{sector}.jsonl"
|
95 |
+
self.meta_data_url = f"meta_data/{sector}.jsonl"
|
96 |
+
self.citation = citation
|
97 |
+
self.url = url
|
98 |
+
|
99 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
100 |
+
class SuperEurlex(datasets.GeneratorBasedBuilder):
|
101 |
"""TODO: Short description of my dataset."""
|
102 |
|
103 |
VERSION = datasets.Version("1.1.0")
|
104 |
|
|
|
|
|
|
|
|
|
105 |
# If you need to make complex sub-parts in the datasets with configurable options
|
106 |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
107 |
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
|
|
109 |
# You will be able to load one or the other configurations in the following list with
|
110 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
111 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
112 |
+
|
113 |
BUILDER_CONFIGS = [
|
114 |
+
SuperEurlexConfig(#version=VERSION,
|
115 |
+
sector=sect,
|
116 |
+
language=lang,
|
117 |
+
description=SECTOR_DESCRIPTIONS[sect],
|
118 |
+
features=AVAILABLE_FEATURES[sect],
|
119 |
+
citation=_CITATION,
|
120 |
+
url=_HOMEPAGE)
|
121 |
+
for lang in AVAILABLE_LANGUAGES for sect in SECTORS
|
122 |
+
]
|
123 |
|
124 |
+
DEFAULT_CONFIG_NAME = "3.DE" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
125 |
|
126 |
def _info(self):
|
127 |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
128 |
+
features = AVAILABLE_FEATURES[self.config.sector]
|
129 |
+
info = datasets.DatasetInfo(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
# This is the description that will appear on the datasets page.
|
131 |
description=_DESCRIPTION,
|
132 |
# This defines the different columns of the dataset and their types
|
|
|
141 |
# Citation for the dataset
|
142 |
citation=_CITATION,
|
143 |
)
|
144 |
+
return info
|
145 |
|
146 |
def _split_generators(self, dl_manager):
|
147 |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
|
|
150 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
151 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
152 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
153 |
+
urls = {'text': self.config.text_data_url,
|
154 |
+
'meta': self.config.meta_data_url} #_URLS[self.config.name]
|
155 |
data_dir = dl_manager.download_and_extract(urls)
|
156 |
return [
|
157 |
datasets.SplitGenerator(
|
158 |
name=datasets.Split.TRAIN,
|
159 |
# These kwargs will be passed to _generate_examples
|
160 |
gen_kwargs={
|
161 |
+
"text": data_dir['text'],
|
162 |
+
"meta": data_dir['meta'],
|
163 |
+
"language": self.config.language,
|
164 |
+
"sector": self.config.sector,
|
165 |
+
'split': 'train'
|
166 |
},
|
167 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
]
|
169 |
|
170 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
171 |
+
def _generate_examples(self, text, meta, sector, language, split):
|
172 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
173 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
174 |
+
print(text)
|
175 |
+
print(meta)
|
176 |
+
print(sector)
|
177 |
+
print(split)
|
178 |
+
print(sector)
|
179 |
+
|
180 |
+
print("Reading Text Data...")
|
181 |
+
text_data = pd.read_json(text, lines=True)
|
182 |
+
text_data['celex_id'] = text_data['celex_id'].apply(lambda x: x[0] if isinstance(x,list) else x)
|
183 |
+
print("Reading Meta Data...")
|
184 |
+
meta_data = pd.read_json(meta, lines=True)
|
185 |
+
meta_data['celex_id'] = meta_data['celex_id'].apply(lambda x: x[0] if isinstance(x, list) else x)
|
186 |
+
print("Combining Text & Meta Data...")
|
187 |
+
combined_data = pd.merge(text_data, meta_data, on='celex_id')
|
188 |
+
print("Converting To final dataset...")
|
189 |
+
dataset = datasets.Dataset.from_pandas(combined_data)
|
190 |
+
dataset = dataset.remove_columns('__index_level_0__')#.cache_files()
|
191 |
+
for i, sample in enumerate(dataset):
|
192 |
+
yield i, sample
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
print("Hello World")
|
197 |
+
if __name__ == '__main__':
|
198 |
+
import datasets as ds
|
199 |
+
import sys
|
200 |
+
print(sys.argv[0])
|
201 |
+
dataset = ds.load_dataset(sys.argv[0],'1.DE')
|
202 |
+
print(dataset)
|
203 |
+
for sample in dataset['train']:
|
204 |
+
continue
|
205 |
+
#print(sample)
|
text_data/DE/0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a886d234545b4ff700cd456a675e22aee89fb990e95bf822fd943ff8aef357a8
|
3 |
+
size 3370620904
|