repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
Helsinki-NLP/opus-mt-niu-fi
Helsinki-NLP
marian
10
9
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-niu-fi * source languages: niu * target languages: fi * OPUS readme: [niu-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/niu-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/niu-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.niu.fi | 24.8 | 0.474 |
31b61a78587f86dcc9d21ca14227693f
Helsinki-NLP/opus-mt-nl-fr
Helsinki-NLP
marian
10
1,752
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
770
false
### opus-mt-nl-fr * source languages: nl * target languages: fr * OPUS readme: [nl-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nl-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/nl-fr/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-fr/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-fr/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.nl.fr | 51.3 | 0.674 |
b53cba0432e1e1682a4ce5eb6b6b5c9d
muhtasham/tiny-vanilla-target-glue-cola
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,188
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-vanilla-target-glue-cola This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8745 - Matthews Correlation: 0.0651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6124 | 1.87 | 500 | 0.6204 | 0.0 | | 0.603 | 3.73 | 1000 | 0.6181 | 0.0 | | 0.5927 | 5.6 | 1500 | 0.6231 | 0.0194 | | 0.5707 | 7.46 | 2000 | 0.6366 | 0.0149 | | 0.5399 | 9.33 | 2500 | 0.6549 | 0.0646 | | 0.5169 | 11.19 | 3000 | 0.6769 | 0.0736 | | 0.4954 | 13.06 | 3500 | 0.6856 | 0.0742 | | 0.4724 | 14.93 | 4000 | 0.7246 | 0.0777 | | 0.4552 | 16.79 | 4500 | 0.7517 | 0.0767 | | 0.434 | 18.66 | 5000 | 0.7868 | 0.0832 | | 0.4192 | 20.52 | 5500 | 0.8144 | 0.0664 | | 0.4092 | 22.39 | 6000 | 0.8025 | 0.0670 | | 0.3874 | 24.25 | 6500 | 0.8745 | 0.0651 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
880c3a88ff96362b63504c4fee5970dd
Devrim/prism-default
Devrim
null
3
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,533
false
The default Prism model available at https://github.com/thompsonb/prism. See the [README.md](https://github.com/thompsonb/prism/blob/master/README.md) file for more information. **LICENCE NOTICE** ``` MIT License Copyright (c) Brian Thompson Portions of this software are copied from fairseq (https://github.com/pytorch/fairseq), which is released under the MIT License and Copyright (c) Facebook, Inc. and its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ```
f21b6a454e6d803c5f230456ee03ae20
kpriyanshu256/whisper-large-v2-bn-600-32-1e-05
kpriyanshu256
whisper
15
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['as']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,504
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large-v2-Bengali This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: - Wer: 12.51 ## Model description This model was originally trained on Bengali data but evaluated on Assamese test split. Hence, tensorboard evaluation logs for Assamese are present. The model was later evaluated on Bengali test split. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0646 | 1.13 | 600 | | 12.51 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
6ea3c00a582b409ff677180786799e7f
hyamaguchi58/distilbert-base-uncased-finetuned-emotion
hyamaguchi58
distilbert
16
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,337
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2138 - Accuracy: 0.923 - F1: 0.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8023 | 1.0 | 250 | 0.3011 | 0.9085 | 0.9070 | | 0.2414 | 2.0 | 500 | 0.2138 | 0.923 | 0.9229 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.12.1
dea44fc9d0431828ac041a4664db1a78
mroopesh/my_billsum_model
mroopesh
t5
14
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['billsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,699
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5391 - Rouge1: 0.1425 - Rouge2: 0.0499 - Rougel: 0.1149 - Rougelsum: 0.1148 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8276 | 0.1256 | 0.0355 | 0.1038 | 0.104 | 19.0 | | No log | 2.0 | 124 | 2.6220 | 0.1356 | 0.0456 | 0.1106 | 0.1104 | 19.0 | | No log | 3.0 | 186 | 2.5555 | 0.1423 | 0.0501 | 0.1145 | 0.1143 | 19.0 | | No log | 4.0 | 248 | 2.5391 | 0.1425 | 0.0499 | 0.1149 | 0.1148 | 19.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
5b8f0ac0077b7a7f5df91cff9cbc97f7
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s673
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'de']
false
true
true
481
false
# exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s673 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
f24bf3e123934d0167efd4aaf73f24f5
responsibility-framing/predict-perception-xlmr-focus-assassin
responsibility-framing
xlm-roberta
12
21
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
7,990
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-xlmr-focus-assassin This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3264 - Rmse: 0.9437 - Rmse Focus::a Sull'assassino: 0.9437 - Mae: 0.7093 - Mae Focus::a Sull'assassino: 0.7093 - R2: 0.6145 - R2 Focus::a Sull'assassino: 0.6145 - Cos: 0.7391 - Pair: 0.0 - Rank: 0.5 - Neighbors: 0.6131 - Rsa: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Rmse Focus::a Sull'assassino | Mae | Mae Focus::a Sull'assassino | R2 | R2 Focus::a Sull'assassino | Cos | Pair | Rank | Neighbors | Rsa | |:-------------:|:-----:|:----:|:---------------:|:------:|:----------------------------:|:------:|:---------------------------:|:-------:|:--------------------------:|:-------:|:----:|:----:|:---------:|:---:| | 1.0403 | 1.0 | 15 | 1.1576 | 1.7771 | 1.7771 | 1.6028 | 1.6028 | -0.3670 | -0.3670 | -0.2174 | 0.0 | 0.5 | 0.2379 | nan | | 0.9818 | 2.0 | 30 | 0.8916 | 1.5596 | 1.5596 | 1.4136 | 1.4136 | -0.0529 | -0.0529 | 0.3913 | 0.0 | 0.5 | 0.3793 | nan | | 0.9276 | 3.0 | 45 | 0.9277 | 1.5909 | 1.5909 | 1.4560 | 1.4560 | -0.0955 | -0.0955 | 0.3913 | 0.0 | 0.5 | 0.3742 | nan | | 0.8395 | 4.0 | 60 | 0.7958 | 1.4734 | 1.4734 | 1.3032 | 1.3032 | 0.0603 | 0.0603 | 0.5652 | 0.0 | 0.5 | 0.4598 | nan | | 0.7587 | 5.0 | 75 | 0.4647 | 1.1259 | 1.1259 | 0.9316 | 0.9316 | 0.4513 | 0.4513 | 0.6522 | 0.0 | 0.5 | 0.5087 | nan | | 0.696 | 6.0 | 90 | 0.5368 | 1.2101 | 1.2101 | 1.0847 | 1.0847 | 0.3661 | 0.3661 | 0.7391 | 0.0 | 0.5 | 0.5302 | nan | | 0.548 | 7.0 | 105 | 0.3110 | 0.9211 | 0.9211 | 0.7896 | 0.7896 | 0.6328 | 0.6328 | 0.6522 | 0.0 | 0.5 | 0.5261 | nan | | 0.4371 | 8.0 | 120 | 0.3392 | 0.9619 | 0.9619 | 0.8132 | 0.8132 | 0.5995 | 0.5995 | 0.6522 | 0.0 | 0.5 | 0.5261 | nan | | 0.355 | 9.0 | 135 | 0.3938 | 1.0366 | 1.0366 | 0.8153 | 0.8153 | 0.5349 | 0.5349 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.2919 | 10.0 | 150 | 0.3484 | 0.9749 | 0.9749 | 0.7487 | 0.7487 | 0.5886 | 0.5886 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.2595 | 11.0 | 165 | 0.2812 | 0.8759 | 0.8759 | 0.6265 | 0.6265 | 0.6679 | 0.6679 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.2368 | 12.0 | 180 | 0.2534 | 0.8314 | 0.8314 | 0.6402 | 0.6402 | 0.7008 | 0.7008 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.227 | 13.0 | 195 | 0.2878 | 0.8861 | 0.8861 | 0.6769 | 0.6769 | 0.6601 | 0.6601 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.1979 | 14.0 | 210 | 0.2405 | 0.8100 | 0.8100 | 0.6113 | 0.6113 | 0.7160 | 0.7160 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.1622 | 15.0 | 225 | 0.2575 | 0.8382 | 0.8382 | 0.6017 | 0.6017 | 0.6959 | 0.6959 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.1575 | 16.0 | 240 | 0.2945 | 0.8963 | 0.8963 | 0.6741 | 0.6741 | 0.6523 | 0.6523 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.1479 | 17.0 | 255 | 0.3563 | 0.9859 | 0.9859 | 0.7367 | 0.7367 | 0.5792 | 0.5792 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.1269 | 18.0 | 270 | 0.2806 | 0.8750 | 0.8750 | 0.6665 | 0.6665 | 0.6686 | 0.6686 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.1257 | 19.0 | 285 | 0.3267 | 0.9441 | 0.9441 | 0.6739 | 0.6739 | 0.6142 | 0.6142 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.134 | 20.0 | 300 | 0.3780 | 1.0155 | 1.0155 | 0.7331 | 0.7331 | 0.5536 | 0.5536 | 0.7391 | 0.0 | 0.5 | 0.5302 | nan | | 0.1171 | 21.0 | 315 | 0.3890 | 1.0301 | 1.0301 | 0.7444 | 0.7444 | 0.5406 | 0.5406 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.0934 | 22.0 | 330 | 0.3131 | 0.9242 | 0.9242 | 0.6923 | 0.6923 | 0.6303 | 0.6303 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.1112 | 23.0 | 345 | 0.2912 | 0.8913 | 0.8913 | 0.6610 | 0.6610 | 0.6561 | 0.6561 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.1038 | 24.0 | 360 | 0.3109 | 0.9209 | 0.9209 | 0.7019 | 0.7019 | 0.6329 | 0.6329 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.085 | 25.0 | 375 | 0.3469 | 0.9728 | 0.9728 | 0.7383 | 0.7383 | 0.5904 | 0.5904 | 0.8261 | 0.0 | 0.5 | 0.6622 | nan | | 0.0843 | 26.0 | 390 | 0.3017 | 0.9073 | 0.9073 | 0.6848 | 0.6848 | 0.6437 | 0.6437 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.093 | 27.0 | 405 | 0.3269 | 0.9443 | 0.9443 | 0.7042 | 0.7042 | 0.6140 | 0.6140 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.0846 | 28.0 | 420 | 0.3161 | 0.9286 | 0.9286 | 0.6937 | 0.6937 | 0.6267 | 0.6267 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.0764 | 29.0 | 435 | 0.3244 | 0.9408 | 0.9408 | 0.7079 | 0.7079 | 0.6169 | 0.6169 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | | 0.0697 | 30.0 | 450 | 0.3264 | 0.9437 | 0.9437 | 0.7093 | 0.7093 | 0.6145 | 0.6145 | 0.7391 | 0.0 | 0.5 | 0.6131 | nan | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
f0689afbc87d314db734861f12de73fb
fathyshalab/domain_transfer_clinic_credit_cards-massive_calendar-roberta-large-v1-2-88
fathyshalab
roberta
14
0
sentence-transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['setfit', 'sentence-transformers', 'text-classification']
false
true
true
1,538
false
# fathyshalab/domain_transfer_clinic_credit_cards-massive_calendar-roberta-large-v1-2-88 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_calendar-roberta-large-v1-2-88") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
a5d7397f5b3331369e5e0b49360f1527
nandysoham16/9-clustered_aug
nandysoham16
distilbert
8
0
keras
0
null
false
true
false
mit
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
5,306
false
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> ['Republic_of_the_Congo', 'Dutch_Republic', 'Southern_Europe', 'Nanjing', 'Southampton', 'Guinea-Bissau', 'Zhejiang', 'New_Delhi', 'Hanover', 'Everton_F.C.', 'Lancashire', 'FC_Barcelona', 'Valencia', 'Antarctica', 'Eritrea', 'Israel', 'Arsenal_F.C.', 'Greece', 'East_India_Company', 'Southeast_Asia', 'Myanmar', 'Switzerland', 'Mali', 'Nigeria', 'Utrecht', 'Alsace', 'Galicia_(Spain)', 'Sichuan', 'Sahara', 'Tibet', 'Strasbourg', 'Central_African_Republic', 'Estonia', 'Paris', 'States_of_Germany', 'East_Prussia', 'Rajasthan', 'Cyprus', 'Hyderabad', 'Armenia', 'Iran', 'Liberia', 'Swaziland', 'Airport', 'Namibia', 'Egypt', 'Portugal', 'Tajikistan', 'Punjab,_Pakistan', 'Kathmandu'] - **Developed by:** nandysoham - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
ab221b49418e3f3825c64faf832ec757
SRM47/gpt2-large-paraphraser
SRM47
gpt2
13
0
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
908
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-large-paraphraser This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
5ee329a8a940baf46687bfe88be23f81
SRM47/gpt2-paraphraser
SRM47
gpt2
13
3
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
890
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-paraphraser This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ead4ea87b27e1c5a7d2a996d63d7b7b0
jonatasgrosman/exp_w2v2r_en_xls-r_age_teens-10_sixties-0_s364
jonatasgrosman
wav2vec2
10
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
476
false
# exp_w2v2r_en_xls-r_age_teens-10_sixties-0_s364 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
8967e769b92e994ec8f41fde41e55df1
swardiantara/distilbert-base-cased-finetuned-ner
swardiantara
distilbert
13
17
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
1
0
1
0
0
0
0
['generated_from_trainer']
true
true
true
1,549
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0709 - Precision: 0.9170 - Recall: 0.9272 - F1: 0.9221 - Accuracy: 0.9804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2732 | 1.0 | 878 | 0.0916 | 0.8931 | 0.8961 | 0.8946 | 0.9736 | | 0.0717 | 2.0 | 1756 | 0.0726 | 0.9166 | 0.9212 | 0.9189 | 0.9794 | | 0.0364 | 3.0 | 2634 | 0.0709 | 0.9170 | 0.9272 | 0.9221 | 0.9804 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
b890fc31090f8df12450567c1d94e17b
Lvxue/distilled-mt5-small-0.005-1
Lvxue
mt5
14
1
transformers
0
text2text-generation
true
false
false
apache-2.0
['en', 'ro']
['wmt16']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,038
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-0.005-1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8123 - Bleu: 7.6523 - Gen Len: 44.3867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
e3d255e41f1a3c0d848141811f4d4571
OscarHoekstra/distilbert-base-uncased-finetuned-ner
OscarHoekstra
distilbert
13
3
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,555
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0586 - Precision: 0.9275 - Recall: 0.9371 - F1: 0.9323 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2391 | 1.0 | 878 | 0.0706 | 0.9189 | 0.9230 | 0.9210 | 0.9813 | | 0.054 | 2.0 | 1756 | 0.0576 | 0.9291 | 0.9370 | 0.9331 | 0.9841 | | 0.0298 | 3.0 | 2634 | 0.0586 | 0.9275 | 0.9371 | 0.9323 | 0.9841 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
b206812d4b927d2f1ad7742b0c78f1a6
jeapaul/wav2vec2-base-torgo-demo-m04-nolm
jeapaul
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,186
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-torgo-demo-m04-nolm This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5735 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.431 | 0.88 | 500 | 4.5567 | 1.0 | | 3.4727 | 1.75 | 1000 | 3.5626 | 1.0 | | 3.3879 | 2.63 | 1500 | 3.9274 | 1.0 | | 3.3513 | 3.5 | 2000 | 3.4813 | 1.0 | | 3.3538 | 4.38 | 2500 | 3.7300 | 1.0 | | 3.3539 | 5.25 | 3000 | 3.5714 | 1.0 | | 3.339 | 6.13 | 3500 | 3.6732 | 1.0 | | 3.3038 | 7.01 | 4000 | 3.6788 | 1.0 | | 3.35 | 7.88 | 4500 | 3.6715 | 1.0 | | 3.338 | 8.76 | 5000 | 3.5161 | 1.0 | | 3.3306 | 9.63 | 5500 | 3.7386 | 1.0 | | 3.3266 | 10.51 | 6000 | 3.4908 | 1.0 | | 3.3184 | 11.38 | 6500 | 3.7669 | 1.0 | | 3.3189 | 12.26 | 7000 | 3.6142 | 1.0 | | 3.331 | 13.13 | 7500 | 3.5619 | 1.0 | | 3.3139 | 14.01 | 8000 | 3.6632 | 1.0 | | 3.3069 | 14.89 | 8500 | 3.6127 | 1.0 | | 3.315 | 15.76 | 9000 | 3.5562 | 1.0 | | 3.3079 | 16.64 | 9500 | 3.7094 | 1.0 | | 3.3077 | 17.51 | 10000 | 3.5412 | 1.0 | | 3.3188 | 18.39 | 10500 | 3.6303 | 1.0 | | 3.3133 | 19.26 | 11000 | 3.5704 | 1.0 | | 3.3428 | 20.14 | 11500 | 3.5662 | 1.0 | | 3.3082 | 21.02 | 12000 | 3.6084 | 1.0 | | 3.3238 | 21.89 | 12500 | 3.6164 | 1.0 | | 3.3119 | 22.77 | 13000 | 3.5787 | 1.0 | | 3.2981 | 23.64 | 13500 | 3.6356 | 1.0 | | 3.3153 | 24.52 | 14000 | 3.5726 | 1.0 | | 3.3065 | 25.39 | 14500 | 3.5908 | 1.0 | | 3.3199 | 26.27 | 15000 | 3.5823 | 1.0 | | 3.306 | 27.15 | 15500 | 3.5658 | 1.0 | | 3.3153 | 28.02 | 16000 | 3.5818 | 1.0 | | 3.2762 | 28.9 | 16500 | 3.5810 | 1.0 | | 3.3196 | 29.77 | 17000 | 3.5735 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.13.2
067d02bdc756a10c5b196d20849285fc
Helsinki-NLP/opus-mt-sv-bcl
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-sv-bcl * source languages: sv * target languages: bcl * OPUS readme: [sv-bcl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-bcl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-bcl/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-bcl/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-bcl/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.bcl | 39.5 | 0.607 |
d944a080ec8f3166297cf694a0118331
michojan/bert-finetuned-ner
michojan
bert
12
3
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,518
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9324 - Recall: 0.9495 - F1: 0.9409 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0862 | 1.0 | 1756 | 0.0649 | 0.9193 | 0.9371 | 0.9281 | 0.9831 | | 0.0406 | 2.0 | 3512 | 0.0576 | 0.9235 | 0.9472 | 0.9352 | 0.9850 | | 0.0197 | 3.0 | 5268 | 0.0622 | 0.9324 | 0.9495 | 0.9409 | 0.9864 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
8533e190887bfb9f8ab0a2fa02dbd14c
anuragshas/whisper-large-v2-ml
anuragshas
whisper
23
1
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['ml']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,322
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Malayalam This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 ml dataset. It achieves the following results on the evaluation set: - Loss: 0.4170 - Wer: 25.4789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0 | 71.01 | 1000 | 0.4170 | 25.4789 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
245bad8cc3231a12b42b7f394f982455
gagan3012/wav2vec2-xlsr-khmer
gagan3012
wav2vec2
13
9
transformers
1
automatic-speech-recognition
true
false
true
apache-2.0
['km']
['OpenSLR', 'common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
4,993
false
# Wav2Vec2-Large-XLSR-53-khmer Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Khmer using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR Kh](http://www.openslr.org/42/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor !wget https://www.openslr.org/resources/42/km_kh_male.zip !unzip km_kh_male.zip !ls km_kh_male colnames=['path','sentence'] df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames) df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/km_kh_male/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train') processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Result Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd from datasets import load_dataset !wget https://www.openslr.org/resources/42/km_kh_male.zip !unzip km_kh_male.zip !ls km_kh_male colnames=['path','sentence'] df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames) df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/km_kh_male/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train') wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch cer = load_metric("cer") result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 24.96 % WER: 24.962519 CER: 6.950925 ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1yo_OTMH8FHQrAKCkKdQGMqpkj-kFhS_2?usp=sharing)
1003dd4006dd171238f3ac8ddd5e84e5
saikatc/NatGen
saikatc
t5
9
52
transformers
0
text2text-generation
true
false
false
mit
['code']
['CodeSearchNet', 'CodeXGLUE']
null
0
0
0
0
0
0
0
['code generation', 'code translation', 'bug fixing']
false
true
true
1,432
false
Pretrained model for NatGen: Generative Pre-training by “Naturalizing” Source Code [[`paper`]](https://dl.acm.org/doi/abs/10.1145/3540250.3549162),[[`code`]](https://github.com/saikat107/NatGen),[[`slide`]](https://docs.google.com/presentation/d/1T6kjiohAAR1YvcNvTASR94HptA3xHGCl/edit?usp=sharing&ouid=111755026725574085503&rtpof=true&sd=true). To load the model, ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("saikatc/NatGen") model = AutoModelForSeq2SeqLM.from_pretrained("saikatc/NatGen") ``` For citation, ``` @inproceedings{chakraborty2022natgen, author = {Chakraborty, Saikat and Ahmed, Toufique and Ding, Yangruibo and Devanbu, Premkumar T. and Ray, Baishakhi}, title = {NatGen: Generative Pre-Training by “Naturalizing” Source Code}, year = {2022}, isbn = {9781450394130}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3540250.3549162}, doi = {10.1145/3540250.3549162}, booktitle = {Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering}, pages = {18–30}, numpages = {13}, keywords = {Neural Network, Semantic Preserving Transformation, Source Code Transformer, Source Code Pre-training}, location = {Singapore, Singapore}, series = {ESEC/FSE 2022} } ```
3e199f7d658f90f15dd0097606648223
yerevann/x-r-hy
yerevann
wav2vec2
11
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,403
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-2b-armenian-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5166 - Wer: 0.7397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.7057 | 2.38 | 200 | 0.7731 | 0.8091 | | 0.5797 | 4.76 | 400 | 0.8279 | 0.7804 | | 0.4341 | 7.14 | 600 | 1.0343 | 0.8285 | | 0.3135 | 9.52 | 800 | 1.0551 | 0.8066 | | 0.2409 | 11.9 | 1000 | 1.0686 | 0.7897 | | 0.1998 | 14.29 | 1200 | 1.1329 | 0.7766 | | 0.1729 | 16.67 | 1400 | 1.3234 | 0.8567 | | 0.1533 | 19.05 | 1600 | 1.2432 | 0.8160 | | 0.1354 | 21.43 | 1800 | 1.2780 | 0.7954 | | 0.12 | 23.81 | 2000 | 1.2228 | 0.8054 | | 0.1175 | 26.19 | 2200 | 1.3484 | 0.8129 | | 0.1141 | 28.57 | 2400 | 1.2881 | 0.9130 | | 0.1053 | 30.95 | 2600 | 1.1972 | 0.7910 | | 0.0954 | 33.33 | 2800 | 1.3702 | 0.8048 | | 0.0842 | 35.71 | 3000 | 1.3963 | 0.7960 | | 0.0793 | 38.1 | 3200 | 1.4690 | 0.7991 | | 0.0707 | 40.48 | 3400 | 1.5045 | 0.8085 | | 0.0745 | 42.86 | 3600 | 1.4749 | 0.8004 | | 0.0693 | 45.24 | 3800 | 1.5047 | 0.7960 | | 0.0646 | 47.62 | 4000 | 1.4216 | 0.7997 | | 0.0555 | 50.0 | 4200 | 1.4676 | 0.8029 | | 0.056 | 52.38 | 4400 | 1.4273 | 0.8104 | | 0.0465 | 54.76 | 4600 | 1.3999 | 0.7841 | | 0.046 | 57.14 | 4800 | 1.6130 | 0.8473 | | 0.0404 | 59.52 | 5000 | 1.5586 | 0.7841 | | 0.0403 | 61.9 | 5200 | 1.3959 | 0.7653 | | 0.0404 | 64.29 | 5400 | 1.5318 | 0.8041 | | 0.0365 | 66.67 | 5600 | 1.5300 | 0.7854 | | 0.0338 | 69.05 | 5800 | 1.5051 | 0.7885 | | 0.0307 | 71.43 | 6000 | 1.5647 | 0.7935 | | 0.0235 | 73.81 | 6200 | 1.4919 | 0.8154 | | 0.0268 | 76.19 | 6400 | 1.5259 | 0.8060 | | 0.0275 | 78.57 | 6600 | 1.3985 | 0.7897 | | 0.022 | 80.95 | 6800 | 1.5515 | 0.8154 | | 0.017 | 83.33 | 7000 | 1.5737 | 0.7647 | | 0.0205 | 85.71 | 7200 | 1.4876 | 0.7572 | | 0.0174 | 88.1 | 7400 | 1.6331 | 0.7829 | | 0.0188 | 90.48 | 7600 | 1.5108 | 0.7685 | | 0.0134 | 92.86 | 7800 | 1.7125 | 0.7866 | | 0.0125 | 95.24 | 8000 | 1.6042 | 0.7635 | | 0.0133 | 97.62 | 8200 | 1.4608 | 0.7478 | | 0.0272 | 100.0 | 8400 | 1.4784 | 0.7309 | | 0.0133 | 102.38 | 8600 | 1.4471 | 0.7459 | | 0.0094 | 104.76 | 8800 | 1.4852 | 0.7272 | | 0.0103 | 107.14 | 9000 | 1.5679 | 0.7409 | | 0.0088 | 109.52 | 9200 | 1.5090 | 0.7309 | | 0.0077 | 111.9 | 9400 | 1.4994 | 0.7290 | | 0.0068 | 114.29 | 9600 | 1.5008 | 0.7340 | | 0.0054 | 116.67 | 9800 | 1.5166 | 0.7390 | | 0.0052 | 119.05 | 10000 | 1.5166 | 0.7397 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
9742711e9d3780e071320d4398e62ee6
NbAiLab/nb-wav2vec2-300m-nynorsk
NbAiLab
wav2vec2
31
23
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['nn-NO']
['NbAiLab/NPSC']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'NbAiLab/NPSC', False, 'nn', 'nn-NO']
true
true
true
5,245
false
# Norwegian Wav2Vec2 Model - 300M - VoxRex - Nynorsk This model is finetuned on top of feature extractor [VoxRex-model](https://huggingface.co/KBLab/wav2vec2-large-voxrex) from the National Library of Sweden. The finetuned model achieves the following results on the test set with a 5-gram KenLM. The numbers in parentheses are the results without the language model: - **WER: 0.1222** (0.1537) - **CER: 0.0419** (0.0468) ## Model description This is one of several Wav2Vec-models our team created during the 🤗 hosted [Robust Speech Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614?s=09). This is the complete list of our models and their final scores: | Model | Final WER | | |:--------------|:------------|:------------:| | [NbAiLab/nb-wav2vec2-1b-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal) | 6.33 | | | [NbAiLab/nb-wav2vec2-300m-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal) | 7.03 | | | NbAiLab/nb-wav2vec2-300m-nynorsk (this model) | 12.22 | | ### Dataset In parallel with the event, the team also converted the [Norwegian Parliamentary Speech Corpus (NPSC)](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/) to the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) in 🤗 Dataset format and used that as the main source for training. ## Code We have released all the code developed during the event so that the Norwegian NLP community can build upon it when developing even better Norwegian ASR models. The finetuning of these models is not very computationally demanding. After following the instructions here, you should be able to train your own automatic speech recognition system in less than a day with an average GPU. ## Team The following people contributed to building this model: Rolv-Arild Braaten, Per Egil Kummervold, Andre Kåsen, Javier de la Rosa, Per Erik Solberg, and Freddy Wetjen. ## Training procedure To reproduce these results, we strongly recommend that you follow the [instructions from 🤗](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#talks) to train a simple Swedish model. When you have verified that you are able to do this, create a fresh new repo. You can then start by copying the files ```run.sh``` and ```run_speech_recognition_ctc.py``` from our repo. Running these will create all the other necessary files, and should let you reproduce our results. With some tweaks to the hyperparameters, you might even be able to build an even better ASR. Good luck! ### Language Model As the scores indicate, adding even a simple 5-gram language will improve the results. 🤗 has provided another [very nice blog](https://huggingface.co/blog/wav2vec2-with-ngram) explaining how to add a 5-gram language model to improve the ASR model. You can build this from your own corpus, for instance by extracting some suitable text from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC). You can also skip some of the steps in the guide, and copy the [5-gram model from this repo](https://huggingface.co/NbAiLab/XLSR-300M-bokmaal/tree/main/language_model). ### Parameters The final model was run using these parameters: ``` --dataset_name="NbAiLab/NPSC" --model_name_or_path="KBLab/wav2vec2-large-voxrex" --dataset_config_name="16K_mp3_nynorsk" --output_dir="./" --overwrite_output_dir --num_train_epochs="80" --per_device_train_batch_size="16" --per_device_eval_batch_size="16" --gradient_accumulation_steps="2" --learning_rate="1e-4" --warmup_steps="2000" --length_column_name="input_length" --evaluation_strategy="steps" --text_column_name="text" --save_steps="500" --eval_steps="500" --logging_steps="100" --layerdrop="0.041" --attention_dropout="0.094" --activation_dropout="0.055" --hidden_dropout="0.047" --save_total_limit="3" --freeze_feature_encoder --feat_proj_dropout="0.04" --mask_time_prob="0.082" --mask_time_length="10" --mask_feature_prob="0.25" --mask_feature_length="64" --gradient_checkpointing --min_duration_in_seconds="0.5" --max_duration_in_seconds="30.0" --use_auth_token --seed="42" --fp16 --group_by_length --do_train --do_eval --push_to_hub --preprocessing_num_workers="32" ``` Using these settings, the training might take 3-4 days on an average GPU. You can, however, get a decent model and faster results by tweaking these parameters. | Parameter| Comment | |:-------------|:-----| | per_device_train_batch_size | Adjust this to the maximum of available memory. 16 or 24 might be good settings depending on your system | |gradient_accumulation_steps |Can be adjusted even further up to increase batch size and speed up training without running into memory issues | | learning_rate|Can be increased, maybe as high as 1e-4. Speeds up training but might add instability | | epochs| Can be decreased significantly. This is a huge dataset and you might get a decent result already after a couple of epochs|
cdbc80cc45d936b06567ec67e9fba857
ALM/whisper-it-small
ALM
whisper
22
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['it']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,372
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Italian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 it dataset. It achieves the following results on the evaluation set: - Loss: 0.2517 - Wer: 11.2714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2529 | 1.0 | 466 | 0.2758 | 12.4907 | | 0.1711 | 2.0 | 932 | 0.2517 | 11.2714 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
5f6ef90f6a9b9122cdf53a2b96d1ec9a
johko/capdec_005
johko
null
3
0
null
1
image-to-text
false
false
false
apache-2.0
['en']
['MS-COCO', 'Flickr30k']
null
0
0
0
0
0
0
0
['Image Captioning']
false
true
true
1,348
false
# CapDec - NoiseLevel: 0.005 ## Model Description These are model weights originally provided by the authors of the paper [Text-Only Training for Image Captioning using Noise-Injected CLIP](https://arxiv.org/pdf/2211.00575.pdf). Their method aims to train CLIP with only text samples. Therefore they are injecting zero-mean Gaussian Noise into the text embeddings before decoding. In their words: *Specifically, we assume that the visual embedding corresponding to a text embedding lies somewhere within a ball of small radius around the text embedding (see Fig. 1). We would like all text embeddings in this ball to decode to the same caption,which should also correspond to the visual content mapped to this ball. We implement this intuition by adding zero-mean Gaussian noise of STD to the text embedding before decoding it.* The "Noise Level" of 0.005 is equivalent to the Noise Variance which is the square of the STD. The reported metrics are results of a model with a Noise Variance of 0.016, which the authors unfortunately do not provide in their repository. ## Datasets The authors trained the model on MS-COCO and Flickr30k datasets. ## Performance The authors don't explicitly report the performance for this NoiseLevel but it can be estimated from the following figure from the original paper: ![](capdec_performance.png)
ada4f169b45adce9daa677fc45cee3c8
sd-concepts-library/tangles
sd-concepts-library
null
13
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,249
false
### Tangles on Stable Diffusion This is the `<cora-tangle>` concept taught to Stable Diffusion via Textual Inversion. The concept is based on my daughter drawing random color fields with her hands or a paint brush and then me filling in the rest of the space with geometric doodles. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. Sample results below and more results [here](https://imgur.com/user/ritaleonova/posts.html). Seed: Lush alien aquarium in the style `<cora-tangle>` ![<cora-tangle> nightime cityscape](https://i.imgur.com/ivMLbQk.jpeg) Seed: Nighttime city scape in the style `<cora-tangle>` ![<cora-tangle> nightime cityscape](https://i.imgur.com/Q9XP2eb.png) Seed: Hand holding paintbrush in the style `<cora-tangle>` ![<cora-tangle> nightime cityscape](https://i.imgur.com/7kHm7xm.png) Seed: Fox in the style `<cora-tangle>` ![<cora-tangle> fox](https://i.imgur.com/Eu2WoAE.png) Seed: Baby bird in the style `<cora-tangle>` ![<cora-tangle> bird](https://i.imgur.com/bza6jwp.png) Here were the seed images for the style: ![<cora-tangle> 0](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/1.jpeg) ![<cora-tangle> 1](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/5.jpeg) ![<cora-tangle> 2](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/0.jpeg) ![<cora-tangle> 3](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/4.jpeg) ![<cora-tangle> 4](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/2.jpeg) ![<cora-tangle> 5](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/3.jpeg) ![<cora-tangle> 6](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/6.jpeg) ![<cora-tangle> 7](https://huggingface.co/sd-concepts-library/tangles/resolve/main/concept_images/7.jpeg) You can train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
60be6330358aba5c9a0f3385458bdf91
flamesbob/akaramModel
flamesbob
null
7
0
null
1
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,476
false
akrammodel_10000 was trained on a blend of (v1-5-pruned[a9263745] and anythingv3[6569e224] weighted sum M0.5) for 10000 steps, classification "artstyle", instance m_akram ## example <img alt="Showcase" src="https://huggingface.co/flamesbob/akaramModel/resolve/main/00035-1277575582-m_akram%2C((bes___.png"/> <img alt="Showcase" src="https://huggingface.co/flamesbob/akaramModel/resolve/main/00036-1277575585-m_akram%2C((bes___.png"/> <img alt="Showcase" src="https://huggingface.co/flamesbob/akaramModel/resolve/main/00037-1277575584-m_akram,((bes___.png"/> <img alt="Showcase" src="https://huggingface.co/flamesbob/akaramModel/resolve/main/00039-3151256283-m_akram,((bes___.png"/> License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
c0de948c5fda33ddc08acc03c9b7fabd
google/multiberts-seed_1-step_600k
google
bert
8
12
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_1', 'multiberts-seed_1-step_600k']
false
true
true
3,521
false
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_600k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_600k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
d4b1d0ecd6a7d914c4b8f4f706d8ef53
DOOGLAK/Tagged_One_50v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['tagged_one50v2_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,562
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_50v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one50v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6200 - Precision: 0.125 - Recall: 0.0007 - F1: 0.0015 - Accuracy: 0.7835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 18 | 0.7424 | 0.0 | 0.0 | 0.0 | 0.7776 | | No log | 2.0 | 36 | 0.6479 | 0.0909 | 0.0002 | 0.0005 | 0.7819 | | No log | 3.0 | 54 | 0.6200 | 0.125 | 0.0007 | 0.0015 | 0.7835 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
5b9623a6aee88cfe6a1afc4ab864d2d6
shields/whisper-small-hindi
shields
whisper
15
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['hi']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'generated_from_trainer']
true
true
true
1,490
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hindi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3323 - Wer: 31.3299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1464 | 1.22 | 1000 | 0.3049 | 36.8492 | | 0.0636 | 2.44 | 2000 | 0.2910 | 32.8875 | | 0.0191 | 3.67 | 3000 | 0.3117 | 31.7828 | | 0.0096 | 4.89 | 4000 | 0.3323 | 31.3299 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
7fd339ee9d30b480a98433adc9faa522
wmingch/distilbert-base-uncased-finetuned-emotion
wmingch
distilbert
12
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,343
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2174 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8164 | 1.0 | 250 | 0.3181 | 0.9015 | 0.8984 | | 0.2434 | 2.0 | 500 | 0.2174 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
38e8bc5b6f2c8a74c7011926bfdeab9b
elliotthwang/t5-small-finetuned-xlsum-chinese-tradition
elliotthwang
t5
14
42
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['xlsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,932
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum-chinese-tradition This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 1.2061 - Rouge1: 0.8887 - Rouge2: 0.0671 - Rougel: 0.889 - Rougelsum: 0.8838 - Gen Len: 6.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.4231 | 1.0 | 2336 | 1.2586 | 0.711 | 0.0528 | 0.7029 | 0.7053 | 7.3368 | | 1.378 | 2.0 | 4672 | 1.2281 | 0.9688 | 0.05 | 0.9574 | 0.9656 | 7.0392 | | 1.3567 | 3.0 | 7008 | 1.2182 | 0.9534 | 0.1035 | 0.9531 | 0.9472 | 6.7437 | | 1.3339 | 4.0 | 9344 | 1.2096 | 0.9969 | 0.0814 | 0.9969 | 0.9938 | 7.4503 | | 1.3537 | 5.0 | 11680 | 1.2072 | 0.8429 | 0.0742 | 0.8372 | 0.838 | 6.8049 | | 1.3351 | 6.0 | 14016 | 1.2061 | 0.8887 | 0.0671 | 0.889 | 0.8838 | 6.8779 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
7a41690199c61b98ec87bf8a5fcf2939
yhavinga/ul2-large-dutch-english
yhavinga
t5
18
19
transformers
0
text2text-generation
true
false
true
apache-2.0
['nl', 'en', 'multilingual']
['yhavinga/mc4_nl_cleaned', 'yhavinga/nedd_wiki_news']
null
0
0
0
0
0
0
0
['dutch', 'english', 't5', 't5x', 'ul2', 'seq2seq']
false
true
true
10,326
false
# ul2-large-dutch-english for Dutch and English Pretrained T5 model on Dutch and English using a UL2 (Mixture-of-Denoisers) objective. The T5 model was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). The UL2 objective was introduced in [this paper](https://arxiv.org/abs/2205.05131) and first released at [this page](https://github.com/google-research/google-research/tree/master/ul2). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. `ul2-large-dutch-english` T5 is a transformers model pretrained on a very large corpus of Dutch and English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in the feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off during pre-training. Dropout should be re-enabled during fine-tuning - Pre-trained on self-supervised objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer ### UL2 pretraining objective This model was pretrained with the UL2's Mixture-of-Denoisers (MoD) objective, that combines diverse pre-training paradigms together. UL2 frames different objective functions for training language models as denoising tasks, where the model has to recover missing sub-sequences of a given input. During pre-training it uses a novel mixture-of-denoisers that samples from a varied set of such objectives, each with different configurations. UL2 is trained using a mixture of three denoising tasks: 1. R-denoising (or regular span corruption), which emulates the standard T5 span corruption objective; 2. X-denoising (or extreme span corruption); and 3. S-denoising (or sequential PrefixLM). During pre-training, we sample from the available denoising tasks based on user-specified ratios. UL2 introduces a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training denoising task. During the pre-training, a paradigm token is inserted to the input (`[NLU]` for R-denoising, `[NLG]` for X-denoising, or `[S2S]` for S-denoising) indicating the denoising task at hand. Then, during fine-tuning the same input token should be inserted to get the best performance for different downstream fine-tuning tasks. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5/UL2 models without mixed precision so fine-tune them with full fp32 precision. Fine-tuning with Flax in bf16 - `model.to_bf16()` - is possible if you set the mask correctly to exclude layernorm and embedding layers. Also note that the T5x pre-training and fine-tuning configs set `z_loss` to 1e-4, which is used to keep the loss scale from underflowing. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. **Note**: For fine-tuning, most likely you can get better results if you insert a prefix token of `[NLU]`, `[NLG]`, or `[S2S]` to your input texts. For general language understanding fine-tuning tasks, you could use the `[NLU]` token. For GPT-style causal language generation, you could use the `[S2S]` token. The token `[NLG]` of the X-denoising pretrain task is somewhat mix between the language understanding and causal language generation so the token `[NLG]` could maybe be used for language generation fine-tuning too. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("yhavinga/ul2-large-dutch-english", use_fast=False) model = T5ForConditionalGeneration.from_pretrained("yhavinga/ul2-large-dutch-english") ``` and in Flax: ```python from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("yhavinga/ul2-large-dutch-english", use_fast=False) model = FlaxT5ForConditionalGeneration.from_pretrained("yhavinga/ul2-large-dutch-english") ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data The `ul2-large-dutch-english` T5 model was pre-trained simultaneously on a combination of several datasets, including the `full_en_nl` config of the "mc4_nl_cleaned" dataset, which is a cleaned version of Common Crawl's web crawl corpus, Dutch books, the Dutch subset of Wikipedia (2022-03-20), the English subset of Wikipedia (2022-03-01), and a subset of "mc4_nl_cleaned" containing only texts from Dutch and Belgian newspapers. This last dataset is oversampled to bias the model towards descriptions of events in the Netherlands and Belgium. ## Training procedure ### Preprocessing The ul2-large-dutch-english T5 model uses a SentencePiece unigram tokenizer with a vocabulary of 32,000 tokens. The tokenizer includes the special tokens `<pad>`, `</s>`, `<unk>`, known from the original T5 paper, `[NLU]`, `[NLG]` and `[S2S]` for the MoD pre-training, and `<n>` for newline. During pre-training with the UL2 objective, input and output sequences consist of 512 consecutive tokens. The tokenizer does not lowercase texts and is therefore case-sensitive; it distinguises between `dutch` and `Dutch`. Additionally, 100+28 extra tokens were added for pre-training tasks, resulting in a total of 32,128 tokens. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1000000 steps with a batch size of 64 (in total 32 B tokens). The optimizer used was AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. The model was trained with Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) with help from [Stephenn Fernandes](https://huggingface.co/StephennFernandes) to get started writing task definitions that wrap HF datasets. The UL2 training objective code used with the [t5x framework](https://github.com/google-research/t5x) was copied and slightly modified from the [UL2 paper](https://arxiv.org/pdf/2205.05131.pdf) appendix chapter 9.2 by the authors of the Finnish ul2 models. Used UL2 objective code is available in the repository [Finnish-NLP/ul2-base-nl36-finnish](https://huggingface.co/Finnish-NLP/ul2-base-nl36-finnish) in the files `ul2_objective.py` and `tasks.py`. UL2's mixture-of-denoisers configuration was otherwise equal to the UL2 paper but for the rate of mixing denoisers, 20% for S-denoising was used (suggested at the paper chapter 4.5) and the rest was divided equally between the R-denoising and X-denoising (i.e. 40% for both). ### Model list Models in this series: | | ul2-base-dutch-english | ul2-large-dutch-english | ul2-small-dutch-english | |:---------------------|:-------------------------|:--------------------------|:--------------------------| | model_type | t5 | t5 | t5 | | _pipeline_tag | text2text-generation | text2text-generation | text2text-generation | | d_model | 768 | 1024 | 512 | | d_ff | 2048 | 2816 | 1024 | | num_heads | 12 | 16 | 6 | | d_kv | 64 | 64 | 64 | | num_layers | 12 | 24 | 8 | | num_decoder_layers | 12 | 24 | 8 | | feed_forward_proj | gated-gelu | gated-gelu | gated-gelu | | dense_act_fn | gelu_new | gelu_new | gelu_new | | vocab_size | 32128 | 32128 | 32128 | | tie_word_embeddings | 0 | 0 | 0 | | torch_dtype | float32 | float32 | float32 | | _gin_batch_size | 128 | 64 | 128 | | _gin_z_loss | 0.0001 | 0.0001 | 0.0001 | | _gin_t5_config_dtype | 'bfloat16' | 'bfloat16' | 'bfloat16' | ## Evaluation results See the evaluation section in the interactive [Pre-training Dutch T5 Models](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models) blog. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). Thanks to the [Finnish-NLP](https://huggingface.co/Finnish-NLP) authors for releasing their code for the UL2 objective and associated task definitions. Thanks to [Stephenn Fernandes](https://huggingface.co/StephennFernandes) for helping me get started with the t5x framework. Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
11af792cb97dd975bf0c26f2b6c4c550
espnet/kan-bayashi_ljspeech_tts_train_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave
espnet
null
27
13
espnet
0
text-to-speech
false
false
false
cc-by-4.0
['en']
['ljspeech']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'text-to-speech']
false
true
true
1,865
false
## ESPnet2 TTS pretrained model ### `kan-bayashi/ljspeech_tts_train_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` ♻️ Imported from https://zenodo.org/record/5443814/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
07142115fdfb76f614ae21ac35d98fbe
mvicentel/ddpm-butterflies-128
mvicentel
null
13
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,231
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mvicentel/ddpm-butterflies-128/tensorboard?#scalars)
07e318f1bdf0841070942e0de111a8df
Atharvgarg/distilbart-xsum-6-6-finetuned-bbc-news-on-extractive
Atharvgarg
bart
17
5
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarisation', 'generated_from_trainer']
true
true
true
1,683
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-xsum-6-6-finetuned-bbc-news-on-extractive This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5869 - Rouge1: 39.4885 - Rouge2: 31.7487 - Rougel: 31.9013 - Rougelsum: 34.0825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.4649 | 1.0 | 445 | 1.5047 | 39.1053 | 31.6651 | 32.3242 | 33.9332 | | 1.2224 | 2.0 | 890 | 1.4986 | 39.4115 | 31.7894 | 32.1057 | 34.0454 | | 1.0099 | 3.0 | 1335 | 1.5322 | 39.5936 | 31.9984 | 32.2283 | 34.1798 | | 0.8687 | 4.0 | 1780 | 1.5869 | 39.4885 | 31.7487 | 31.9013 | 34.0825 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
480baed95310d03e3da1ae2970392975
Esquivies/cat-toy
Esquivies
null
43
4
diffusers
0
null
false
false
false
mit
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,200
false
### Cat toy on Stable Diffusion via Dreambooth #### model by Esquivies This your the Stable Diffusion model fine-tuned the Cat toy concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a photo of brat pitt** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/Esquivies/cat-toy/resolve/main/concept_images/1.jpeg) ![image 1](https://huggingface.co/Esquivies/cat-toy/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/Esquivies/cat-toy/resolve/main/concept_images/3.jpeg) ![image 3](https://huggingface.co/Esquivies/cat-toy/resolve/main/concept_images/0.jpeg)
34b8590d8cabdaad541296e4da493fb2
MultiBertGunjanPatrick/multiberts-seed-4-500k
MultiBertGunjanPatrick
bert
7
4
transformers
0
null
true
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert', 'multiberts', 'multiberts-seed-4']
false
true
true
6,483
false
# MultiBERTs Seed 4 Checkpoint 500k (uncased) Seed 4 intermediate checkpoint 500k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-500k') model = BertModel.from_pretrained("multiberts-seed-4-500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
d65205c87793c27312674892298a16db
MultiBertGunjanPatrick/multiberts-seed-4-120k
MultiBertGunjanPatrick
bert
7
4
transformers
0
null
true
false
false
apache-2.0
['en']
['bookcorpus', 'wikipedia']
null
0
0
0
0
0
0
0
['exbert', 'multiberts', 'multiberts-seed-4']
false
true
true
6,483
false
# MultiBERTs Seed 4 Checkpoint 120k (uncased) Seed 4 intermediate checkpoint 120k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-120k') model = BertModel.from_pretrained("multiberts-seed-4-120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
a4b521c8ab0bd08ac934bbab14ea294d
DeepaKrish/distilbert-base-uncased-finetuned
DeepaKrish
distilbert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,541
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1137 - Accuracy: 0.9733 - F1: 0.9743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0868 | 1.0 | 1370 | 0.1098 | 0.9729 | 0.9738 | | 0.0598 | 2.0 | 2740 | 0.1137 | 0.9733 | 0.9743 | | 0.0383 | 3.0 | 4110 | 0.1604 | 0.9721 | 0.9731 | | 0.0257 | 4.0 | 5480 | 0.1671 | 0.9717 | 0.9729 | | 0.016 | 5.0 | 6850 | 0.1904 | 0.9709 | 0.9720 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 2.5.1 - Tokenizers 0.10.3
856e1a78722a0a34779d481e2246d490
jonatasgrosman/exp_w2v2t_en_vp-fr_s691
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
475
false
# exp_w2v2t_en_vp-fr_s691 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
f3e051fc321f5116fd9a53b5e1b56466
c17hawke/bert-fine-tuned-cola_2
c17hawke
bert
8
1
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,211
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola_2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3078 - Validation Loss: 0.4072 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4976 | 0.4236 | 0 | | 0.3078 | 0.4072 | 1 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
174fc4663d1cc555c03b7c92714b4efe
kumarprashant556/wav2vec2-large-xls-r-300m-tr-colab
kumarprashant556
wav2vec2
22
9
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,246
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7540 - eval_wer: 0.7217 - eval_runtime: 197.7117 - eval_samples_per_second: 8.33 - eval_steps_per_second: 1.042 - epoch: 3.67 - step: 400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
5f233c1b9993f05d7e792f591448824a
elopezlopez/Bio_ClinicalBERT_fold_10_binary_v1
elopezlopez
bert
16
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,668
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_10_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5504 - F1: 0.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.3803 | 0.8103 | | 0.4005 | 2.0 | 576 | 0.4769 | 0.8070 | | 0.4005 | 3.0 | 864 | 0.5258 | 0.7955 | | 0.1889 | 4.0 | 1152 | 0.7423 | 0.8153 | | 0.1889 | 5.0 | 1440 | 1.1246 | 0.8012 | | 0.0703 | 6.0 | 1728 | 1.1325 | 0.8039 | | 0.0246 | 7.0 | 2016 | 1.2192 | 0.8196 | | 0.0246 | 8.0 | 2304 | 1.3645 | 0.8050 | | 0.0192 | 9.0 | 2592 | 1.4029 | 0.8087 | | 0.0192 | 10.0 | 2880 | 1.3714 | 0.8117 | | 0.0107 | 11.0 | 3168 | 1.4673 | 0.8092 | | 0.0107 | 12.0 | 3456 | 1.3941 | 0.8199 | | 0.0084 | 13.0 | 3744 | 1.4350 | 0.8126 | | 0.0083 | 14.0 | 4032 | 1.4428 | 0.8162 | | 0.0083 | 15.0 | 4320 | 1.2892 | 0.8263 | | 0.0119 | 16.0 | 4608 | 1.4238 | 0.8222 | | 0.0119 | 17.0 | 4896 | 1.4961 | 0.8174 | | 0.0046 | 18.0 | 5184 | 1.5010 | 0.8107 | | 0.0046 | 19.0 | 5472 | 1.4876 | 0.8215 | | 0.0036 | 20.0 | 5760 | 1.5080 | 0.8180 | | 0.0031 | 21.0 | 6048 | 1.5317 | 0.8261 | | 0.0031 | 22.0 | 6336 | 1.5103 | 0.8215 | | 0.0005 | 23.0 | 6624 | 1.5255 | 0.8197 | | 0.0005 | 24.0 | 6912 | 1.5578 | 0.8257 | | 0.0001 | 25.0 | 7200 | 1.5504 | 0.8243 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
c4dbd4ac0b0aab12245b3ff43a2b98ab
heziyevv/aze-bert-tokenizer-middle
heziyevv
null
6
0
null
0
null
false
false
false
mit
['az']
null
null
0
0
0
0
0
0
0
['wikipedia', 'books', 'social-media']
false
true
true
602
false
# Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Farid Haziyev - **Model type:** Tokenizer - **Language(s) (NLP):** Azerbaijani - **License:** MIT - **Finetuned from model [optional]:** bert-based-uncased # Uses Can be used in any project intended for the purpose of improving Azerbaijani language models ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("heziyevv/aze-bert-tokenizer-middle") ```
1e3a624d32a2630edbcf79265c5e7adb
YKXBCi/vit-base-patch16-224-in21k-aidSat
YKXBCi
vit
15
3
transformers
0
image-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,448
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/vit-base-patch16-224-in21k-aidSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4026 - Train Accuracy: 0.9981 - Train Top-3-accuracy: 0.9998 - Validation Loss: 0.4715 - Validation Accuracy: 0.9796 - Validation Top-3-accuracy: 0.9980 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1325, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 2.3544 | 0.7383 | 0.8687 | 1.5415 | 0.9266 | 0.9857 | 0 | | 1.1313 | 0.9522 | 0.9942 | 0.8788 | 0.9613 | 0.9966 | 1 | | 0.6741 | 0.9841 | 0.9985 | 0.6268 | 0.9640 | 0.9986 | 2 | | 0.4785 | 0.9953 | 0.9995 | 0.5058 | 0.9755 | 0.9980 | 3 | | 0.4026 | 0.9981 | 0.9998 | 0.4715 | 0.9796 | 0.9980 | 4 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
3e4149da9b538d9d7143db6ce294da05
theojolliffe/bart-model2-1510-e1
theojolliffe
bart
12
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,317
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-1510-e1 This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1-feedback](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1-feedback) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 409 | 0.3606 | 62.6578 | 56.1468 | 60.4978 | 61.0214 | 20.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
2059d8bd221ac6e47c46c3f58e713587
silviacamplani/distilbert-uncase-direct-finetuning-ai-ner
silviacamplani
distilbert
8
2
transformers
0
token-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,896
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-uncase-direct-finetuning-ai-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6021 - Validation Loss: 1.6163 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2752 | 3.0320 | 0 | | 2.7791 | 2.5293 | 1 | | 2.2674 | 2.0340 | 2 | | 1.8952 | 1.8222 | 3 | | 1.7933 | 1.7669 | 4 | | 1.7352 | 1.7158 | 5 | | 1.6868 | 1.6706 | 6 | | 1.6242 | 1.6412 | 7 | | 1.5899 | 1.6234 | 8 | | 1.6021 | 1.6163 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
c1da6f9f0febac9a23df83a7dbc8cd08
techiaith/fullstop-welsh-punctuation-prediction
techiaith
xlm-roberta
8
11
transformers
1
token-classification
true
false
false
mit
['cy']
null
null
0
0
0
0
0
0
0
['punctuation prediction', 'punctuation']
false
true
true
2,773
false
This model predicts the punctuation of Welsh language texts. It has been created to restore punctuation of transcribed from speech recognition models such as https://huggingface.co/techiaith/wav2vec2-xlsr-ft-cy. The model restores the following punctuation markers: "." "," "?" "-" ":" The model was trained on Welsh texts extracted from the Welsh Parliament / Senedd Record of Proceedings between 1999-2010 and 2016 to the present day. Please note that the training data consists of originally spoken and translated political speeches. Therefore the model might perform differently on texts from other domains. Based on the work of https://github.com/oliverguhr/fullstop-deep-punctuation-prediction and [softcatala/fullstop-catalan-punctuation-prediction](https://huggingface.co/softcatala/fullstop-catalan-punctuation-prediction) ## Install To get started install the deepmultilingualpunctuation package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/): ```bash pip install deepmultilingualpunctuation ``` ### Restore Punctuation ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel("techiaith/fullstop-welsh-punctuation-prediction") text = "A yw'r gweinidog yn cytuno bod angen gwell gwasanaethau yn ne ddwyrain Cymru" result = model.restore_punctuation(text) print(result) ``` **output** ``` [ { "entity_group": "LABEL_0", "score": 0.9999812841415405, "word": "A yw'r gweinidog yn cytuno bod angen gwell gwasanaethau yn", "start": 0, "end": 58 }, { "entity_group": "LABEL_4", "score": 0.9787278771400452, "word": "ne", "start": 59, "end": 61 }, { "entity_group": "LABEL_0", "score": 0.9999902248382568, "word": "ddwyrain", "start": 62, "end": 70 }, { "entity_group": "LABEL_3", "score": 0.9484745860099792, "word": "Cymru", "start": 71, "end": 76 } ] ``` > A yw'r gweinidog yn cytuno bod angen gwell gwasanaethau yn ne-ddwyrain Cymru? ## Results The model achieves the following F1 scores for the different punctuation markers: | Label | Precision | Recall | f1-score | Support | | ------------- | ----- | ----- | ----- | ----- | | 0 | 0.99 | 0.99 | 0.99 | 5053572 | | . | 0.89 | 0.88 | 0.88 | 224920 | | , | 0.83 | 0.82 | 0.82 | 363886 | | ? | 0.91 | 0.87 | 0.89 | 20762 | | - | 0.95 | 0.94 | 0.94 | 13161 | | : | 0.92 | 0.89 | 0.90 | 5274 | | | | | | | | accuracy | | | 0.98 | 11012581 | | macro average | 0.92 | 0.90 | 0.91 | 11012581 | | weighted average | 0.98 | 0.98 | 0.98 | 11012581 | ##
be11b6b4f5c74b26789ff371f8badfae
DOOGLAK/Article_100v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
bert
13
5
transformers
0
token-classification
true
false
false
apache-2.0
null
['article100v3_wikigold_split']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,559
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_100v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article100v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3754 - Precision: 0.3300 - Recall: 0.3119 - F1: 0.3207 - Accuracy: 0.8602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 23 | 0.5728 | 0.1855 | 0.0562 | 0.0862 | 0.7983 | | No log | 2.0 | 46 | 0.4070 | 0.2869 | 0.2315 | 0.2562 | 0.8445 | | No log | 3.0 | 69 | 0.3754 | 0.3300 | 0.3119 | 0.3207 | 0.8602 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
e93a0e8b531f5c18d4f3b0a98e390784
hakurei/waifu-diffusion-v1-4
hakurei
null
12
0
null
543
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
20
9
0
10
20
20
0
['stable-diffusion', 'text-to-image']
false
true
true
2,297
false
![image](https://user-images.githubusercontent.com/26317155/210155933-db3a5f1a-1ec3-4777-915c-6deff2841ce9.png) <sub>masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck</sub> # Waifu Diffusion v1.4 Waifu Diffusion is a latent text-to-image diffusion model that has been conditioned on high-quality anime images through fine-tuning. - [Waifu Diffusion 1.4 Anime Epoch 1](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/wd-1-4-anime_e1.ckpt): A test model made to properly ensure that the training setup works. - [Waifu Diffusion 1.4 Anime Inference Config](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/wd-1-4-anime_e1.yaml): A file included to allow for inference with Automatic's WebUI and with the original Stable Diffusion codebase. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## Downstream Uses This model can be used for entertainment purposes and as a generative art assistant. ## Team Members and Acknowledgements This project would not have been possible without the incredible work by Stability AI and NovelAI. - [Haru](https://github.com/harubaru) - [Salt](https://github.com/sALTaccount/) - [Cafe](https://twitter.com/cafeai_labs) In order to reach us, you can join our [Discord server](https://discord.gg/touhouai). [![Discord Server](https://discordapp.com/api/guilds/930499730843250783/widget.png?style=banner2)](https://discord.gg/touhouai)
8776a58d1bf36ef326aa44eed8fe5a82
ViktorDo/DistilBERT-WIKI_Growth_Form_Finetuned
ViktorDo
distilbert
12
5
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,315
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-WIKI_Growth_Form_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2454 | 1.0 | 2320 | 0.2530 | | 0.1875 | 2.0 | 4640 | 0.2578 | | 0.1386 | 3.0 | 6960 | 0.2666 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
1ae7dc89635849566a0241f0668bc35d
Sparkette/elliesparks
Sparkette
null
18
36
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
615
false
### EllieSparks Dreambooth model trained by Sparkette with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
523a40ae2ffc2e73c735b8beec11f9a0
Helsinki-NLP/opus-mt-fi-NORWAY
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
1,044
false
### opus-mt-fi-NORWAY * source languages: fi * target languages: nb_NO,nb,nn_NO,nn,nog,no_nb,no * OPUS readme: [fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.no | 34.2 | 0.545 |
393687c99e9064b26cfba29a7d686064
mselbach/distilbart-rehadat
mselbach
bart
12
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-summarization This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cpu - Datasets 1.17.0 - Tokenizers 0.11.0
5b619a7b1005f002189aabc5aa536192
ameerazam08/wav2vec2-xlsr-greek-speech-fluency
ameerazam08
wav2vec2
18
2
transformers
1
null
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,377
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-greek-speech-fluency This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5886 - Accuracy: 0.6800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6625 | 0.8 | 10 | 0.5886 | 0.6800 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 2.4.1.dev0 - Tokenizers 0.12.1
d43e04abc32dc39fe0fe232164745157
Helsinki-NLP/opus-mt-tw-es
Helsinki-NLP
marian
10
12
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-tw-es * source languages: tw * target languages: es * OPUS readme: [tw-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tw-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tw-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tw.es | 25.9 | 0.441 |
86ef625c90bfcae9bf492b47f9440100
gokuls/distilbert_add_GLUE_Experiment_logit_kd_wnli_192
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,814
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_logit_kd_wnli_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3434 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3489 | 1.0 | 3 | 0.3454 | 0.5634 | | 0.348 | 2.0 | 6 | 0.3465 | 0.5634 | | 0.3471 | 3.0 | 9 | 0.3436 | 0.5634 | | 0.3486 | 4.0 | 12 | 0.3434 | 0.5634 | | 0.3485 | 5.0 | 15 | 0.3448 | 0.5634 | | 0.3476 | 6.0 | 18 | 0.3471 | 0.5634 | | 0.3481 | 7.0 | 21 | 0.3463 | 0.5634 | | 0.3473 | 8.0 | 24 | 0.3451 | 0.5634 | | 0.3491 | 9.0 | 27 | 0.3440 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
0eb91d4b851934aef041a864fda6d62e
fathyshalab/all-roberta-large-v1-auto_and_commute-5-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,521
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
21c923d7ca5f6f0b33f155949ad3e80d
YKXBCi/vit-base-patch16-224-in21k-euroSat
YKXBCi
vit
41
4
transformers
0
image-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,184
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/vit-base-patch16-224-in21k-euroSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0495 - Train Accuracy: 0.9948 - Train Top-3-accuracy: 0.9999 - Validation Loss: 0.0782 - Validation Accuracy: 0.9839 - Validation Top-3-accuracy: 1.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.4593 | 0.9478 | 0.9912 | 0.1558 | 0.9809 | 0.9995 | 0 | | 0.1008 | 0.9876 | 0.9997 | 0.0855 | 0.9856 | 1.0 | 1 | | 0.0495 | 0.9948 | 0.9999 | 0.0782 | 0.9839 | 1.0 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
6697f243e972f11eb14781e747475146
peterhsu/tf-distilbert-base-uncased-finetuned-imdb
peterhsu
distilbert
10
5
transformers
0
fill-mask
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,642
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # peterhsu/tf-distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5691 - Validation Loss: 2.4661 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8546 | 2.6095 | 0 | | 2.6594 | 2.5243 | 1 | | 2.5691 | 2.4661 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
28ee76ce48911fd02bea39fbba84e037
joe5campbell/BERT_Tweet_Sentiment_TEST
joe5campbell
bert
4
4
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,388
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_TEST This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5541 - Train Accuracy: 0.9375 - Validation Loss: 0.6546 - Validation Accuracy: 1.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6902 | 0.625 | 0.6677 | 1.0 | 0 | | 0.5541 | 0.9375 | 0.6546 | 1.0 | 1 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
ae0d7595f7d5c34e8795411d0e3b0774
google/multiberts-seed_4-step_160k
google
bert
8
12
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_4', 'multiberts-seed_4-step_160k']
false
true
true
3,521
false
# MultiBERTs, Intermediate Checkpoint - Seed 4, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #4, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_4-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_4-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_4-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
6b448a8950f48c3e6535db1e33c68d30
madatnlp/codet5-kormath
madatnlp
t5
9
1
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,909
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-kormath This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1215 - Validation Loss: 0.5475 - Epoch: 43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.8077 | 3.6916 | 0 | | 3.3252 | 2.3874 | 1 | | 2.2389 | 1.7377 | 2 | | 1.6852 | 1.3997 | 3 | | 1.3617 | 1.1785 | 4 | | 1.1875 | 1.0796 | 5 | | 1.0887 | 1.0150 | 6 | | 1.0234 | 0.9669 | 7 | | 0.9709 | 0.9350 | 8 | | 0.9292 | 0.9016 | 9 | | 0.8982 | 0.8763 | 10 | | 0.8653 | 0.8565 | 11 | | 0.8389 | 0.8378 | 12 | | 0.8094 | 0.8241 | 13 | | 0.7828 | 0.8078 | 14 | | 0.7631 | 0.7945 | 15 | | 0.7386 | 0.7856 | 16 | | 0.7209 | 0.7749 | 17 | | 0.7039 | 0.7703 | 18 | | 0.6858 | 0.7708 | 19 | | 0.6718 | 0.7705 | 20 | | 0.6544 | 0.7710 | 21 | | 0.6477 | 0.7728 | 22 | | 0.6289 | 0.7590 | 23 | | 0.6102 | 0.7616 | 24 | | 0.5966 | 0.7644 | 25 | | 0.5773 | 0.7559 | 26 | | 0.5597 | 0.7609 | 27 | | 0.5384 | 0.7823 | 28 | | 0.5256 | 0.7263 | 29 | | 0.4780 | 0.6671 | 30 | | 0.4328 | 0.6591 | 31 | | 0.3844 | 0.5918 | 32 | | 0.3366 | 0.5852 | 33 | | 0.3036 | 0.5633 | 34 | | 0.2746 | 0.5566 | 35 | | 0.2486 | 0.5644 | 36 | | 0.2286 | 0.5293 | 37 | | 0.2023 | 0.5256 | 38 | | 0.1870 | 0.5276 | 39 | | 0.1638 | 0.5272 | 40 | | 0.1479 | 0.5642 | 41 | | 0.1386 | 0.5482 | 42 | | 0.1215 | 0.5475 | 43 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
763c60522372999f20265f2ddb405201
jonatasgrosman/exp_w2v2t_et_hubert_s118
jonatasgrosman
hubert
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['et']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'et']
false
true
true
452
false
# exp_w2v2t_et_hubert_s118 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
fadc424d79c00447bb0f9e83440a066a
spacy/hr_core_news_sm
spacy
null
32
2
spacy
0
token-classification
false
false
false
cc-by-sa-4.0
['hr']
null
null
0
0
0
0
0
0
0
['spacy', 'token-classification']
false
true
true
42,062
false
### Details: https://spacy.io/models/hr#hr_core_news_sm Croatian pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner. | Feature | Description | | --- | --- | | **Name** | `hr_core_news_sm` | | **Version** | `3.5.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` | | **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [Training corpus hr500k 1.0](http://hdl.handle.net/11356/1183) (Ljubešić, Nikola ; Agić, Željko ; Klubička, Filip ; Batanović, Vuk and Erjavec, Tomaž) | | **License** | `CC BY-SA 4.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (1518 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsdy`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmsany`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsgy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdn`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsgn`, `Aspnsgy`, `Aspnsln`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pl`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, _(truncated: full list in pipeline meta)_ | | **`morphologizer`** | `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|POS=ADP`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Degree=Pos\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=PART`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Gen\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Int,Rel`, `Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=X`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|POS=ADP`, `Degree=Sup\|POS=ADV`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `POS=ADV\|Tense=Pres\|VerbForm=Conv`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `NumType=Mult\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=ADV\|Tense=Past\|VerbForm=Conv`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Gen\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Mult\|POS=SYM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, _(truncated: full list in pipeline meta)_ | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl:pv`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` | | **`ner`** | `DERIV_PER`, `LOC`, `MISC`, `ORG`, `PER` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.89 | | `TOKEN_P` | 97.28 | | `TOKEN_R` | 98.71 | | `TOKEN_F` | 97.99 | | `TAG_ACC` | 90.03 | | `POS_ACC` | 96.74 | | `MORPH_ACC` | 90.62 | | `MORPH_MICRO_P` | 94.88 | | `MORPH_MICRO_R` | 94.34 | | `MORPH_MICRO_F` | 94.61 | | `SENTS_P` | 94.95 | | `SENTS_R` | 94.72 | | `SENTS_F` | 94.84 | | `DEP_UAS` | 84.47 | | `DEP_LAS` | 77.65 | | `LEMMA_ACC` | 91.94 | | `ENTS_P` | 77.38 | | `ENTS_R` | 75.45 | | `ENTS_F` | 76.40 |
afa29e1e8c224c3fe8402ccaeeec24b5
Aotsuyu/HogwartLora
Aotsuyu
null
29
0
null
0
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['anime']
false
true
true
6,713
false
# Hogwart uniforms LoRA [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/0.png" width="800" height="512">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/0.png) A LoRA for Hogwart uniforms, since Hogwarts Legacy renewed people's interest in the franchise. # What to get I am including all epochs, but I've personally had the best results with the 2nd to 4th epochs, which I am renaming to *hogsks-weak*, *hogsks-mid* and *hogsks-hard*. Most models seem to have an idea as to how the uniform looks like so they only need a small push - that's why I suggest starting with ***hogsks-mid***. Only go for higher epoch if you're sure that's what you need. # Invoking I made the token **hogsks**. I also tried to tag each of the images in the dataset with the proper house, so you might have *some* results prompting for ravenclaw, gryffindor, slytherin and hufflepuff, but it's not super reliable.<br> For those using the native implementation of LoRA, remember to also activate it!<br> What I propose as a base prompting template:<br> `hogsks, hogwarts school uniform, black robe, gray vest, slytherin, green tie`<br> ***Color*** emblem and ***color*** scarf also seem to work reasonably well. Adjust the house and colors for the desired house, obviously. This image is made with a very basic prompt: [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/1.png" width="512" height="768">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/1.png) <details> <summary>Prompt</summary> <pre> best quality, 1girl, Hogsks, hogwarts school uniform, black cape, gray vest, slytherin, green tie, Negative prompt: (low quality, worst quality:1.4), (bad anatomy), by bad-artist, bad-hands-5, bad-image-v2-39000, extra digit, fewer digits, (extra arms:1.2), bad hands, artist name Steps: 25, Sampler: DPM++ 2M Karras, CFG scale: 7.5, Seed: 3963964880, Size: 512x762, Model: anything-v4.5-pruned, Denoising strength: 0.3, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: hogsksv2-000003(c945fe615333), AddNet Weight A 1: 0.85, AddNet Weight B 1: 0.85, Hires upscale: 2, Hires steps: 15, Hires upscaler: 4x-AnimeSharp</pre> </details> <br><br> # Previews All the previews have prompts included, so read that! The model I used for Hololive [can be found here](https://huggingface.co/Aotsuyu/Qcha/blob/main/Qcha-hllv1.safetensors). It's a merge I did. [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/2.png" width="568" height="768">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/2.png) <details> <summary>Prompt</summary> <pre> (best quality, 1girl, reimu hakurei, brown hair, red eyes, hogsks, hogwarts school uniform, slytherin, black robe, green scarf, perplexed, (gray vest:1.2), gray skirt, red ribbon, outside, snow, black-green robe Negative prompt: 2girls, (low quality, worst quality:1.4), (bad anatomy), by bad-artist, bad-hands-5, bad-image-v2-39000, extra digit, fewer digits, (extra arms:1.2), blue cloak, Steps: 25, Sampler: DPM++ 2M Karras, CFG scale: 11, Seed: 478121638, Size: 568x768, Model: anything-v4.5-pruned, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: hogsksv2-000002(2e60f62c128c), AddNet Weight A 1: 0.95, AddNet Weight B 1: 0.95 </pre> </details> [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/3.png" width="568" height="768">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/3.png) <details> <summary>Prompt</summary> <pre> best quality, 1girl, flandre scarlet, blonde hair, vampire, fangs, red eyes, hogsks, hogwarts school uniform, hufflepuff, black robe, yellow scarf, (:3:0.5), (gray vest:1.2), gray skirt, outside, snow, black-yellow robe, crystal wings, side ponytail Negative prompt: 2girls, (low quality, worst quality:1.4), (bad anatomy), by bad-artist, bad-hands-5, bad-image-v2-39000, extra digit, fewer digits, (extra arms:1.2), blue cloak, Steps: 25, Sampler: DPM++ 2M Karras, CFG scale: 11, Seed: 1055056090, Size: 568x768, Model: anything-v4.5-pruned, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: hogsksv2-000002(2e60f62c128c), AddNet Weight A 1: 0.95, AddNet Weight B 1: 0.95 </pre></details> [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/4.png" width="568" height="768">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/4.png) <details> <summary>Prompt</summary> <pre> best quality, 1girl, gawr gura, (loli:0.5), ravenclaw, hogsks, hogwarts school uniform, black robe, blue scarf, shark teeth, (:3:0.5), (gray vest:1.2), Negative prompt: (low quality, worst quality:1.4), (bad anatomy), by (bad-artist:1.0), bad-hands-5, (bad-image-v2-39000:1.0), extra digit, fewer digits, (extra arms:1.2), Steps: 25, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3622139475, Size: 568x768, Model: Qcha-hllv1, Denoising strength: 0.3, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: hogsksv2-000002(2e60f62c128c), AddNet Weight A 1: 0.95, AddNet Weight B 1: 0.95, Hires upscale: 2, Hires steps: 15, Hires upscaler: 4x-AnimeSharp </pre></details> [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/5.png" width="568" height="768">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/5.png) <details> <summary>Prompt</summary> <pre> best quality, 1girl, black hair, glasses, gryffindor, hogsks, hogwarts school uniform, black robe, red scarf, (scared), (gray vest:1.2), looking at viewer, evening, night, dark Negative prompt: (low quality, worst quality:1.4), (bad anatomy), by (bad-artist:1.0), bad-hands-5, (bad-image-v2-39000:1.0), extra digit, fewer digits, (extra arms:1.2), Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2895674484, Size: 568x768, Model: pastelmix-better-vae-fp32, Denoising strength: 0.74, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: hogsksv2-000002(2e60f62c128c), AddNet Weight A 1: 0.9, AddNet Weight B 1: 0.9, Hires upscale: 1.8, Hires steps: 20, Hires upscaler: Latent (nearest-exact) </pre></details> <br><br> # Model comparison This is trained on base NAI so any models off of that should do fine. [<img src="https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/grid.png" width="840" height="964">](https://huggingface.co/Aotsuyu/HogwartLora/resolve/main/images/grid.png) <br> # Contact If you have any questions, you can DM me on [twitter.](https://twitter.com/aojiru_pixiv) My pixiv if you're up for lewds: [Pixiv](https://www.pixiv.net/en/users/12336647)
0f1b99020d0c1927b3c31d383b8fb093
QCRI/PropagandaTechniquesAnalysis-en-BERT
QCRI
bert
5
7
transformers
2
null
true
false
false
MIT
['en']
[]
null
0
0
0
0
0
0
0
['propaganda', 'bert']
false
true
true
3,000
false
Propaganda Techniques Analysis BERT ---- This model is a BERT based model to make predictions of propaganda techniques in news articles in English. The model is described in [this paper](https://propaganda.qcri.org/papers/EMNLP_2019__Fine_Grained_Propaganda_Detection.pdf). ## Model description Please find propaganda definition here: https://propaganda.qcri.org/annotations/definitions.html You can also try the model in action here: https://www.tanbih.org/prta ### How to use ```python >>> from transformers import BertTokenizerFast >>> from .model import BertForTokenAndSequenceJointClassification >>> >>> tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased') >>> model = BertForTokenAndSequenceJointClassification.from_pretrained( >>> "QCRI/PropagandaTechniquesAnalysis-en-BERT", >>> revision="v0.1.0", >>> ) >>> >>> inputs = tokenizer.encode_plus("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> sequence_class_index = torch.argmax(outputs.sequence_logits, dim=-1) >>> sequence_class = model.sequence_tags[sequence_class_index[0]] >>> token_class_index = torch.argmax(outputs.token_logits, dim=-1) >>> tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0][1:-1]) >>> tags = [model.token_tags[i] for i in token_class_index[0].tolist()[1:-1]] ``` ### BibTeX entry and citation info ```bibtex @inproceedings{da-san-martino-etal-2019-fine, title = "Fine-Grained Analysis of Propaganda in News Article", author = "Da San Martino, Giovanni and Yu, Seunghak and Barr{\'o}n-Cede{\~n}o, Alberto and Petrov, Rostislav and Nakov, Preslav", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-1565", doi = "10.18653/v1/D19-1565", pages = "5636--5646", abstract = "Propaganda aims at influencing people{'}s mindset with the purpose of advancing a specific agenda. Previous work has addressed propaganda detection at document level, typically labelling all articles from a propagandistic news outlet as propaganda. Such noisy gold labels inevitably affect the quality of any learning system trained on them. A further issue with most existing systems is the lack of explainability. To overcome these limitations, we propose a novel task: performing fine-grained analysis of texts by detecting all fragments that contain propaganda techniques as well as their type. In particular, we create a corpus of news articles manually annotated at fragment level with eighteen propaganda techniques and propose a suitable evaluation measure. We further design a novel multi-granularity neural network, and we show that it outperforms several strong BERT-based baselines.", } ```
7f23bc649827bf205190f490bab09d7d
sd-concepts-library/pantone-milk
sd-concepts-library
null
11
0
null
9
null
false
false
false
mit
null
null
null
0
0
0
0
1
1
0
[]
false
true
true
1,456
false
### Pantone Milk on Stable Diffusion This is the `<pantone-milk>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<pantone-milk> 6](https://cdn.discordapp.com/attachments/978476082065993758/1018719752090304552/unknown.png) **mentioning 'isometric' and 'bottle' in your prompt is recommended.** Here is the new concept you will be able to use as an `object`: ![<pantone-milk> 0](https://huggingface.co/sd-concepts-library/pantone-milk/resolve/main/concept_images/5.jpeg) ![<pantone-milk> 1](https://huggingface.co/sd-concepts-library/pantone-milk/resolve/main/concept_images/3.jpeg) ![<pantone-milk> 2](https://huggingface.co/sd-concepts-library/pantone-milk/resolve/main/concept_images/0.jpeg) ![<pantone-milk> 3](https://huggingface.co/sd-concepts-library/pantone-milk/resolve/main/concept_images/2.jpeg) ![<pantone-milk> 4](https://huggingface.co/sd-concepts-library/pantone-milk/resolve/main/concept_images/1.jpeg) ![<pantone-milk> 5](https://huggingface.co/sd-concepts-library/pantone-milk/resolve/main/concept_images/4.jpeg)
00b583c3bbea1aea1d65340d1fbb1192
AbidHasan95/movieHunt3-ner
AbidHasan95
distilbert
16
5
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,611
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # movieHunt3-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 95 | 0.0462 | | No log | 2.0 | 190 | 0.0067 | | No log | 3.0 | 285 | 0.0028 | | No log | 4.0 | 380 | 0.0018 | | No log | 5.0 | 475 | 0.0014 | | 0.1098 | 6.0 | 570 | 0.0012 | | 0.1098 | 7.0 | 665 | 0.0011 | | 0.1098 | 8.0 | 760 | 0.0010 | | 0.1098 | 9.0 | 855 | 0.0010 | | 0.1098 | 10.0 | 950 | 0.0009 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
0fc9198e5cda43cdd47ba30bf5ac3cab
V3RX2000/xlm-roberta-base-finetuned-panx-fr
V3RX2000
xlm-roberta
10
5
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2651 - F1: 0.8355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5954 | 1.0 | 191 | 0.3346 | 0.7975 | | 0.2689 | 2.0 | 382 | 0.2900 | 0.8347 | | 0.1821 | 3.0 | 573 | 0.2651 | 0.8355 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
eacabb963b72ef831b46f379e41ff435
psrohith98/distilbert-base-uncased-finetuned-emotion
psrohith98
distilbert
18
2
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,485
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1500 - Accuracy: 0.932 - F1: 0.9319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7995 | 1.0 | 250 | 0.2679 | 0.9145 | 0.9122 | | 0.2111 | 2.0 | 500 | 0.1731 | 0.9265 | 0.9265 | | 0.1399 | 3.0 | 750 | 0.1517 | 0.938 | 0.9381 | | 0.1118 | 4.0 | 1000 | 0.1500 | 0.932 | 0.9319 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
23ef16d5f83f5fe9b717795dd1665944
KISSz/wav2vac2-vee-train001-ASR
KISSz
wav2vec2
15
5
transformers
0
automatic-speech-recognition
true
false
false
cc-by-sa-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,056
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vac2-vee-train001-ASR This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cpu - Datasets 1.11.0 - Tokenizers 0.10.3
67710dfec09e571b8cb68a45d32be289
sd-concepts-library/million-live-akane-15k
sd-concepts-library
null
60
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
6,965
false
### million-live-akane-15k on Stable Diffusion This is the `<akane>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<akane> 0](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/0.png) ![<akane> 1](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/1.png) ![<akane> 2](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/2.png) ![<akane> 3](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/3.png) ![<akane> 4](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/4.png) ![<akane> 5](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/5.png) ![<akane> 6](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/6.png) ![<akane> 7](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/7.png) ![<akane> 8](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/8.png) ![<akane> 9](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/9.png) ![<akane> 10](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/10.png) ![<akane> 11](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/11.png) ![<akane> 12](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/12.png) ![<akane> 13](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/13.png) ![<akane> 14](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/14.png) ![<akane> 15](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/15.png) ![<akane> 16](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/16.png) ![<akane> 17](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/17.png) ![<akane> 18](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/18.png) ![<akane> 19](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/19.png) ![<akane> 20](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/20.png) ![<akane> 21](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/21.png) ![<akane> 22](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/22.png) ![<akane> 23](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/23.png) ![<akane> 24](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/24.png) ![<akane> 25](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/25.png) ![<akane> 26](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/26.png) ![<akane> 27](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/27.png) ![<akane> 28](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/28.png) ![<akane> 29](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/29.png) ![<akane> 30](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/30.png) ![<akane> 31](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/31.png) ![<akane> 32](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/32.png) ![<akane> 33](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/33.png) ![<akane> 34](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/34.png) ![<akane> 35](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/35.png) ![<akane> 36](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/36.png) ![<akane> 37](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/37.png) ![<akane> 38](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/38.png) ![<akane> 39](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/39.png) ![<akane> 40](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/40.png) ![<akane> 41](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/41.png) ![<akane> 42](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/42.png) ![<akane> 43](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/43.png) ![<akane> 44](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/44.png) ![<akane> 45](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/45.png) ![<akane> 46](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/46.png) ![<akane> 47](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/47.png) ![<akane> 48](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/48.png) ![<akane> 49](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/49.png) ![<akane> 50](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/50.png) ![<akane> 51](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/51.png) ![<akane> 52](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/52.png) ![<akane> 53](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/53.png) ![<akane> 54](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/54.png)
9be0681f456193ff64e338974e0ecf93
jonatasgrosman/exp_w2v2r_es_xls-r_accent_surpeninsular-2_nortepeninsular-8_s443
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
494
false
# exp_w2v2r_es_xls-r_accent_surpeninsular-2_nortepeninsular-8_s443 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
abd3f9a500967b973484ae232d9a06a0
ryo-hsgw/distilbert-base-uncased-distilled-clinc
ryo-hsgw
distilbert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['clinc_oos']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,791
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3397 - Accuracy: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.202 | 1.0 | 318 | 2.3610 | 0.7506 | | 1.8112 | 2.0 | 636 | 1.1899 | 0.8610 | | 0.9255 | 3.0 | 954 | 0.6534 | 0.9168 | | 0.5268 | 4.0 | 1272 | 0.4620 | 0.9368 | | 0.3624 | 5.0 | 1590 | 0.3941 | 0.9448 | | 0.2935 | 6.0 | 1908 | 0.3682 | 0.9452 | | 0.2584 | 7.0 | 2226 | 0.3515 | 0.9497 | | 0.2393 | 8.0 | 2544 | 0.3453 | 0.9481 | | 0.2289 | 9.0 | 2862 | 0.3421 | 0.9490 | | 0.225 | 10.0 | 3180 | 0.3397 | 0.95 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
c37d76d096e5362e52b247895405aaed
Sreek/xlm-roberta-base-finetuned-panx-all
Sreek
xlm-roberta
10
5
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1233 - F1: 0.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1571 | 0.8381 | | 0.1437 | 2.0 | 1430 | 0.1268 | 0.8717 | | 0.0931 | 3.0 | 2145 | 0.1233 | 0.8820 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ea1c909a758b7720caf6460abafd1eaf
marcosgg/bert-base-gl-cased
marcosgg
bert
7
310
transformers
1
fill-mask
true
false
false
agpl-3.0
['gl', 'pt']
null
null
1
0
0
1
0
0
0
[]
false
true
true
1,088
false
# BERT for Galician (Base) This is a base pre-trained BERT model (12 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021. There is also a small version (6 layers, cased): `marcosgg/bert-small-gl-cased` ## Citation If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553): ``` @inproceedings{garcia-2021-exploring, title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy", author = "Garcia, Marcos", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.281", doi = "10.18653/v1/2021.acl-long.281", pages = "3625--3640" } ```
a32efd3d199bb598be80d9d3f184d2d1
siddharthtumre/pubmedbert-finetuned-ner
siddharthtumre
bert
10
4
transformers
0
token-classification
true
false
false
mit
null
['jnlpba']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,806
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pubmedbert-finetuned-ner This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the jnlpba dataset. It achieves the following results on the evaluation set: - Loss: 0.3766 - Precision: 0.6877 - Recall: 0.7833 - F1: 0.7324 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1607 | 1.0 | 2319 | 0.2241 | 0.6853 | 0.7835 | 0.7311 | 0.9302 | | 0.112 | 2.0 | 4638 | 0.2620 | 0.6753 | 0.7929 | 0.7294 | 0.9276 | | 0.0785 | 3.0 | 6957 | 0.3014 | 0.6948 | 0.7731 | 0.7319 | 0.9268 | | 0.055 | 4.0 | 9276 | 0.3526 | 0.6898 | 0.7801 | 0.7322 | 0.9268 | | 0.0418 | 5.0 | 11595 | 0.3766 | 0.6877 | 0.7833 | 0.7324 | 0.9267 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ac5fd23dbe8e82c1f373020cc41415b7
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_test
Edomonndo
marian
157
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,955
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ja-en-finetuned-ja-to-en_test This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.4737 - Bleu: 80.2723 - Gen Len: 16.5492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.1237 | 1.0 | 247 | 0.6131 | 60.9383 | 16.4152 | | 0.5395 | 2.0 | 494 | 0.5274 | 67.5705 | 16.2883 | | 0.3584 | 3.0 | 741 | 0.5122 | 71.3098 | 16.3777 | | 0.2563 | 4.0 | 988 | 0.4887 | 73.6639 | 16.401 | | 0.138 | 5.0 | 1235 | 0.4796 | 76.7942 | 16.4873 | | 0.0979 | 6.0 | 1482 | 0.4849 | 76.9404 | 16.6162 | | 0.0792 | 7.0 | 1729 | 0.4806 | 78.9831 | 16.5442 | | 0.0569 | 8.0 | 1976 | 0.4765 | 79.3461 | 16.4873 | | 0.0299 | 9.0 | 2223 | 0.4751 | 79.7901 | 16.4863 | | 0.0204 | 10.0 | 2470 | 0.4737 | 80.2723 | 16.5492 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.3
0a035df37d98807aee76338cfefb77e4
gayanin/bart-med-term-conditional-masking
gayanin
bart
15
5
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,858
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5115 - Rouge2 Precision: 0.7409 - Rouge2 Recall: 0.5343 - Rouge2 Fmeasure: 0.6025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6278 | 1.0 | 15827 | 0.5546 | 0.7255 | 0.5244 | 0.5908 | | 0.5356 | 2.0 | 31654 | 0.5286 | 0.7333 | 0.5293 | 0.5966 | | 0.4757 | 3.0 | 47481 | 0.5154 | 0.7376 | 0.532 | 0.5998 | | 0.4337 | 4.0 | 63308 | 0.5107 | 0.7406 | 0.5342 | 0.6023 | | 0.4045 | 5.0 | 79135 | 0.5115 | 0.7409 | 0.5343 | 0.6025 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
3b6bcbe593483adb1580e714ac37fa94
Saulr/distilbert-base-uncased-finetuned-gender-classification
Saulr
distilbert
10
178
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,353
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-gender-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8388 - Accuracy: 0.7856 - F1: 0.7855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4445 | 1.0 | 2015 | 0.5271 | 0.7846 | 0.7844 | | 0.2534 | 2.0 | 4030 | 0.8388 | 0.7856 | 0.7855 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
999a430f5c093be1de443e1cfda78ec1
jayantapaul888/xlm-roberta-base-eng-only-sentiment-single-finetuned-memes
jayantapaul888
xlm-roberta
14
4
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,838
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-eng-only-sentiment-single-finetuned-memes This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5629 - Accuracy: 0.8652 - Precision: 0.8794 - Recall: 0.8786 - F1: 0.8789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.3506 | 0.8459 | 0.8647 | 0.8584 | 0.8605 | | 0.4424 | 2.0 | 756 | 0.3264 | 0.8563 | 0.8818 | 0.8696 | 0.8689 | | 0.2888 | 3.0 | 1134 | 0.3563 | 0.8578 | 0.8759 | 0.8701 | 0.8714 | | 0.1889 | 4.0 | 1512 | 0.3939 | 0.8585 | 0.8733 | 0.8729 | 0.8730 | | 0.1889 | 5.0 | 1890 | 0.4698 | 0.8622 | 0.8765 | 0.8761 | 0.8763 | | 0.1136 | 6.0 | 2268 | 0.5629 | 0.8652 | 0.8794 | 0.8786 | 0.8789 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
4f96e0c955afd075dd216db89a877453
ramazank2000/turkishReviews-ds-mini1
ramazank2000
gpt2
10
4
transformers
0
text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,504
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ramazank2000/turkishReviews-ds-mini1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 9.1811 - Validation Loss: 9.2643 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -896, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2935 | 9.9865 | 0 | | 9.6639 | 9.6408 | 1 | | 9.1811 | 9.2643 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
cb4e2915da6bc0fc7cb8241682b9a63e
google/multiberts-seed_0-step_120k
google
bert
8
13
transformers
0
null
true
true
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['multiberts', 'multiberts-seed_0', 'multiberts-seed_0-step_120k']
false
true
true
3,521
false
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
2c911e724709507392670a48e2c0e6a6
zhichao158/wav2vec2-xls-r-common_voice-tr-ft
zhichao158
wav2vec2
22
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['tr']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'common_voice', 'generated_from_trainer']
true
true
true
1,863
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3736 - Wer: 0.2930 - Cer: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 96 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.5462 | 13.51 | 500 | 0.4423 | 0.4807 | 0.1188 | | 0.342 | 27.03 | 1000 | 0.3781 | 0.3954 | 0.0967 | | 0.2272 | 40.54 | 1500 | 0.3816 | 0.3595 | 0.0893 | | 0.1805 | 54.05 | 2000 | 0.3943 | 0.3487 | 0.0854 | | 0.1318 | 67.57 | 2500 | 0.3818 | 0.3262 | 0.0801 | | 0.1213 | 81.08 | 3000 | 0.3777 | 0.3113 | 0.0758 | | 0.0639 | 94.59 | 3500 | 0.3788 | 0.2953 | 0.0716 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.8.0 - Datasets 1.17.0 - Tokenizers 0.10.3
3c59c5f83f9966ccb4772c2482a625da
espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert
espnet
null
21
18
espnet
0
automatic-speech-recognition
false
false
false
cc-by-4.0
['en']
['iemocap']
null
0
0
0
0
0
0
0
['espnet', 'audio', 'automatic-speech-recognition']
false
true
true
30,953
false
## ESPnet2 ASR model ### `espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert` This model was trained by Yushi Ueda using iemocap recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout dfa2868243a897c2a6c34b7407eaea5e4b5508a5 pip install -e . cd egs2/iemocap/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_iemocap_sentiment_asr_train_asr_conformer_hubert ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Feb 12 23:11:32 EST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `f6cde1c419c814a14ccd40abe557a780508cbcdf` - Commit date: `Fri Feb 11 12:25:33 2022 -0500` ## Using Conformer based encoder, Transformer based decoder, and self-supervised learning features with spectral augmentation and predicting transcript along with sentiment - ASR config: [conf/tuning/train_asr_conformer_hubert.yaml](conf/tuning/train_asr_conformer_hubert.yaml) - token_type: word - Sentiment Labels: Positive, Neutral, Negative |dataset|Snt|Intent Classification Macro F1 (%)| Weighted F1 (%)| Micro F1 (%)| |---|---|---|---|---| |decode_asr_model_valid.acc.ave_10best/valid|754|66.5|76.4|75.7| |decode_asr_model_valid.acc.ave_10best/test|1650|62.0|65.5|65.8| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_hubert.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_hubert_sentiment ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - i - you - Negative - to - it - '''s' - the - '''t' - that - and - Neutral - Positive - a - know - what - of - like - we - don - just - is - do - this - '''m' - me - have - can - in - for - 'no' - so - not - '''re' - my - but - mean - be - going - all - was - they - well - want - yeah - right - get - 'on' - there - he - oh - here - go - out - with - your - if - okay - are - she - at - '''ll' - '''ve' - got - think - about - up - see - then - why - how - time - really - one - now - or - as - back - look - her - him - been - because - 'yes' - would - didn - little - did - good - some - them - something - need - maybe - never - um - come - take - god - had - could - will - uh - am - people - thing - when - very - let - much - sorry - from - again - long - give - anything - too - make - fish - years - where - isn - three - said - things - nothing - help - work - tell - guess - over - 'off' - business - even - sir - any - his - around - were - way - who - new - kind - '''d' - our - everything - more - came - an - should - down - understand - only - great - else - man - line - us - ask - last - doing - say - waiting - other - lot - job - feel - yourself - point - thought - day - whole - away - coming - better - marry - always - these - still - wrong - two - sure - care - phone - probably - remember - annie - life - year - believe - gonna - supposed - went - first - talk - listen - alright - before - thinking - after - stuff - happy - ever - turn - thank - home - fine - into - than - call - money - stay - actually - every - hope - love - huh - married - wait - somewhere - has - being - father - larry - hell - wanted - trying - getting - guys - name - saying - bag - hear - girl - hey - flashlight - beach - put - leave - dollars - mind - augie - does - won - fifty - excited - hate - four - done - through - their - keep - car - lost - doesn - happen - wouldn - school - big - calm - night - '''cause' - id - another - though - myself - nobody - somebody - best - might - same - form - mom - nice - matter - spot - stop - told - by - shut - enough - five - joe - hard - find - course - chris - drunk - snap - luggage - rather - standing - someone - laugh - took - those - please - live - six - ridiculous - minute - looking - bring - show - start - brought - days - must - pretty - sort - talking - sand - child - working - send - next - hundred - whatever - many - moon - moment - champagne - s - problem - end - real - dear - happened - person - place - fill - awesome - house - such - cool - c - haven - knew - die - finally - glasses - stupid - least - dad - supervisor - totally - each - try - waited - idea - u - party - asked - anymore - sick - evening - license - kid - wow - flight - felt - pay - since - single - miss - without - different - mmhmm - free - sometimes - yet - couldn - view - hour - knows - drive - themselves - swim - ah - brandy - fact - ma - '''am' - already - part - sit - thanks - comes - check - everyone - started - kiss - weren - hotel - own - beast - bad - above - run - worst - grunions - darling - seem - baby - turned - gone - shouldn - exactly - reason - full - both - crazy - pack - bit - swimming - liquor - seemed - serious - cause - peter - burden - gosh - forgot - happens - alone - pass - letters - heard - manager - hours - baggage - card - number - argue - seen - walk - forget - kids - family - blanket - honey - open - quite - gotta - forms - mother - old - needs - times - airline - which - once - service - week - together - twenty - stand - made - fun - dead - sake - men - kate - today - plane - most - carla - driving - deal - information - wanna - definitely - while - yea - certificate - particular - lots - calling - fortune - write - entire - found - trouble - use - forever - woman - enjoy - room - damn - war - meaning - longer - jacket - ticket - twice - sent - wonder - small - amanda - cannot - able - half - ha - saw - bus - ago - hmm - hi - kidding - giving - gave - move - women - ahead - york - guy - suppose - company - incredible - either - minutes - tonight - shoes - utterly - wasn - filled - gets - amazing - beautiful - hello - birth - prove - choice - friend - expect - says - blue - anywhere - died - weird - umm - blood - d - face - body - alive - diagram - goes - read - far - race - wind - fly - interested - california - coast - news - past - charles - floor - idiotic - indeed - absolutely - softball - answer - somehow - having - campus - completely - file - everybody - given - fair - front - telling - tried - sign - helping - dollar - used - takes - hair - behind - head - also - question - pull - brother - nonsense - kill - pocket - cold - mine - watching - shall - divorce - driver - m - makes - cried - security - suitcase - seems - control - set - letter - realized - paper - weeks - address - sweet - lose - huge - death - ones - living - glad - bed - until - thinks - wedding - pieces - parents - ready - almost - forgive - kissed - silver - during - forty - lives - grow - arrive - eyes - putting - quiet - poor - presents - sting - tired - row - anyhow - window - v - thousand - watch - ashamed - figure - vacation - application - left - certainly - calls - months - student - close - helpful - called - welcome - major - match - morning - fit - reach - door - wife - faith - noticed - several - killed - accident - rat - flop - hands - ear - dancing - hairs - bugging - dinner - bills - worked - bored - conversation - tunis - overbearing - grand - nine - amusing - vile - tempered - obviously - tomorrow - taken - eight - venice - worth - boy - realize - midnight - evil - sixteen - gotten - paying - bottle - smart - cindy - excuse - along - seven - children - figured - jobs - joke - charge - memorial - sitting - hardly - young - story - feels - pronouncing - insane - forgotten - fast - inspire - grub - tough - arguing - air - toss - instance - raining - pair - dry - socks - selfish - included - yours - mystery - mindedness - urgency - pure - urge - insulting - ideas - herself - period - missed - backwards - dance - worms - pop - except - perfect - blow - funny - listening - sadistic - bully - cruel - 'true' - second - acting - lucky - handle - loved - hit - shaking - destroyed - changed - book - eleven - animals - ice - cream - brings - frustrating - otherwise - onto - pregnant - operator - baltimore - san - diego - contract - brown - friends - pictures - internet - piece - high - anyone - tickets - inconvenience - gift - usually - green - city - couple - chuck - growing - pick - throw - yay - walking - grave - considerate - inspired - looked - mistake - believes - avoid - sucker - rock - strangers - missing - hide - geez - imagination - overseas - command - earth - monument - difference - zipped - kansas - reservations - ahh - formed - barefoot - shower - running - garage - knickerbocker - locker - wasting - roses - peaches - rosy - mention - shh - behave - exquisitely - beautifully - rolling - biting - scratching - panthers - suddenly - ought - dreadfully - pity - eye - world - making - bark - roll - hoops - insufferable - weak - upstairs - insist - boorish - conceited - impossible - torment - brute - perfectly - wicked - crawling - top - wish - wants - bank - plan - soon - plenty - bags - congratulations - play - carry - ignore - sudden - refrigerator - loot - fight - lights - swallows - goose - bumps - keeps - fighting - massive - celebration - sex - human - ours - light - minded - social - needed - anyway - words - problems - claim - reimburse - checked - airport - meet - e - responsibility - grunion - knees - thousands - important - shows - goddamn - strong - law - sara - brent - passport - aren - month - romantic - leaving - random - applied - interesting - regular - taking - harder - hurt - movie - freaking - record - airlines - responsible - honestly - grew - proud - hang - mrs - fellow - terrible - contradict - infuriate - throws - afraid - suffer - bloody - settled - thrash - may - son - faithful - moments - act - sleep - detroit - planning - yard - particularly - natural - phenomenon - highlight - flopping - laying - eggs - mating - orgy - magic - unexplainable - instincts - seaweed - instinctual - firecracker - spent - clasped - intimate - special - wishes - seriously - refreshments - ooh - pinpoint - marge - dishes - fat - ring - later - shivers - spine - sillier - poise - trumpets - squeakers - sockets - allure - contrary - violently - glass - temperamental - fiend - loathe - adder - riotous - mentioned - intemperate - tots - downstairs - mad - loose - lived - yelling - happening - promise - known - exciting - finish - college - atlanta - searching - fired - drinking - jesus - lock - plans - hole - santa - kitchen - invite - believing - ann - landing - eats - panties - sore - throat - unmistakable - capistrano - lemmings - cliffs - invitation - map - heaven - carpet - poodle - suicide - pact - turns - court - dies - mustn - vampire - identification - places - danger - hand - middle - situation - option - willing - paid - horrible - pain - anybody - paperwork - difficult - dream - sakes - matters - toes - become - habit - hold - survive - break - babe - shit - contact - land - water - transfer - backersen - desk - wallet - stolen - credit - cards - clearly - appreciate - complicated - uhuh - bucks - win - theatre - resume - riding - helps - less - planes - means - future - ran - red - wrote - loans - spend - dreaming - proof - shooting - crack - cracked - dares - invited - breaks - embarrassed - wondering - aw - style - granted - embarrassing - mixed - su - spawning - stubbed - toe - bodies - expectantly - meant - beginning - traumatized - freda - sooner - applies - philosophers - rots - trivial - torture - stiff - venom - fangs - wake - bended - voice - build - unbelievable - hiring - resumes - eventually - aggressive - awhile - especially - further - mass - pointless - claus - neither - mmm - cannes - figures - burnt - debate - exception - busy - safe - possible - spring - starting - buy - rest - office - complaint - accepted - ten - area - seats - foam - vibrations - drives - popped - slightly - exaggerated - scientific - proposed - bathroom - awful - scene - adders - afford - packet - forward - customer - brand - yellow - fifteen - brian - asking - percent - girlfriend - acceptance - patient - patience - dishonest - cheese - restaurant - t - sixty - direct - holiday - inn - refund - hmmm - receiving - sim - browns - unacceptable - northwest - dorky - putt - change - filling - z - x - simple - mail - request - raise - town - hadn - played - pennies - visa - visit - loves - list - environment - frustrated - ride - imagine - flew - nash - replace - paris - personal - issue - flights - track - angry - headstone - cemetery - cancer - poetry - palm - l - dropped - bunch - p - chair - broke - o - allow - nights - talent - ignoring - center - lovely - sneaking - whose - es - naturally - stays - wide - bought - arm - exact - curtsy - wiggle - superficial - paint - naked - vendome - rouser - younger - jealous - fascinating - duty - photographer - studio - cad - restraint - ill - knee - applying - questions - picture - fake - apartment - cash - drink - upset - sending - flying - speak - details - wherever - unfortunate - education - leaves - basically - hospital - messed - sounds - pinch - malibu - drop - team - professional - till - ambiguous - seeing - ugh - wet - heading - release - fire - inside - pr - includes - rub - ludicrous - wriggle - flippancy - acid - sweetness - curling - dressing - gown - broach - enjoyable - original - '''em' - early - ok - daughter - age - steps - rejected - starts - competitive - hired - worse - itself - nowhere - unfortunately - process - fault - decision - package - easy - transferred - straight - suckers - none - returning - throwing - cork - softest - breathe - road - catch - threw - canal - comb - towels - sacred - savor - delight - needn - late - web - website - rough - daddy - talked - feeling - talented - interview - food - looks - misplaced - theft - likely - stuck - tags - cult - everywhere - menu - choose - press - lady - bill - department - online - immediately - miles - notice - vote - heavens - yell - anna - tables - hasn - stole - losing - unfair - positive - boston - celebrate - system - turning - newspapers - pays - dare - jokes - swine - demand - building - finished - staying - cheap - anyways - okey - lobster - wonderful - harvard - engineering - summer - lawyer - mr - lax - delta - funeral - report - property - whoever - corporate - miso - soup - holy - olivia - camera - power - sold - testing - greens - explain - agreement - undecided - access - babies - street - vegas - slot - honeymoon - husband - penny - slots - wheel - cat - citizenship - england - fan - spending - craig - services - monster - baloney - saving - necessarily - carousel - cameras - airplane - sentimental - value - incredibly - shopping - jet - clothes - apologize - allowed - amount - candy - redlands - sprinklers - whenever - brain - park - holding - memorized - surgery - audience - joy - scholarships - commuting - h - ruined - mm - bet - neighborhood - sticking - woo - teach - class - confused - clock - foolish - ocean - distinctly - whispered - wishing - white - elliott - strange - quest - ultimate - truth - shan - word - disagreeable - wench - birthday - national - thin - rent - colors - citizen - account - '''til' - hire - short - fuse - america - audition - sponge - language - arriving - reimbursement - computer - cover - ass - dealing - quick - freaks - pitch - hitting - housing - force - scholarship - dirty - depends - helicopter - wild - sport - games - streets - although - mi - trust - cracker - curtsey - bicker - irons - besides - splendid - born - weekends - letting - tear - apart - touch - flipped - hot - outside - flowers - candles - approve - surprised - lead - ends - worthless - apparently - worker - annoy - belongings - disappeared - under - case - checking - admit - risk - agreed - yesterday - country - financial - aid - within - automated - systems - specific - rate - star - aisle - afternoon - maui - machine - waste - available - confirmed - thinkin - liked - kicked - intermittently - burned - desire - fade - passion - laughable - cunning - mirrors - painted - wooden - snake - suspicious - nosey - silly - wonders - order - standard - site - sense - dangerous - cute - whether - considering - opinion - f - few - guarantee - possessions - claims - sue - easier - cared - expected - trip - europe - its - circles - large - store - macy - rotary - instead - showed - hundreds - planned - someplace - sensitive - popping - opened - backrub - fantasy - damned - sheet - cut - purchase - amy - quit - clapping - onstage - eighteen - auditioning - rejection - prepared - thirty - master - kelly - natalie - pants - isabella - verizon - goodbye - fucking - challenge - slept - created - checkbook - argument - uhh - perhaps - loath - complete - sad - priorities - between - moving - song - temporary - pulling - smith - receptionist - extra - lodging - eh - la - cost - boss - peanuts - doctor - production - downtown - april - contracts - incompetent - realtor - fix - payphone - verify - electrical - outage - symptoms - nature - pilot - hook - realizes - bother - trade - event - meadow - faint - blues - bananas - overnight - station - attention - purchasing - terms - taser - excellent - counsel - sorority - golfing - library - dork - taco - branch - separate - sacrifices - mothers - kicking - videotape - stream - sitters - moved - computers - machines - bride - cruise - likes - tabs - plays - giant - renamed - brenda - lumber - janet - state - quarters - costs - escort - reliable - board - posting - trail - following - fantastic - mighty - recommending - generally - outline - affords - save - carpool - frustration - refuse - anger - fourth - lines - fourteen - mileage - candid - packed - replaced - expensive - lawsuit - cruising - bruising - president - mistakenly - behalf - listed - liable - held - sean - badge - employee - impression - cemeteries - urban - oasis - wandering - hers - pathetic - ground - stones - tumors - heather - built - prospect - garden - section - parties - feet - poems - curly - tree - crown - john - dunn - begin - wheelchair - reciting - envelope - grants - mold - minds - mess - rapper - ho - masters - teacher - dash - popular - seasoning - messing - ruin - woke - darkest - beating - bush - porch - fresh - rooms - sweetest - pets - cheeked - brooch - however - jones - voices - berating - christmas - shame - bunker - guard - spread - companies - shipping - shock - group - dual - unattached - engagement - sock - dude - lucked - blush - beige - loaded - craziest - offered - spoke - english - accent - illegal - jail - caught - hardcore - tropical - bahamas - tahiti - wealthy - royalty - removed - attitude - extremely - hostile - cutting - sentence - jumping - produce - field - shake - across - soaked - dying - georgia - educated - boarding - attendance - seat - offer - publicize - abuse - insinuating - smug - mouth - tossing - hanky - black - wheels - easily - overhead - compartment - data - collecting - lip - coffee - smoking - cigarettes - union - differently - numb - sickness - boom - mortality - affecting - slow - books - per - diem - victorian - houses - west - sider - commute - practice - neon - softballs - glow - co - ed - nationally - ranked - ping - pong - denigrate - rookie - donuts - recently - pitcher - hitter - mostly - shortstop - ex - trojans - sports - nicer - monica - player - type - helipad - fell - literally - doubt - cares - mustache - papers - crying - floorboards - sorted - everyday - seas - bringing - sacrifice - guilty - opening - return - jumped - distinctively - direction - tiny - action - passed - cheeks - darn - urgh - restrain - self - centered - registration - lunch - documents - identifications - deadline - carries - official - documentation - government - wireless - crucial - pulls - kinda - girly - radiant - ya - shine - invitations - response - mcdonald - level - member - pavement - indicators - prejudice - against - applications - hating - physically - amateur - crawl - dumber - cases - etiquette - bug - opinions - magically - irresponsible - carrousel - contents - main - liability - provides - shops - reimbursed - investigate - provide - uncommon - johnny - conscious - stories - africa - image - hurts - goout - gradual - impact - subside - heals - parts - football - recognizable - accomplished - prestige - load - worrying - decide - tour - friendly - ivy - walls - collegiate - g - choices - math - prestigious - departments - orientation - graduate - shiloh - valued - customers - previous - purchases - scheduling - highly - discounted - uses - corporation - hotels - rated - aisles - switch - fortunately - allows - spare - shuttle - appropriate - traveling - deals - shuttles - sleeps - gee - futile - moralists - unbearable - flippant - shibboleths - rush - madly - piazza - iron - dri - counter - applica - lonely - disappear - video - definitive - magazine - boyfriend - stage - golly - concert - crew - freak - guaranteed - nervous - hah - persistence - factors - types - male - female - consideration - cooking - reconsidering - uhm - retirement - foot - persistent - table - skewed - painting - outer - employment - unlucky - planet - normal - peoples - reading - difficulties - loading - mishap - cart - shipped - tracking - reim - tight - error - continue - 'false' - compensate - policy - gifts - nobodies - tag - originally - shoe - core - memories - kathy - lasted - gary - closed - surreal - troops - loving - los - angeles - schools - kinds - secrets - explore - rip - nuts - champions - leaning - towards - communications - broad - confined - ropes - recording - depending - leads - bypass - zero - pleasant - ebay - bye - steve - hint - asks - tone - pretend - protection - rid - submit - print - regarding - grievance - sites - protected - processed - careful - secure - unreliable - trash - kept - spotting - certain - specifically - pushing - headed - ears - watched - sends - ceaseless - wear - often - pleasure - sonya - promoted - nurses - mommy - va - videotaped - cousin - postpone - performance - swear - cast - spotlight - microphone - tripped - surprise - scored - points - members - loser - marrying - weddings - carats - lousy - chaperone - drowsy - deserve - cry - tears - happiness - marriage - commercials - refection - financially - studied - passing - russel - crowe - pooling - funds - owe - learning - role - auditions - denny - tip - teaching - oof - france - steal - keys - laughing - rosenkrantz - thingy - bopper - limit - whoa - ways - suffered - disease - handsome - gifted - parent - ripped - uveny - tricia - chemo - baseball - benny - nat - nation - bread - eat - beer - dorm - sometime - mattresses - reserved - grauman - scale - whooooo - acti - film - art - academy - films - fuck - ethiopia - cuddle - profanity - provider - satellites - average - compensating - unbeknownst - satellite - exaggerate - advising - addressed - fax - dumb - fritz - incoming - million - grown - fella - shootin - travel - sat - instinct - goosebumps - arms - danced - intimately - spart - strumpets - bristling - diamonds - taste - portion - side - stairs - condescending - copy - proceed - remove - missy - behaving - sweetie - deploy - specialist - increase - triple - promotion - retire - quiets - faster - career - lame - drew - barrymore - nasty - mouse - cheesy - jane - tarzan - engaged - esmeralda - hitched - spontaneous - character - conga - dim - pulled - chucky - sarah - guiding - graduated - apply - colleges - energy - busing - clerk - excuses - qualified - chang - investment - banking - deloitte - touche - temp - degrading - smarter - astronaut - biomedical - internship - plus - breaking - evicting - typing - shoot - degree - science - club - joking - doomed - maryland - cooperate - emergency - pounds - urn - deduction - sherlock - holmes - vessel - burst - caption - therefore - placed - firing - lobby - fastest - ibm - misplace - count - hanging - explanation - follow - footsteps - overboard - paralyzed - coma - fucked - studying - countries - goal - met - greatest - hopefully - mmmm - cinema - chapter - professionals - sipping - martinis - sushi - vat - assistance - starve - south - central - firm - police - officer - viacom - digits - speaking - network - charging - connect - outages - hurricane - katrina - chose - maam - proven - failing - receive - cuts - using - flip - writing - ms - fall - older - game - orange - pink - goodies - battling - sees - flat - stronger - acted - deserves - hats - shore - pokes - nah - paul - boats - dammit - enjoys - bound - harm - pleasured - lure - devil - rile - topic - initialed - lets - correctly - spelled - signed - shitty - timing - susie - tours - emotionally - bullshit - enlist - lie - traditional - church - cabins - flowery - naturey - midsummer - excitement - hoping - attacked - bears - trim - cooler - dog - tanish - contrast - cake - buffet - fried - chicken - mashed - potatoes - happier - thrilled - ecstatic - rushed - pressure - interviews - favors - bite - excessive - unemployed - cab - gas - possibly - extreme - trained - presentable - quote - buck - chugging - engine - realm - minimum - wage - fry - flipper - bottom - clear - affect - cle - dressed - shave - legs - presentation - eighty - success - position - training - mcdonalds - tv - rainbow - colored - crap - safely - destination - percoes - equivalent - amends - courtesy - inconveniencing - near - communicate - conditions - frequently - current - expecting - pissed - honor - grandmother - condition - inevitable - peace - general - mace - present - knife - puny - underwater - basket - weaving - lying - decided - works - worried - occasion - cruisers - vibe - greek - lessons - suck - celebrating - crush - throughout - test - waters - movies - vermont - cruiser - abused - frat - boys - dorms - dell - requests - fixed - dealt - worries - refunded - situa - relevant - ordered - orders - others - incorrectly - tomatoes - del - cents - attached - cuz - hoped - opportunity - rushing - goods - skipped - breath - kleenex - alaska - bearing - hated - holes - calf - witch - whore - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
5ec0f006d5d605bc3a29933060dd9776
ibrahim2030/tiny-bert-sst2-distilled
ibrahim2030
bert
80
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
990
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00013131868851033734 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
35c0c2ef65c8b91f97140d726e14cc0c
bookbot/distil-wav2vec2-xls-r-adult-child-cls-89m
bookbot
wav2vec2
10
3
transformers
0
audio-classification
true
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['audio-classification', 'generated_from_trainer']
true
true
true
2,560
false
# DistilWav2Vec2 XLS-R Adult/Child Speech Classifier 89M DistilWav2Vec2 XLS-R Adult/Child Speech Classifier is an audio classification model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a distilled version of [wav2vec2-xls-r-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-xls-r-adult-child-cls) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------------- | ------- | ----- | ----------------------------------------- | | `distil-wav2vec2-xls-r-adult-child-cls-89m` | 89M | XLS-R | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.3048 | 93.54% | 0.9420 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 128 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.7711 | 1.0 | 96 | 0.5413 | 0.9017 | 0.9156 | | 0.5551 | 2.0 | 192 | 0.4627 | 0.9164 | 0.9272 | | 0.4166 | 3.0 | 288 | 0.3832 | 0.9261 | 0.9352 | | 0.3928 | 4.0 | 384 | 0.3242 | 0.9331 | 0.9406 | | 0.3622 | 5.0 | 480 | 0.3048 | 0.9354 | 0.9420 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors DistilWav2Vec2 XLS-R Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
b34885607b296b832ccaa7df7b2a4fd4
GItaf/BERT-FINETUNE-MBTI-CLS
GItaf
bert
17
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
890
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-FINETUNE-MBTI-CLS This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
b1c465dbeba29d31478e62c27596a6d6
Helsinki-NLP/opus-mt-crs-es
Helsinki-NLP
marian
10
10
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-crs-es * source languages: crs * target languages: es * OPUS readme: [crs-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/crs-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/crs-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/crs-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.crs.es | 26.1 | 0.445 |
4568aabe53dd9d2c7772a0f4578d5a03
lucasresck/bert-base-cased-ag-news
lucasresck
bert
7
43
transformers
1
text-classification
true
false
false
mit
['en']
['ag_news']
null
0
0
0
0
0
0
0
['bert', 'classification']
false
true
true
1,365
false
# bert-base-cased-ag-news BERT model fine-tuned on AG News classification dataset using a linear layer on top of the [CLS] token output, with 0.945 test accuracy. ### How to use Here is how to use this model to classify a given text: ```python from transformers import AutoTokenizer, BertForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('lucasresck/bert-base-cased-ag-news') model = BertForSequenceClassification.from_pretrained('lucasresck/bert-base-cased-ag-news') text = "Is it soccer or football?" encoded_input = tokenizer(text, return_tensors='pt', truncation=True, max_length=512) output = model(**encoded_input) ``` ### Limitations and bias Bias were not assessed in this model, but, considering that pre-trained BERT is known to carry bias, it is also expected for this model. BERT's authors say: "This bias will also affect all fine-tuned versions of this model." ## Evaluation results ``` precision recall f1-score support 0 0.9539 0.9584 0.9562 1900 1 0.9884 0.9879 0.9882 1900 2 0.9251 0.9095 0.9172 1900 3 0.9127 0.9242 0.9184 1900 accuracy 0.9450 7600 macro avg 0.9450 0.9450 0.9450 7600 weighted avg 0.9450 0.9450 0.9450 7600 ```
1c2b28d1a0e68c3c993048a049aa6c52
aristotletan/roberta-base-finetuned-sst2
aristotletan
roberta
16
5
transformers
0
text-classification
true
false
false
mit
null
['scim']
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,439
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sst2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the scim dataset. It achieves the following results on the evaluation set: - Loss: 0.4632 - Accuracy: 0.9111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 90 | 2.0273 | 0.6667 | | No log | 2.0 | 180 | 0.8802 | 0.8556 | | No log | 3.0 | 270 | 0.5908 | 0.8889 | | No log | 4.0 | 360 | 0.4632 | 0.9111 | | No log | 5.0 | 450 | 0.4294 | 0.9111 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
1a27ac13d5ff1dad80b196506e0cfde8
sd-concepts-library/ori
sd-concepts-library
null
10
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,054
false
### Ori on Stable Diffusion This is the `<Ori>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Ori> 0](https://huggingface.co/sd-concepts-library/ori/resolve/main/concept_images/1.jpeg) ![<Ori> 1](https://huggingface.co/sd-concepts-library/ori/resolve/main/concept_images/2.jpeg) ![<Ori> 2](https://huggingface.co/sd-concepts-library/ori/resolve/main/concept_images/0.jpeg) ![<Ori> 3](https://huggingface.co/sd-concepts-library/ori/resolve/main/concept_images/3.jpeg) ![<Ori> 4](https://huggingface.co/sd-concepts-library/ori/resolve/main/concept_images/4.jpeg)
ed4ac9b554063e80fe09a74f1ff1f391
sgangireddy/whisper-medium-cv-fi-3k
sgangireddy
whisper
22
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fi']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,513
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper medium Finnish CV 4K This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 fi dataset. It achieves the following results on the evaluation set: - Loss: 0.3412 - Wer: 15.7369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0014 | 19.0 | 1000 | 0.3029 | 16.3117 | | 0.0002 | 38.01 | 2000 | 0.3412 | 15.7369 | | 0.0001 | 57.01 | 3000 | 0.3592 | 15.8783 | | 0.0001 | 76.01 | 4000 | 0.3655 | 15.8594 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
cdd37d161fb2422243096f3bea1c9f6b
vicky10011001/ddpm-butterflies-128
vicky10011001
null
14
0
diffusers
0
null
false
false
false
apache-2.0
['en']
['huggan/smithsonian_butterflies_subset']
null
0
0
0
0
0
0
0
[]
false
true
true
1,235
false
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/vicky10011001/ddpm-butterflies-128/tensorboard?#scalars)
4221127ddf2a2206eee958ceeae4f297
Geotrend/bert-base-en-ru-cased
Geotrend
bert
8
993
transformers
0
fill-mask
true
true
true
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,292
false
# bert-base-en-ru-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-ru-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-ru-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
ce24ef7f2f7ca08590869cc1a7a72b0e
Geotrend/distilbert-base-en-fr-lt-no-pl-cased
Geotrend
distilbert
6
5
transformers
0
fill-mask
true
false
false
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,251
false
# distilbert-base-en-fr-lt-no-pl-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-lt-no-pl-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-lt-no-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
8138dfb077c8c392a729e8316ff30bdd