repo_id
stringlengths
4
110
author
stringlengths
2
27
โŒ€
model_type
stringlengths
2
29
โŒ€
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
โŒ€
likes
int64
0
4.34k
pipeline
stringlengths
5
30
โŒ€
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
โŒ€
datasets
stringlengths
2
2.58k
โŒ€
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
gabrieleai/gamindocar-3000-700
gabrieleai
null
15
31
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
624
false
### Gamindocar-3000-700 Dreambooth model trained by gabrieleai with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
b1249a1d409e9f73bed623272b4379d7
francisco-perez-sorrosal/distilbert-base-uncased-finetuned-with-spanish-tweets-clf
francisco-perez-sorrosal
distilbert
10
171
transformers
0
text-classification
true
false
false
apache-2.0
null
['dataset']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,660
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-with-spanish-tweets-clf This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.0580 - Accuracy: 0.5701 - F1: 0.5652 - Precision: 0.5666 - Recall: 0.5642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0643 | 1.0 | 543 | 1.0457 | 0.4423 | 0.2761 | 0.5104 | 0.3712 | | 0.9754 | 2.0 | 1086 | 0.9700 | 0.5155 | 0.4574 | 0.5190 | 0.4712 | | 0.8145 | 3.0 | 1629 | 0.9691 | 0.5556 | 0.5544 | 0.5616 | 0.5506 | | 0.6318 | 4.0 | 2172 | 1.0580 | 0.5701 | 0.5652 | 0.5666 | 0.5642 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
8e576a6e120e41c109192088dbb45963
jy46604790/Fake-News-Bert-Detect
jy46604790
roberta
8
198
transformers
2
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,108
false
# Fake News Recognition ## Overview This model is trained by over 40,000 news from different medias based on the 'roberta-base'. It can give result by simply entering the text of the news less than 500 words(the excess will be truncated automatically). LABEL_0: Fake news LABEL_1: Real news ## Qucik Tutorial ### Download The Model ```python from transformers import pipeline MODEL = "jy46604790/Fake-News-Bert-Detect" clf = pipeline("text-classification", model=MODEL, tokenizer=MODEL) ``` ### Feed Data ```python text = "Indonesian police have recaptured a U.S. citizen who escaped a week ago from an overcrowded prison on the holiday island of Bali, the jail s second breakout of foreign inmates this year. Cristian Beasley from California was rearrested on Sunday, Badung Police chief Yudith Satria Hananta said, without providing further details. Beasley was a suspect in crimes related to narcotics but had not been sentenced when he escaped from Kerobokan prison in Bali last week. The 32-year-old is believed to have cut through bars in the ceiling of his cell before scaling a perimeter wall of the prison in an area being refurbished. The Kerobokan prison, about 10 km (six miles) from the main tourist beaches in the Kuta area, often holds foreigners facing drug-related charges. Representatives of Beasley could not immediately be reached for comment. In June, an Australian, a Bulgarian, an Indian and a Malaysian tunneled to freedom about 12 meters (13 yards) under Kerobokan prison s walls. The Indian and the Bulgarian were caught soon after in neighboring East Timor, but Australian Shaun Edward Davidson and Malaysian Tee Kok King remain at large. Davidson has taunted authorities by saying he was enjoying life in various parts of the world, in purported posts on Facebook. Kerobokan has housed a number of well-known foreign drug convicts, including Australian Schappelle Corby, whose 12-1/2-year sentence for marijuana smuggling got huge media attention." ``` ### Result ```python result = clf(text) result ``` output:[{'label': 'LABEL_1', 'score': 0.9994995594024658}]
8728088caf478817ffda650aae7b9058
google/t5-efficient-tiny-nl24
google
t5
12
7
transformers
0
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,251
false
# T5-Efficient-TINY-NL24 (Deep-Narrow version) T5-Efficient-TINY-NL24 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the modelโ€™s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-nl24** - is of model type **Tiny** with the following variations: - **nl** is **24** It has **52.35** million parameters and thus requires *ca.* **209.41 MB** of memory in full precision (*fp32*) or **104.71 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
62cf5684fb6cdd59e1e9e27854eeb37c
xander71988/t5-small-finetuned-facet-contract-type-test
xander71988
t5
8
2
transformers
0
text2text-generation
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,360
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xander71988/t5-small-finetuned-facet-contract-type-test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3136 - Validation Loss: 0.3881 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 3496, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3136 | 0.3881 | 0 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.5.0 - Datasets 2.3.2 - Tokenizers 0.13.2
e3ca5ed20b98a162a620332a9892f5ae
richielo/small-e-czech-finetuned-ner-wikiann
richielo
electra
14
99
transformers
1
token-classification
true
false
false
cc-by-4.0
null
['wikiann']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,131
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-e-czech-finetuned-ner-wikiann This model is a fine-tuned version of [Seznam/small-e-czech](https://huggingface.co/Seznam/small-e-czech) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2547 - Precision: 0.8713 - Recall: 0.8970 - F1: 0.8840 - Accuracy: 0.9557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2924 | 1.0 | 2500 | 0.2449 | 0.7686 | 0.8088 | 0.7882 | 0.9320 | | 0.2042 | 2.0 | 5000 | 0.2137 | 0.8050 | 0.8398 | 0.8220 | 0.9400 | | 0.1699 | 3.0 | 7500 | 0.1912 | 0.8236 | 0.8593 | 0.8411 | 0.9466 | | 0.1419 | 4.0 | 10000 | 0.1931 | 0.8349 | 0.8671 | 0.8507 | 0.9488 | | 0.1316 | 5.0 | 12500 | 0.1892 | 0.8470 | 0.8776 | 0.8620 | 0.9519 | | 0.1042 | 6.0 | 15000 | 0.2058 | 0.8433 | 0.8811 | 0.8618 | 0.9508 | | 0.0884 | 7.0 | 17500 | 0.2020 | 0.8602 | 0.8849 | 0.8724 | 0.9531 | | 0.0902 | 8.0 | 20000 | 0.2118 | 0.8551 | 0.8837 | 0.8692 | 0.9528 | | 0.0669 | 9.0 | 22500 | 0.2171 | 0.8634 | 0.8906 | 0.8768 | 0.9550 | | 0.0529 | 10.0 | 25000 | 0.2228 | 0.8638 | 0.8912 | 0.8773 | 0.9545 | | 0.0613 | 11.0 | 27500 | 0.2293 | 0.8626 | 0.8898 | 0.8760 | 0.9544 | | 0.0549 | 12.0 | 30000 | 0.2276 | 0.8694 | 0.8958 | 0.8824 | 0.9554 | | 0.0516 | 13.0 | 32500 | 0.2384 | 0.8717 | 0.8940 | 0.8827 | 0.9552 | | 0.0412 | 14.0 | 35000 | 0.2443 | 0.8701 | 0.8931 | 0.8815 | 0.9554 | | 0.0345 | 15.0 | 37500 | 0.2464 | 0.8723 | 0.8958 | 0.8839 | 0.9557 | | 0.0412 | 16.0 | 40000 | 0.2477 | 0.8705 | 0.8948 | 0.8825 | 0.9552 | | 0.0363 | 17.0 | 42500 | 0.2525 | 0.8742 | 0.8973 | 0.8856 | 0.9559 | | 0.0341 | 18.0 | 45000 | 0.2529 | 0.8727 | 0.8962 | 0.8843 | 0.9561 | | 0.0194 | 19.0 | 47500 | 0.2533 | 0.8699 | 0.8966 | 0.8830 | 0.9557 | | 0.0247 | 20.0 | 50000 | 0.2547 | 0.8713 | 0.8970 | 0.8840 | 0.9557 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
d971a085071f1f4f6bf8e95f244d43ae
marcus2000/ru_t5_model_forlegaltext_rouge
marcus2000
mt5
18
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,337
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multilingual_t5_model_for_law_simplification This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.2857 - Rouge2: 0.0 - Rougel: 0.2857 - Rougelsum: 0.2857 - Gen Len: 7.9033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 157 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | No log | 2.0 | 314 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | No log | 3.0 | 471 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 4.0 | 628 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 5.0 | 785 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 6.0 | 942 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 7.0 | 1099 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 8.0 | 1256 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 9.0 | 1413 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | | 0.0 | 10.0 | 1570 | nan | 0.2857 | 0.0 | 0.2857 | 0.2857 | 7.9033 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ac428f33e250ce23486d9a6d1a6661a1
PlanTL-GOB-ES/roberta-large-bne-te
PlanTL-GOB-ES
roberta
9
214
transformers
0
text-classification
true
false
false
apache-2.0
['es']
['xnli']
null
0
0
0
0
0
0
0
['national library of spain', 'spanish', 'bne', 'xnli', 'textual entailment']
true
true
true
7,219
false
# Spanish RoBERTa-large trained on BNE finetuned for the Spanish Cross-lingual Natural Language Inference (XNLI) dataset. ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-large-bne-te** is a Textual Entailment (TE) model for the Spanish language fine-tuned from the [roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) large model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de Espaรฑa)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Intended uses and limitations **roberta-large-bne-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="PlanTL-GOB-ES/roberta-large-bne-te") example = "Mi cumpleaรฑos es el 27 de mayo. Cumplirรฉ aรฑos a finales de mayo." te_results = nlp(example) pprint(te_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training We used the TE dataset in Spanish called [XNLI dataset](https://huggingface.co/datasets/xnli) for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 1e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing accuracy. ## Evaluation results We evaluated the *roberta-large-bne-te* on the XNLI test set against standard multilingual and monolingual baselines: | Model | XNLI (Accuracy) | | ------------|:----| | roberta-large-bne | **82.63** | | roberta-base-bne | 80.16 | | BETO | 81.30 | | mBERT | 78.76 | | BERTIN | 78.90 | | ELECTRA | 78.78 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es) ### Contact information For further information, send an email to <plantl-gob-es@bsc.es> ### Copyright Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL. ## Citing information If you use this model, please cite our [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405): ``` @article{, abstract = {We want to thank the National Library of Spain for such a large effort on the data gathering and the Future of Computing Center, a Barcelona Supercomputing Center and IBM initiative (2020). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.}, author = {Asier Gutiรฉrrez Fandiรฑo and Jordi Armengol Estapรฉ and Marc Pร mies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas}, doi = {10.26342/2022-68-3}, issn = {1135-5948}, journal = {Procesamiento del Lenguaje Natural}, keywords = {Artificial intelligence,Benchmarking,Data processing.,MarIA,Natural language processing,Spanish language modelling,Spanish language resources,Tractament del llenguatge natural (Informร tica),ร€rees temร tiques de la UPC::Informร tica::Intelยทligรจncia artificial::Llenguatge natural}, publisher = {Sociedad Espaรฑola para el Procesamiento del Lenguaje Natural}, title = {MarIA: Spanish Language Models}, volume = {68}, url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley}, year = {2022}, } ``` ## Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (SEDIA โ€“ State Secretariat for digitalization and artificial intelligence) nor the creator (BSC โ€“ Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models. Los modelos publicados en este repositorio tienen una finalidad generalista y estรกn a disposiciรณn de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables. Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial. En ningรบn caso el propietario de los modelos (SEDIA โ€“ Secretarรญa de Estado de Digitalizaciรณn e Inteligencia Artificial) ni el creador (BSC โ€“ Barcelona Supercomputing Center) serรกn responsables de los resultados derivados del uso que hagan terceros de estos modelos.
6fd388ec0ace553cc491f3f5044f3a1b
vasudevgupta/bigbird-roberta-natural-questions
vasudevgupta
big_bird
11
7,949
transformers
7
question-answering
true
false
false
apache-2.0
['en']
['natural_questions']
null
0
0
0
0
1
0
1
[]
false
true
true
842
false
This checkpoint is obtained after training `BigBirdForQuestionAnswering` (with extra pooler head) on [`natural_questions`](https://huggingface.co/datasets/natural_questions) dataset for ~ 2 weeks on 2 K80 GPUs. Script for training can be found here: https://github.com/vasudevgupta7/bigbird | Exact Match | 47.44 | |-------------|-------| **Use this model just like any other model from ๐Ÿค—Transformers** ```python from transformers import BigBirdForQuestionAnswering model_id = "vasudevgupta/bigbird-roberta-natural-questions" model = BigBirdForQuestionAnswering.from_pretrained(model_id) tokenizer = BigBirdTokenizer.from_pretrained(model_id) ``` In case you are interested in predicting category (null, long, short, yes, no) as well, use `BigBirdForNaturalQuestions` (instead of `BigBirdForQuestionAnswering`) from my training script.
a0dedcd155df00db41b4985036b226c7
gchhablani/bert-base-cased-finetuned-wnli
gchhablani
bert
71
29
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'fnet-bert-base-comparison']
true
true
true
2,334
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wnli This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6996 - Accuracy: 0.4648 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name wnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir bert-base-cased-finetuned-wnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7299 | 1.0 | 40 | 0.6923 | 0.5634 | | 0.6982 | 2.0 | 80 | 0.7027 | 0.3803 | | 0.6972 | 3.0 | 120 | 0.7005 | 0.4507 | | 0.6992 | 4.0 | 160 | 0.6977 | 0.5352 | | 0.699 | 5.0 | 200 | 0.6996 | 0.4648 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
7ef85cce6cf25c73bfa97361fdb36306
jonatasgrosman/exp_w2v2r_es_xls-r_accent_surpeninsular-10_nortepeninsular-0_s632
jonatasgrosman
wav2vec2
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
495
false
# exp_w2v2r_es_xls-r_accent_surpeninsular-10_nortepeninsular-0_s632 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
9734ba8789b5850273a8cd6165e889bd
muhtasham/tiny-mlm-imdb-target-tweet
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,898
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-imdb-target-tweet This model is a fine-tuned version of [muhtasham/tiny-mlm-imdb](https://huggingface.co/muhtasham/tiny-mlm-imdb) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.5550 - Accuracy: 0.6925 - F1: 0.7004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.159 | 4.9 | 500 | 0.9977 | 0.6364 | 0.6013 | | 0.7514 | 9.8 | 1000 | 0.8549 | 0.7112 | 0.7026 | | 0.5011 | 14.71 | 1500 | 0.8516 | 0.7032 | 0.6962 | | 0.34 | 19.61 | 2000 | 0.9019 | 0.7059 | 0.7030 | | 0.2258 | 24.51 | 2500 | 0.9722 | 0.7166 | 0.7164 | | 0.1607 | 29.41 | 3000 | 1.0724 | 0.6979 | 0.6999 | | 0.1127 | 34.31 | 3500 | 1.1435 | 0.7193 | 0.7169 | | 0.0791 | 39.22 | 4000 | 1.2807 | 0.7059 | 0.7069 | | 0.0568 | 44.12 | 4500 | 1.3849 | 0.7139 | 0.7159 | | 0.0478 | 49.02 | 5000 | 1.5550 | 0.6925 | 0.7004 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
80ebfc551cc686044bdc108be4e21182
gokuls/mobilebert_add_GLUE_Experiment_wnli
gokuls
mobilebert
17
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,580
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_wnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6896 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6956 | 1.0 | 5 | 0.6896 | 0.5634 | | 0.6945 | 2.0 | 10 | 0.6950 | 0.4366 | | 0.6938 | 3.0 | 15 | 0.6950 | 0.4366 | | 0.693 | 4.0 | 20 | 0.6914 | 0.5634 | | 0.6931 | 5.0 | 25 | 0.6897 | 0.5634 | | 0.6932 | 6.0 | 30 | 0.6900 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
20576a22a0d98d02474b055b1857c344
SongRb/distilbert-base-uncased-finetuned-cola
SongRb
distilbert
19
5
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,570
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8549 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5213 | 1.0 | 535 | 0.5163 | 0.4183 | | 0.3479 | 2.0 | 1070 | 0.5351 | 0.5182 | | 0.231 | 3.0 | 1605 | 0.6271 | 0.5291 | | 0.166 | 4.0 | 2140 | 0.7531 | 0.5279 | | 0.1313 | 5.0 | 2675 | 0.8549 | 0.5332 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
2957bb5ad02601e489d458c11d261be2
benjamin/gpt2-wechsel-german
benjamin
gpt2
21
65
transformers
2
text-generation
true
false
false
mit
['de']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,644
false
# gpt2-wechsel-german Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. See the code here: https://github.com/CPJKU/wechsel And the paper here: https://aclanthology.org/2022.naacl-main.293/ ## Performance ### RoBERTa | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-french` | **82.43** | **90.88** | **86.65** | | `camembert-base` | 80.88 | 90.26 | 85.57 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-german` | **81.79** | **89.72** | **85.76** | | `deepset/gbert-base` | 78.64 | 89.46 | 84.05 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-chinese` | **78.32** | 80.55 | **79.44** | | `bert-base-chinese` | 76.55 | **82.05** | 79.30 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-swahili` | **75.05** | **87.39** | **81.22** | | `xlm-roberta-base` | 69.18 | 87.37 | 78.28 | ### GPT2 | Model | PPL | |---|---| | `gpt2-wechsel-french` | **19.71** | | `gpt2` (retrained from scratch) | 20.47 | | Model | PPL | |---|---| | `gpt2-wechsel-german` | **26.8** | | `gpt2` (retrained from scratch) | 27.63 | | Model | PPL | |---|---| | `gpt2-wechsel-chinese` | **51.97** | | `gpt2` (retrained from scratch) | 52.98 | | Model | PPL | |---|---| | `gpt2-wechsel-swahili` | **10.14** | | `gpt2` (retrained from scratch) | 10.58 | See our paper for details. ## Citation Please cite WECHSEL as ``` @inproceedings{minixhofer-etal-2022-wechsel, title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models", author = "Minixhofer, Benjamin and Paischer, Fabian and Rekabsaz, Navid", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.293", pages = "3992--4006", abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.", } ```
e27eafd666e624995df680d14d933b79
pig4431/CR_BERT_5E
pig4431
bert
10
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,046
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CR_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5094 - Accuracy: 0.8733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.694 | 0.33 | 50 | 0.5894 | 0.6733 | | 0.5335 | 0.66 | 100 | 0.4150 | 0.84 | | 0.3446 | 0.99 | 150 | 0.3052 | 0.9 | | 0.241 | 1.32 | 200 | 0.3409 | 0.8733 | | 0.2536 | 1.66 | 250 | 0.3101 | 0.88 | | 0.2318 | 1.99 | 300 | 0.3015 | 0.8867 | | 0.1527 | 2.32 | 350 | 0.3806 | 0.8733 | | 0.1026 | 2.65 | 400 | 0.3788 | 0.8733 | | 0.1675 | 2.98 | 450 | 0.3956 | 0.8933 | | 0.0699 | 3.31 | 500 | 0.4532 | 0.8867 | | 0.0848 | 3.64 | 550 | 0.4636 | 0.88 | | 0.0991 | 3.97 | 600 | 0.4951 | 0.88 | | 0.0578 | 4.3 | 650 | 0.5073 | 0.88 | | 0.0636 | 4.64 | 700 | 0.5090 | 0.8733 | | 0.0531 | 4.97 | 750 | 0.5094 | 0.8733 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
0dbe89963aac5ddaa7fa89ddf5e30788
Geotrend/bert-base-en-tr-cased
Geotrend
bert
8
2
transformers
0
fill-mask
true
true
true
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,292
false
# bert-base-en-tr-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-tr-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-tr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grรฉgoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
475f8ef5299475b02f764ec47a86b484
Davlan/xlm-roberta-base-finetuned-arabic
Davlan
xlm-roberta
10
6
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,015
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar_xlmr-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
de4e89b3d578b62a4954cd80bc1be5ee
ttj/flex-diffusion-2-1
ttj
null
28
42
diffusers
15
text-to-image
false
false
false
openrail++
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
11,348
false
# Model Card for flex-diffusion-2-1 <!-- Provide a quick summary of what the model is/does. [Optional] --> stable-diffusion-2-1 (stabilityai/stable-diffusion-2-1) finetuned with different aspect ratios. ## TLDR: ### There are 2 models in this repo: - One based on stable-diffusion-2-1 (stabilityai/stable-diffusion-2-1) finetuned for 6k steps. - One based on stable-diffusion-2-base (stabilityai/stable-diffusion-2-base) finetuned for 6k steps, on the same dataset. For usage, see - [How to Get Started with the Model](#how-to-get-started-with-the-model) ### It aims to solve the following issues: 1. Generated images looks like they are cropped from a larger image. 2. Generating non-square images creates weird results, due to the model being trained on square images. Examples: | resolution | model | stable diffusion | flex diffusion | |:---------------:|:-------:|:----------------------------:|:-----------------------------:| | 576x1024 (9:16) | v2-1 | ![img](imgs/21-576-1024.png) | ![img](imgs/21f-576-1024.png) | | 576x1024 (9:16) | v2-base | ![img](imgs/2b-576-1024.png) | ![img](imgs/2bf-576-1024.png) | | 1024x576 (16:9) | v2-1 | ![img](imgs/21-1024-576.png) | ![img](imgs/21f-1024-576.png) | | 1024x576 (16:9) | v2-base | ![img](imgs/2b-1024-576.png) | ![img](imgs/2bf-1024-576.png) | ### Limitations: 1. It's trained on a small dataset, so it's improvements may be limited. 2. For each aspect ratio, it's trained on only a fixed resolution. So it may not be able to generate images of different resolutions. For 1:1 aspect ratio, it's fine-tuned at 512x512, although flex-diffusion-2-1 was last finetuned at 768x768. ### Potential improvements: 1. Train on a larger dataset. 2. Train on different resolutions even for the same aspect ratio. 3. Train on specific aspect ratios, instead of a range of aspect ratios. # Table of Contents - [Model Card for flex-diffusion-2-1](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Examination](#model-examination) - [Environmental Impact](#environmental-impact) - [Technical Specifications [optional]](#technical-specifications-optional) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Citation](#citation) - [Glossary [optional]](#glossary-optional) - [More Information [optional]](#more-information-optional) - [Model Card Authors [optional]](#model-card-authors-optional) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> stable-diffusion-2-1 (stabilityai/stable-diffusion-2-1) finetuned for dynamic aspect ratios. finetuned resolutions: | | width | height | aspect ratio | |---:|--------:|---------:|:---------------| | 0 | 512 | 1024 | 1:2 | | 1 | 576 | 1024 | 9:16 | | 2 | 576 | 960 | 3:5 | | 3 | 640 | 1024 | 5:8 | | 4 | 512 | 768 | 2:3 | | 5 | 640 | 896 | 5:7 | | 6 | 576 | 768 | 3:4 | | 7 | 512 | 640 | 4:5 | | 8 | 640 | 768 | 5:6 | | 9 | 640 | 704 | 10:11 | | 10 | 512 | 512 | 1:1 | | 11 | 704 | 640 | 11:10 | | 12 | 768 | 640 | 6:5 | | 13 | 640 | 512 | 5:4 | | 14 | 768 | 576 | 4:3 | | 15 | 896 | 640 | 7:5 | | 16 | 768 | 512 | 3:2 | | 17 | 1024 | 640 | 8:5 | | 18 | 960 | 576 | 5:3 | | 19 | 1024 | 576 | 16:9 | | 20 | 1024 | 512 | 2:1 | - **Developed by:** Jonathan Chang - **Model type:** Diffusion-based text-to-image generation model - **Language(s)**: English - **License:** creativeml-openrail-m - **Parent Model:** https://huggingface.co/stabilityai/stable-diffusion-2-1 - **Resources for more information:** More information needed # Uses - see https://huggingface.co/stabilityai/stable-diffusion-2-1 # Training Details ## Training Data - LAION aesthetic dataset, subset of it with 6+ rating - https://laion.ai/blog/laion-aesthetics/ - https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus - I only used a small portion of that, see [Preprocessing](#preprocessing) - most common aspect ratios in the dataset (before preprocessing) | | aspect_ratio | counts | |---:|:---------------|---------:| | 0 | 1:1 | 154727 | | 1 | 3:2 | 119615 | | 2 | 2:3 | 61197 | | 3 | 4:3 | 52276 | | 4 | 16:9 | 38862 | | 5 | 400:267 | 21893 | | 6 | 3:4 | 16893 | | 7 | 8:5 | 16258 | | 8 | 4:5 | 15684 | | 9 | 6:5 | 12228 | | 10 | 1000:667 | 12097 | | 11 | 2:1 | 11006 | | 12 | 800:533 | 10259 | | 13 | 5:4 | 9753 | | 14 | 500:333 | 9700 | | 15 | 250:167 | 9114 | | 16 | 5:3 | 8460 | | 17 | 200:133 | 7832 | | 18 | 1024:683 | 7176 | | 19 | 11:10 | 6470 | - predefined aspect ratios | | width | height | aspect ratio | |---:|--------:|---------:|:---------------| | 0 | 512 | 1024 | 1:2 | | 1 | 576 | 1024 | 9:16 | | 2 | 576 | 960 | 3:5 | | 3 | 640 | 1024 | 5:8 | | 4 | 512 | 768 | 2:3 | | 5 | 640 | 896 | 5:7 | | 6 | 576 | 768 | 3:4 | | 7 | 512 | 640 | 4:5 | | 8 | 640 | 768 | 5:6 | | 9 | 640 | 704 | 10:11 | | 10 | 512 | 512 | 1:1 | | 11 | 704 | 640 | 11:10 | | 12 | 768 | 640 | 6:5 | | 13 | 640 | 512 | 5:4 | | 14 | 768 | 576 | 4:3 | | 15 | 896 | 640 | 7:5 | | 16 | 768 | 512 | 3:2 | | 17 | 1024 | 640 | 8:5 | | 18 | 960 | 576 | 5:3 | | 19 | 1024 | 576 | 16:9 | | 20 | 1024 | 512 | 2:1 | ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing 1. download files with url &amp; caption from https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus - I only used the first file `train-00000-of-00007-29aec9150af50f9f.parquet` 2. use img2dataset to convert to webdataset - https://github.com/rom1504/img2dataset - I put train-00000-of-00007-29aec9150af50f9f.parquet in a folder called `first-file` - the output folder is `/mnt/aesthetics6plus`, change this to your own folder ```bash echo INPUT_FOLDER=first-file echo OUTPUT_FOLDER=/mnt/aesthetics6plus img2dataset --url_list $INPUT_FOLDER --input_format "parquet"\ --url_col "URL" --caption_col "TEXT" --output_format webdataset\ --output_folder $OUTPUT_FOLDER --processes_count 3 --thread_count 6 --image_size 1024 --resize_only_if_bigger --resize_mode=keep_ratio_largest \ --save_additional_columns '["WIDTH","HEIGHT","punsafe","similarity"]' --enable_wandb True ``` 3. The data-loading code will do preprocessing on the fly, so no need to do anything else. But it's not optimized for speed, the GPU utilization fluctuates between 80% and 100%. And it's not written for multi-GPU training, so use it with caution. The code will do the following: - use webdataset to load the data - calculate the aspect ratio of each image - find the closest aspect ratio & it's associated resolution from the predefined resolutions: `argmin(abs(aspect_ratio - predefined_aspect_ratios))`. E.g. if the aspect ratio is 1:3, the closest resolution is 1:2. and it's associated resolution is 512x1024. - keeping the aspect ratio, resize the image such that it's larger or equal to the associated resolution on each side. E.g. resize to 512x(512*3) = 512x1536 - random crop the image to the associated resolution. E.g. crop to 512x1024 - if more than 10% of the image is lost in the cropping, discard this example. - batch examples by aspect ratio, so all examples in a batch have the same aspect ratio ### Speeds, Sizes, Times - Dataset size: 100k image-caption pairs, before filtering. - I didn't wait for the whole dataset to be downloaded, I copied the first 10 tar files and their index files to a new folder called `aesthetics6plus-small`, with 100k image-caption pairs in total. The full dataset is a lot bigger. - Hardware: 1 RTX3090 GPUs - Optimizer: 8bit Adam - Batch size: 32 - actual batch size: 2 - gradient_accumulation_steps: 16 - effective batch size: 32 - Learning rate: warmup to 2e-6 for 500 steps and then kept constant - Learning rate: 2e-6 - Training steps: 6k - Epoch size (approximate): 32 * 6k / 100k = 1.92 (not accounting for the filtering) - Each example is seen 1.92 times on average. - Training time: approximately 1 day ## Results More information needed # Model Card Authors Jonathan Chang # How to Get Started with the Model Use the code below to get started with the model. ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel def use_DPM_solver(pipe): pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) return pipe pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", unet = UNet2DConditionModel.from_pretrained("ttj/flex-diffusion-2-1", subfolder="2-1/unet", torch_dtype=torch.float16), torch_dtype=torch.float16, ) # for v2-base, use the following line instead #pipe = StableDiffusionPipeline.from_pretrained( # "stabilityai/stable-diffusion-2-base", # unet = UNet2DConditionModel.from_pretrained("ttj/flex-diffusion-2-1", subfolder="2-base/unet", torch_dtype=torch.float16), # torch_dtype=torch.float16) pipe = use_DPM_solver(pipe).to("cuda") pipe = pipe.to("cuda") prompt = "a professional photograph of an astronaut riding a horse" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ```
1b92f954f5be96fdc54cb3322ac7d8f4
jhaochenz/finetuned_distilgpt2_sst2_negation0.01_pretrainedTrue_epochs1
jhaochenz
gpt2
14
0
transformers
0
text-generation
true
false
false
apache-2.0
null
['sst2']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,163
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_distilgpt2_sst2_negation0.01_pretrainedTrue_epochs1 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 3.2761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7102 | 1.0 | 1323 | 3.2761 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.0 - Datasets 2.8.0 - Tokenizers 0.13.2
5aa6b3f491cd8fb68ccdec53b5d3dee0
Helsinki-NLP/opus-mt-kab-en
Helsinki-NLP
marian
10
11
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
778
false
### opus-mt-kab-en * source languages: kab * target languages: en * OPUS readme: [kab-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kab-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/kab-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kab-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kab-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.kab.en | 27.5 | 0.408 |
e3d7cbad96a54b1921b3651e43340788
AykeeSalazar/violation-classification-bantai-vit-withES
AykeeSalazar
vit
9
9
transformers
0
image-classification
true
false
false
apache-2.0
null
['image_folder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,274
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # violation-classification-bantai-vit-withES This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2234 - eval_accuracy: 0.9592 - eval_runtime: 64.9173 - eval_samples_per_second: 85.37 - eval_steps_per_second: 2.68 - epoch: 227.72 - step: 23000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 500 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
01256acfdf2f94c35f9a0e736daf6d9e
Helsinki-NLP/opus-mt-zne-fi
Helsinki-NLP
marian
10
9
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-zne-fi * source languages: zne * target languages: fi * OPUS readme: [zne-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.fi | 22.8 | 0.432 |
4d1dacd86a268f29cf5c6016cd99d598
dminiotas05/distilbert-base-uncased-finetuned-ft750_reg3
dminiotas05
distilbert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,355
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft750_reg3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6143 - Mse: 0.6143 - Mae: 0.6022 - R2: 0.4218 - Accuracy: 0.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.5241 | 1.0 | 188 | 0.6143 | 0.6143 | 0.6022 | 0.4218 | 0.52 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
f12074dbb299e37eb89055e19afd27a8
muhtasham/tiny-mlm-glue-rte-target-glue-stsb
muhtasham
bert
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,027
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-rte-target-glue-stsb This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-rte](https://huggingface.co/muhtasham/tiny-mlm-glue-rte) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9754 - Pearson: 0.8093 - Spearmanr: 0.8107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 3.2461 | 2.78 | 500 | 1.1464 | 0.7083 | 0.7348 | | 1.0093 | 5.56 | 1000 | 1.1455 | 0.7664 | 0.7934 | | 0.7582 | 8.33 | 1500 | 1.0140 | 0.7980 | 0.8136 | | 0.6329 | 11.11 | 2000 | 0.8708 | 0.8136 | 0.8184 | | 0.5285 | 13.89 | 2500 | 0.8894 | 0.8139 | 0.8159 | | 0.4747 | 16.67 | 3000 | 0.9908 | 0.8116 | 0.8165 | | 0.4154 | 19.44 | 3500 | 0.9260 | 0.8137 | 0.8145 | | 0.3792 | 22.22 | 4000 | 0.9264 | 0.8161 | 0.8156 | | 0.3445 | 25.0 | 4500 | 0.9664 | 0.8155 | 0.8164 | | 0.3246 | 27.78 | 5000 | 0.9735 | 0.8110 | 0.8121 | | 0.3033 | 30.56 | 5500 | 0.9754 | 0.8093 | 0.8107 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
eadd3ff0113ff50849f82f6d70bcca75
sahillihas/OntoMedQA
sahillihas
bert
12
4
transformers
0
multiple-choice
true
false
false
apache-2.0
null
['medmcqa']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,311
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OntoMedQA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the medmcqa dataset. It achieves the following results on the evaluation set: - Loss: 1.2874 - Accuracy: 0.4118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 187 | 1.2418 | 0.2941 | | No log | 2.0 | 374 | 1.1449 | 0.4706 | | 0.8219 | 3.0 | 561 | 1.2874 | 0.4118 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
cdc945e58c1264a88d7bcae3f571389a
cansen88/turkishReviews_5_topic
cansen88
gpt2
9
2
transformers
0
text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,574
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # turkishReviews_5_topic This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.8939 - Validation Loss: 6.8949 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 756, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.0049 | 6.8949 | 0 | | 6.8943 | 6.8949 | 1 | | 6.8939 | 6.8949 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
9ca7dc140af910939259097709520904
jonatasgrosman/exp_w2v2t_fa_wavlm_s527
jonatasgrosman
wavlm
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fa']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'fa']
false
true
true
439
false
# exp_w2v2t_fa_wavlm_s527 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (fa)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
6740a953c8824985296d13f071fc3513
Geotrend/bert-base-en-nl-cased
Geotrend
bert
8
2
transformers
0
fill-mask
true
true
true
apache-2.0
['multilingual']
['wikipedia']
null
1
1
0
0
0
0
0
[]
false
true
true
1,292
false
# bert-base-en-nl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-nl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-nl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grรฉgoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
f5b472db6d12b18037c97caed276d2c7
coreml/coreml-Inkpunk-Diffusion
coreml
null
4
0
null
2
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['coreml', 'stable-diffusion', 'text-to-image']
false
true
true
1,328
false
# Core ML Converted Model This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).<br> Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> `original` version is only compatible with CPU & GPU option. # Inkpunk Diffusion Finetuned Stable Diffusion model trained on dreambooth. Vaguely inspired by Gorillaz, FLCL, and Yoji Shinkawa. Use **_nvinkpunk_** in your prompts. # Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run Inkpunk-Diffusion: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/Inkpunk-Diffusion) # Sample images ![output Samples v2](https://huggingface.co/Envvi/Inkpunk-Diffusion/resolve/main/inkpunk-v2-samples-1.png) ![output Samples v2](https://huggingface.co/Envvi/Inkpunk-Diffusion/resolve/main/inkpunk-v2-samples-2.png)
3f83914dd0beaba0bffba5de8b05204a
eunyounglee/mBART_translator_kobart_2
eunyounglee
bart
11
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,935
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBART_translator_kobart_2 This model is a fine-tuned version of [hyunwoongko/kobart](https://huggingface.co/hyunwoongko/kobart) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0971 - Bleu: 34.7406 - Gen Len: 19.863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7514 | 1.0 | 1912 | 0.3009 | 33.1304 | 19.8465 | | 0.4925 | 2.0 | 3824 | 0.2213 | 33.7817 | 19.8541 | | 0.3893 | 3.0 | 5736 | 0.1789 | 34.1249 | 19.8577 | | 0.3328 | 4.0 | 7648 | 0.1555 | 34.3074 | 19.8598 | | 0.2896 | 5.0 | 9560 | 0.1375 | 34.4127 | 19.8585 | | 0.2614 | 6.0 | 11472 | 0.1240 | 34.5061 | 19.8604 | | 0.2292 | 7.0 | 13384 | 0.1116 | 34.6476 | 19.8632 | | 0.2098 | 8.0 | 15296 | 0.1050 | 34.6956 | 19.863 | | 0.1967 | 9.0 | 17208 | 0.0995 | 34.7304 | 19.863 | | 0.1812 | 10.0 | 19120 | 0.0971 | 34.7406 | 19.863 | ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
7c2646968f58eb500d5be1b66920d93b
shpotes/xls-r-et
shpotes
wav2vec2
96
11
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['et']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_7_0', 'generated_from_trainer', 'robust-speech-event', 'et', 'hf-asr-leaderboard']
true
true
true
1,795
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 - Wer: 0.3475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3825 | 12.5 | 500 | 0.4022 | 0.5059 | | 0.1592 | 25.0 | 1000 | 0.4585 | 0.4456 | | 0.1215 | 37.5 | 1500 | 0.4550 | 0.4164 | | 0.0972 | 50.0 | 2000 | 0.4725 | 0.4088 | | 0.0731 | 62.5 | 2500 | 0.4568 | 0.3824 | | 0.0527 | 75.0 | 3000 | 0.4712 | 0.3653 | | 0.0428 | 87.5 | 3500 | 0.4813 | 0.3520 | | 0.0383 | 100.0 | 4000 | 0.4835 | 0.3475 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
d96aeb1250f62fe5055ca34fdf49605d
Geotrend/bert-base-ja-cased
Geotrend
bert
8
8
transformers
0
fill-mask
true
true
true
apache-2.0
['ja']
['wikipedia']
null
0
0
0
0
0
0
0
[]
false
true
true
1,283
false
# bert-base-ja-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-ja-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-ja-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grรฉgoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
e19827a5a70fabf53a113f8f4b07aa52
hieuit7/wav2vec2-common_voice-vi-demo
hieuit7
wav2vec2
26
7
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['vi']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'common_voice', 'generated_from_trainer']
true
true
true
1,361
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-vi-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - VI dataset. It achieves the following results on the evaluation set: - Loss: 3.4768 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 7.67 | 100 | 5.9657 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu116 - Datasets 2.6.1 - Tokenizers 0.13.1
94a33dc121fd825cdaf822d8331e43e3
pere/whisper-medium-NST-uf-linlr
pere
whisper
12
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['hf-asr-leaderboard', 'automatic-speech-recognition', 'NbAiLab/NST', 'generated_from_trainer']
true
true
true
2,489
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-NST-uf-linlr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the NBAILAB/NST - NO-CLOSE dataset. It achieves the following results on the evaluation set: - Loss: 0.3007 - Wer: 9.1220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 72 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2046 | 0.05 | 1000 | 0.3426 | 15.2794 | | 0.148 | 0.1 | 2000 | 0.3284 | 10.8324 | | 0.121 | 0.15 | 3000 | 0.3092 | 12.8848 | | 0.1089 | 0.2 | 4000 | 0.2808 | 10.4903 | | 0.0976 | 0.25 | 5000 | 0.2617 | 9.9202 | | 0.0901 | 0.3 | 6000 | 0.2604 | 21.8928 | | 0.0834 | 0.35 | 7000 | 0.2877 | 9.3501 | | 0.0825 | 0.4 | 8000 | 0.2794 | 9.3501 | | 0.0553 | 1.05 | 9000 | 0.2845 | 9.5781 | | 0.0472 | 1.1 | 10000 | 0.2814 | 24.1733 | | 0.0409 | 1.15 | 11000 | 0.3084 | 8.0958 | | 0.041 | 1.2 | 12000 | 0.2865 | 9.2360 | | 0.0353 | 1.25 | 13000 | 0.2828 | 6.4994 | | 0.0348 | 1.3 | 14000 | 0.2708 | 7.5257 | | 0.0349 | 1.35 | 15000 | 0.2842 | 23.0331 | | 0.0361 | 1.4 | 16000 | 0.2769 | 10.1482 | | 0.0249 | 2.04 | 17000 | 0.2935 | 8.8940 | | 0.0204 | 2.09 | 18000 | 0.2874 | 12.4287 | | 0.0175 | 2.14 | 19000 | 0.2882 | 12.9989 | | 0.0197 | 2.19 | 20000 | 0.3007 | 9.1220 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
184d36b1bb6d062a5c937ca98ab8e345
research-backup/t5-base-squad-qg-default
research-backup
t5
34
4
transformers
0
text2text-generation
true
false
false
cc-by-4.0
['en']
['lmqg/qg_squad']
null
0
0
0
0
0
0
0
['question generation']
true
true
true
4,035
false
# Model Card of `research-backup/t5-base-squad-qg-default` This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). This model is fine-tuned without parameter search (default configuration is taken from [ERNIE-GEN](https://arxiv.org/abs/2001.11314)). ### Overview - **Language model:** [t5-base](https://huggingface.co/t5-base) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="research-backup/t5-base-squad-qg-default") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "research-backup/t5-base-squad-qg-default") output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/research-backup/t5-base-squad-qg-default/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:---------------------------------------------------------------| | BERTScore | 90.74 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 57.68 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 41.74 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 32.17 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 25.41 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 26.58 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 64.46 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 52.75 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: ['qg'] - model: t5-base - max_length: 512 - max_length_output: 32 - epoch: 10 - batch: 32 - lr: 1.25e-05 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 2 - label_smoothing: 0.1 The full configuration can be found at [fine-tuning config file](https://huggingface.co/research-backup/t5-base-squad-qg-default/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
efc9699b27493d726d5840829969b91d
Helsinki-NLP/opus-mt-pon-fr
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-pon-fr * source languages: pon * target languages: fr * OPUS readme: [pon-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pon-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pon-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pon.fr | 24.4 | 0.410 |
caaa3f38540ad20f5710e5be4a84469e
amyeroberts/my_food_classifier
amyeroberts
vit
5
2
transformers
0
image-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,464
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amyeroberts/my_food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5833 - Validation Loss: 4.5438 - Train Accuracy: 0.125 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 4.5833 | 4.5438 | 0.125 | 0 | ### Framework versions - Transformers 4.26.0.dev0 - TensorFlow 2.10.0 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
2752c5bc835c1687102b940a0014b441
Wizounovziki/t5-small-finetuned-xsum
Wizounovziki
t5
12
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,252
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 13 | 2.9185 | 20.6059 | 0.7473 | 20.5288 | 20.5999 | 18.87 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cabcc170f961fe1af890fe6662b0469c
Okyx/NERTESTINGCAROLINE1
Okyx
bert
8
15
transformers
0
token-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,501
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NERTESTINGCAROLINE1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0022 - Validation Loss: 0.0049 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10395, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0774 | 0.0125 | 0 | | 0.0097 | 0.0078 | 1 | | 0.0055 | 0.0058 | 2 | | 0.0033 | 0.0056 | 3 | | 0.0022 | 0.0049 | 4 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
d7c3981d68e9204230f2976e122f9f67
stevems1/distilroberta-base-SmithsModel2
stevems1
roberta
9
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,265
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-SmithsModel2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8736 | 1.0 | 3632 | 1.6643 | | 1.5808 | 2.0 | 7264 | 1.4663 | | 1.498 | 3.0 | 10896 | 1.4090 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
5016c3a99c4e02a093d671a59768d05a
smangrul/xls-r-mr-model
smangrul
null
25
2
null
1
automatic-speech-recognition
true
false
false
apache-2.0
['mr']
['mozilla-foundation/common_voice_8_0', 'openslr', 'shivam/marathi_samanantar_processed', 'shivam/marathi_pib_processed', 'opus100', 'tatoeba', 'tapaco']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'openslr', 'generated_from_trainer', 'robust-speech-event', 'hf-asr-leaderboard']
true
true
true
3,339
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR and OPENSLR - SLR64 - MR datasets. It achieves the following results on the evaluation set: - Loss: 0.494580 - Wer: 0.401524 ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM | |---|---| | 40.513437625350984 | 31.04693140794224 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |---|---|---|---| | 400 | 3.794000 | 3.532227 | 1.000000 | | 800 | 3.362400 | 3.359044 | 1.000000 | | 1200 | 2.293900 | 1.011279 | 0.829924 | | 1600 | 1.233000 | 0.502743 | 0.593662 | | 2000 | 0.962600 | 0.412519 | 0.496992 | | 2400 | 0.831800 | 0.402903 | 0.493783 | | 2800 | 0.737000 | 0.389773 | 0.469314 | | 3200 | 0.677100 | 0.373987 | 0.436021 | | 3600 | 0.634400 | 0.383823 | 0.432010 | | 4000 | 0.586000 | 0.375610 | 0.419575 | | 4400 | 0.561000 | 0.387891 | 0.418371 | | 4800 | 0.518500 | 0.386357 | 0.417569 | | 5200 | 0.515300 | 0.415069 | 0.430004 | | 5600 | 0.478100 | 0.399211 | 0.408744 | | 6000 | 0.468100 | 0.424542 | 0.402327 | | 6400 | 0.439400 | 0.430979 | 0.410750 | | 6800 | 0.429600 | 0.427700 | 0.409146 | | 7200 | 0.400300 | 0.451111 | 0.419976 | | 7600 | 0.395100 | 0.463446 | 0.405134 | | 8000 | 0.381800 | 0.454752 | 0.407942 | | 8400 | 0.371500 | 0.461547 | 0.404733 | | 8800 | 0.362500 | 0.461543 | 0.411151 | | 9200 | 0.338200 | 0.468299 | 0.417168 | | 9600 | 0.338800 | 0.480989 | 0.412355 | | 10000 | 0.317600 | 0.475700 | 0.410750 | | 10400 | 0.315100 | 0.478920 | 0.403530 | | 10800 | 0.296200 | 0.480600 | 0.398315 | | 11200 | 0.299000 | 0.477083 | 0.393502 | | 11600 | 0.290000 | 0.465646 | 0.393903 | | 12000 | 0.290900 | 0.490041 | 0.405937 | | 12400 | 0.275600 | 0.489354 | 0.399519 | | 12800 | 0.272600 | 0.494580 | 0.395909 | | 13200 | 0.265900 | 0.497918 | 0.397112 | | 13600 | 0.266300 | 0.498627 | 0.397513 | | 14000 | 0.259600 | 0.504610 | 0.401524 | #### Evaluation Commands To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id smangrul/xls-r-mr-model --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
0c1c8f1acc7cfdeea66f6b16f64a449d
selen/distilbert-base-uncased-finetuned-cola
selen
distilbert
12
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
926
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
247934f63edc54db7339b9ed6cca782d
jonatasgrosman/wav2vec2-large-xlsr-53-german
jonatasgrosman
wav2vec2
24
2,913
transformers
6
automatic-speech-recognition
true
false
true
apache-2.0
['de']
['common_voice', 'mozilla-foundation/common_voice_6_0']
null
0
0
0
0
1
1
0
['audio', 'automatic-speech-recognition', 'de', 'hf-asr-leaderboard', 'mozilla-foundation/common_voice_6_0', 'robust-speech-event', 'speech', 'xlsr-fine-tuning-week']
true
true
true
4,468
false
# Fine-tuned XLSR-53 large model for speech recognition in German Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-german") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "de" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-german" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS. | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS | | ES KOMMT ZUM SHOWDOWN IN GSTAAD. | ES KOMMT ZUG STUNDEDAUTENESTERKT | | IHRE FOTOSTRECKEN ERSCHIENEN IN MODEMAGAZINEN WIE DER VOGUE, HARPERโ€™S BAZAAR UND MARIE CLAIRE. | IHRE FOTELSTRECKEN ERSCHIENEN MIT MODEMAGAZINEN WIE DER VALG AT DAS BASIN MA RIQUAIR | | FELIPE HAT EINE AUCH FรœR MONARCHEN UNGEWร–HNLICH LANGE TITELLISTE. | FELIPPE HAT EINE AUCH FรœR MONACHEN UNGEWร–HNLICH LANGE TITELLISTE | | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET. | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET M | | WAS SOLLS, ICH BIN BEREIT. | WAS SOLL'S ICH BIN BEREIT | | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN, DIE MITEINANDER VERBUNDEN SIND. | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN DIE MITEINANDER VERBUNDEN SIND | | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM. | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM | | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND. | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND | | SIE WAR DIE COUSINE VON CARL MARIA VON WEBER. | SIE WAR DIE COUSINE VON KARL-MARIA VON WEBER | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset mozilla-foundation/common_voice_6_0 --config de --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-german, title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}erman}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german}}, year={2021} } ```
d3d8d97fba1ca050d75eaa42bdd14dad
gagan3012/wav2vec2-xlsr-chuvash
gagan3012
wav2vec2
13
8
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['cv']
['common_voice']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
4,037
false
# Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cv", split="test") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Results: Prediction: ['ะฟั€ะพะตะบั‚ะฟะฐ ะบะธะปำ—ัˆำณะปะปำ—ะฝ ั‚ำ—ะปำ— ะผะตั€ะพะฟั€ะธัั‚ะธ ะธั€ั‚ะตั€ะผะตะปะปะต', 'ั‚ะฒฤƒั€ะฐ รงะฐะบ ะฟะปะฐะฝะตั‚ะฐ ะผะธะฝั‚ำ— ะฟัƒัะฝะธ ะบะฐะปะปะตะฝะฝะฐะฝะฐ'] Reference: ['ะŸั€ะพะตะบั‚ะฟะฐ ะบะธะปำ—ัˆำณะปะปำ—ะฝ, ั‚ำ—ั€ะปำ— ะผะตั€ะพะฟั€ะธัั‚ะธ ะธั€ั‚ั‚ะตั€ะผะตะปะปะต.', 'ร‡ะฐะบ ะฟะปะฐะฝะตั‚ะฐ ะฟะธั‚ฤ• ะฟัƒัะฝ ะธะบะบะตะฝ.'] ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re !mkdir cer !wget -O cer/cer.py https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese/raw/main/cer.py test_dataset = load_dataset("common_voice", "cv", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\โ€œ]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 48.40 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1A7Y20c1QkSHfdOmLXPMiOEpwlTjDZ7m5?usp=sharing)
cd10fef44f70613a6075301c35cd60e8
TrLOX/gpt2-tdk
TrLOX
gpt2
13
6
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,013
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgpt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3 hello hello
4669ed1306c54fc0d7597ae07d19c197
timm/efficientformer_l7.snap_dist_in1k
timm
null
4
17
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
3,520
false
# Model card for efficientformer_l7.snap_dist_in1k A EfficientFormer image classification model. Pretrained with distillation on ImageNet-1k. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 82.2 - GMACs: 10.2 - Activations (M): 24.5 - Image size: 224 x 224 - **Original:** https://github.com/snap-research/EfficientFormer - **Papers:** - EfficientFormer: Vision Transformers at MobileNet Speed: https://arxiv.org/abs/2206.01191 - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('efficientformer_l7.snap_dist_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'efficientformer_l7.snap_dist_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison |model |top1 |top5 |param_count|img_size| |-----------------------------------|------|------|-----------|--------| |efficientformerv2_l.snap_dist_in1k |83.628|96.54 |26.32 |224 | |efficientformer_l7.snap_dist_in1k |83.368|96.534|82.23 |224 | |efficientformer_l3.snap_dist_in1k |82.572|96.24 |31.41 |224 | |efficientformerv2_s2.snap_dist_in1k|82.128|95.902|12.71 |224 | |efficientformer_l1.snap_dist_in1k |80.496|94.984|12.29 |224 | |efficientformerv2_s1.snap_dist_in1k|79.698|94.698|6.19 |224 | |efficientformerv2_s0.snap_dist_in1k|76.026|92.77 |3.6 |224 | ## Citation ```bibtex @article{li2022efficientformer, title={EfficientFormer: Vision Transformers at MobileNet Speed}, author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Ju and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian}, journal={arXiv preprint arXiv:2206.01191}, year={2022} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
ca6e13877ada156c44896ce39a80456c
sanjin7/distilbert-base-uncased_za_pravo
sanjin7
distilbert
6
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
929
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_za_pravo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.25.1 - Pytorch 2.0.0.dev20221215+cpu - Datasets 2.7.1 - Tokenizers 0.13.2
1faf1c91ce275de4216534db043d220d
anas-awadalla/roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0
anas-awadalla
null
19
0
null
0
null
false
false
false
mit
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
987
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
c59559552b6516e4ba9350201bffc9c1
vladimirvincan/wav2vec2-common_voice-sl-demo
vladimirvincan
sew-d
15
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['sl']
['common_voice']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'common_voice', 'generated_from_trainer']
true
true
true
23,753
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-sl-demo This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the COMMON_VOICE - SL dataset. It achieves the following results on the evaluation set: - Loss: 4.5598 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | No log | 0.04 | 100 | 3.3430 | 1.0 | | No log | 0.08 | 200 | 3.2866 | 1.0 | | No log | 0.12 | 300 | 3.2937 | 1.0 | | No log | 0.15 | 400 | 3.5030 | 1.0 | | 3.994 | 0.19 | 500 | 3.4446 | 1.0 | | 3.994 | 0.23 | 600 | 3.1687 | 1.0 | | 3.994 | 0.27 | 700 | 3.3227 | 1.0 | | 3.994 | 0.31 | 800 | 3.2814 | 1.0 | | 3.994 | 0.35 | 900 | 3.2993 | 1.0 | | 3.0371 | 0.39 | 1000 | 3.1485 | 1.0 | | 3.0371 | 0.42 | 1100 | 3.1707 | 1.0 | | 3.0371 | 0.46 | 1200 | 3.1262 | 1.0 | | 3.0371 | 0.5 | 1300 | 3.3466 | 1.0 | | 3.0371 | 0.54 | 1400 | 3.3169 | 1.0 | | 3.0239 | 0.58 | 1500 | 3.2253 | 1.0 | | 3.0239 | 0.62 | 1600 | 3.1882 | 1.0 | | 3.0239 | 0.66 | 1700 | 3.1660 | 1.0 | | 3.0239 | 0.69 | 1800 | 3.4718 | 1.0 | | 3.0239 | 0.73 | 1900 | 3.2887 | 1.0 | | 3.0146 | 0.77 | 2000 | 3.1325 | 1.0 | | 3.0146 | 0.81 | 2100 | 3.0939 | 1.0 | | 3.0146 | 0.85 | 2200 | 3.1273 | 1.0 | | 3.0146 | 0.89 | 2300 | 3.1243 | 1.0 | | 3.0146 | 0.93 | 2400 | 3.1530 | 1.0 | | 3.0129 | 0.96 | 2500 | 3.1433 | 1.0 | | 3.0129 | 1.0 | 2600 | 3.1435 | 1.0 | | 3.0129 | 1.04 | 2700 | 3.3827 | 1.0 | | 3.0129 | 1.08 | 2800 | 3.1542 | 1.0 | | 3.0129 | 1.12 | 2900 | 3.1432 | 1.0 | | 2.9995 | 1.16 | 3000 | 3.2516 | 1.0 | | 2.9995 | 1.2 | 3100 | 3.3170 | 1.0 | | 2.9995 | 1.23 | 3200 | 3.2760 | 1.0 | | 2.9995 | 1.27 | 3300 | 3.2006 | 1.0 | | 2.9995 | 1.31 | 3400 | 3.0922 | 1.0 | | 3.0123 | 1.35 | 3500 | 3.1529 | 1.0 | | 3.0123 | 1.39 | 3600 | 3.1523 | 1.0 | | 3.0123 | 1.43 | 3700 | 3.4012 | 1.0 | | 3.0123 | 1.46 | 3800 | 3.1944 | 1.0 | | 3.0123 | 1.5 | 3900 | 3.1888 | 1.0 | | 2.9908 | 1.54 | 4000 | 3.1911 | 1.0 | | 2.9908 | 1.58 | 4100 | 3.2839 | 1.0 | | 2.9908 | 1.62 | 4200 | 3.1940 | 1.0 | | 2.9908 | 1.66 | 4300 | 3.2887 | 1.0 | | 2.9908 | 1.7 | 4400 | 3.2933 | 1.0 | | 2.9882 | 1.73 | 4500 | 3.2014 | 1.0 | | 2.9882 | 1.77 | 4600 | 3.2336 | 1.0 | | 2.9882 | 1.81 | 4700 | 3.2156 | 1.0 | | 2.9882 | 1.85 | 4800 | 3.2428 | 1.0 | | 2.9882 | 1.89 | 4900 | 3.2608 | 1.0 | | 2.9822 | 1.93 | 5000 | 3.2016 | 1.0 | | 2.9822 | 1.97 | 5100 | 3.1978 | 1.0 | | 2.9822 | 2.0 | 5200 | 3.2168 | 1.0 | | 2.9822 | 2.04 | 5300 | 3.3620 | 1.0 | | 2.9822 | 2.08 | 5400 | 3.3829 | 1.0 | | 2.9791 | 2.12 | 5500 | 3.2683 | 1.0 | | 2.9791 | 2.16 | 5600 | 3.3418 | 1.0 | | 2.9791 | 2.2 | 5700 | 3.2355 | 1.0 | | 2.9791 | 2.24 | 5800 | 3.3201 | 1.0 | | 2.9791 | 2.27 | 5900 | 3.2602 | 1.0 | | 2.9935 | 2.31 | 6000 | 3.2714 | 1.0 | | 2.9935 | 2.35 | 6100 | 3.2194 | 1.0 | | 2.9935 | 2.39 | 6200 | 3.2859 | 1.0 | | 2.9935 | 2.43 | 6300 | 3.3901 | 1.0 | | 2.9935 | 2.47 | 6400 | 3.1497 | 1.0 | | 3.4855 | 2.51 | 6500 | 3.1839 | 1.0 | | 3.4855 | 2.54 | 6600 | 4.5712 | 1.0 | | 3.4855 | 2.58 | 6700 | 4.5742 | 1.0 | | 3.4855 | 2.62 | 6800 | 4.6043 | 1.0 | | 3.4855 | 2.66 | 6900 | 4.6102 | 1.0 | | 4.2255 | 2.7 | 7000 | 4.6669 | 1.0 | | 4.2255 | 2.74 | 7100 | 4.8863 | 1.0 | | 4.2255 | 2.78 | 7200 | 4.9927 | 1.0 | | 4.2255 | 2.81 | 7300 | 4.6027 | 1.0 | | 4.2255 | 2.85 | 7400 | 4.5869 | 1.0 | | 4.1848 | 2.89 | 7500 | 4.5670 | 1.0 | | 4.1848 | 2.93 | 7600 | 4.6911 | 1.0 | | 4.1848 | 2.97 | 7700 | 4.6785 | 1.0 | | 4.1848 | 3.01 | 7800 | 4.7985 | 1.0 | | 4.1848 | 3.05 | 7900 | 4.6301 | 1.0 | | 4.189 | 3.08 | 8000 | 4.5125 | 1.0 | | 4.189 | 3.12 | 8100 | 4.5072 | 1.0 | | 4.189 | 3.16 | 8200 | 4.5629 | 1.0 | | 4.189 | 3.2 | 8300 | 4.6750 | 1.0 | | 4.189 | 3.24 | 8400 | 4.6424 | 1.0 | | 4.187 | 3.28 | 8500 | 4.5614 | 1.0 | | 4.187 | 3.32 | 8600 | 4.5842 | 1.0 | | 4.187 | 3.35 | 8700 | 4.5979 | 1.0 | | 4.187 | 3.39 | 8800 | 4.6466 | 1.0 | | 4.187 | 3.43 | 8900 | 4.6582 | 1.0 | | 4.1585 | 3.47 | 9000 | 4.6266 | 1.0 | | 4.1585 | 3.51 | 9100 | 4.5829 | 1.0 | | 4.1585 | 3.55 | 9200 | 4.6936 | 1.0 | | 4.1585 | 3.59 | 9300 | 4.5669 | 1.0 | | 4.1585 | 3.62 | 9400 | 4.5689 | 1.0 | | 4.1351 | 3.66 | 9500 | 4.7381 | 1.0 | | 4.1351 | 3.7 | 9600 | 4.6701 | 1.0 | | 4.1351 | 3.74 | 9700 | 4.6769 | 1.0 | | 4.1351 | 3.78 | 9800 | 4.5556 | 1.0 | | 4.1351 | 3.82 | 9900 | 4.5498 | 1.0 | | 4.1709 | 3.86 | 10000 | 4.6919 | 1.0 | | 4.1709 | 3.89 | 10100 | 4.6067 | 1.0 | | 4.1709 | 3.93 | 10200 | 4.6368 | 1.0 | | 4.1709 | 3.97 | 10300 | 4.6049 | 1.0 | | 4.1709 | 4.01 | 10400 | 4.6033 | 1.0 | | 4.1901 | 4.05 | 10500 | 4.6119 | 1.0 | | 4.1901 | 4.09 | 10600 | 4.5714 | 1.0 | | 4.1901 | 4.12 | 10700 | 4.5847 | 1.0 | | 4.1901 | 4.16 | 10800 | 4.6093 | 1.0 | | 4.1901 | 4.2 | 10900 | 4.5800 | 1.0 | | 4.1907 | 4.24 | 11000 | 4.5871 | 1.0 | | 4.1907 | 4.28 | 11100 | 4.6121 | 1.0 | | 4.1907 | 4.32 | 11200 | 4.5385 | 1.0 | | 4.1907 | 4.36 | 11300 | 4.6086 | 1.0 | | 4.1907 | 4.39 | 11400 | 4.5917 | 1.0 | | 4.1686 | 4.43 | 11500 | 4.5608 | 1.0 | | 4.1686 | 4.47 | 11600 | 4.6417 | 1.0 | | 4.1686 | 4.51 | 11700 | 4.6308 | 1.0 | | 4.1686 | 4.55 | 11800 | 4.6191 | 1.0 | | 4.1686 | 4.59 | 11900 | 4.6063 | 1.0 | | 4.1551 | 4.63 | 12000 | 4.6244 | 1.0 | | 4.1551 | 4.66 | 12100 | 4.6262 | 1.0 | | 4.1551 | 4.7 | 12200 | 4.5864 | 1.0 | | 4.1551 | 4.74 | 12300 | 4.5340 | 1.0 | | 4.1551 | 4.78 | 12400 | 4.6080 | 1.0 | | 4.1571 | 4.82 | 12500 | 4.5470 | 1.0 | | 4.1571 | 4.86 | 12600 | 4.6032 | 1.0 | | 4.1571 | 4.9 | 12700 | 4.6595 | 1.0 | | 4.1571 | 4.93 | 12800 | 4.7098 | 1.0 | | 4.1571 | 4.97 | 12900 | 4.6056 | 1.0 | | 4.1652 | 5.01 | 13000 | 4.5714 | 1.0 | | 4.1652 | 5.05 | 13100 | 4.5000 | 1.0 | | 4.1652 | 5.09 | 13200 | 4.5730 | 1.0 | | 4.1652 | 5.13 | 13300 | 4.5425 | 1.0 | | 4.1652 | 5.17 | 13400 | 4.5585 | 1.0 | | 4.1694 | 5.2 | 13500 | 4.6677 | 1.0 | | 4.1694 | 5.24 | 13600 | 4.5399 | 1.0 | | 4.1694 | 5.28 | 13700 | 4.6873 | 1.0 | | 4.1694 | 5.32 | 13800 | 4.5722 | 1.0 | | 4.1694 | 5.36 | 13900 | 4.5122 | 1.0 | | 4.1541 | 5.4 | 14000 | 4.5384 | 1.0 | | 4.1541 | 5.44 | 14100 | 4.6260 | 1.0 | | 4.1541 | 5.47 | 14200 | 4.5863 | 1.0 | | 4.1541 | 5.51 | 14300 | 4.5343 | 1.0 | | 4.1541 | 5.55 | 14400 | 4.5562 | 1.0 | | 4.1683 | 5.59 | 14500 | 4.6076 | 1.0 | | 4.1683 | 5.63 | 14600 | 4.5744 | 1.0 | | 4.1683 | 5.67 | 14700 | 4.6165 | 1.0 | | 4.1683 | 5.71 | 14800 | 4.5068 | 1.0 | | 4.1683 | 5.74 | 14900 | 4.5309 | 1.0 | | 4.1641 | 5.78 | 15000 | 4.6560 | 1.0 | | 4.1641 | 5.82 | 15100 | 4.4879 | 1.0 | | 4.1641 | 5.86 | 15200 | 4.6260 | 1.0 | | 4.1641 | 5.9 | 15300 | 4.5928 | 1.0 | | 4.1641 | 5.94 | 15400 | 4.6322 | 1.0 | | 4.1617 | 5.98 | 15500 | 4.5097 | 1.0 | | 4.1617 | 6.01 | 15600 | 4.6016 | 1.0 | | 4.1617 | 6.05 | 15700 | 4.6230 | 1.0 | | 4.1617 | 6.09 | 15800 | 4.5161 | 1.0 | | 4.1617 | 6.13 | 15900 | 4.5222 | 1.0 | | 4.1568 | 6.17 | 16000 | 4.6096 | 1.0 | | 4.1568 | 6.21 | 16100 | 4.5736 | 1.0 | | 4.1568 | 6.25 | 16200 | 4.5205 | 1.0 | | 4.1568 | 6.28 | 16300 | 4.5903 | 1.0 | | 4.1568 | 6.32 | 16400 | 4.5593 | 1.0 | | 4.1525 | 6.36 | 16500 | 4.5578 | 1.0 | | 4.1525 | 6.4 | 16600 | 4.5292 | 1.0 | | 4.1525 | 6.44 | 16700 | 4.5798 | 1.0 | | 4.1525 | 6.48 | 16800 | 4.5644 | 1.0 | | 4.1525 | 6.52 | 16900 | 4.5598 | 1.0 | | 4.179 | 6.55 | 17000 | 4.5607 | 1.0 | | 4.179 | 6.59 | 17100 | 4.6244 | 1.0 | | 4.179 | 6.63 | 17200 | 4.5471 | 1.0 | | 4.179 | 6.67 | 17300 | 4.5280 | 1.0 | | 4.179 | 6.71 | 17400 | 4.5295 | 1.0 | | 4.1605 | 6.75 | 17500 | 4.5429 | 1.0 | | 4.1605 | 6.78 | 17600 | 4.6017 | 1.0 | | 4.1605 | 6.82 | 17700 | 4.5794 | 1.0 | | 4.1605 | 6.86 | 17800 | 4.5590 | 1.0 | | 4.1605 | 6.9 | 17900 | 4.6594 | 1.0 | | 4.1751 | 6.94 | 18000 | 4.5115 | 1.0 | | 4.1751 | 6.98 | 18100 | 4.5160 | 1.0 | | 4.1751 | 7.02 | 18200 | 4.5009 | 1.0 | | 4.1751 | 7.05 | 18300 | 4.5132 | 1.0 | | 4.1751 | 7.09 | 18400 | 4.5412 | 1.0 | | 4.141 | 7.13 | 18500 | 4.6033 | 1.0 | | 4.141 | 7.17 | 18600 | 4.5443 | 1.0 | | 4.141 | 7.21 | 18700 | 4.5490 | 1.0 | | 4.141 | 7.25 | 18800 | 4.6165 | 1.0 | | 4.141 | 7.29 | 18900 | 4.5632 | 1.0 | | 4.1622 | 7.32 | 19000 | 4.5154 | 1.0 | | 4.1622 | 7.36 | 19100 | 4.5596 | 1.0 | | 4.1622 | 7.4 | 19200 | 4.5795 | 1.0 | | 4.1622 | 7.44 | 19300 | 4.5098 | 1.0 | | 4.1622 | 7.48 | 19400 | 4.5631 | 1.0 | | 4.1382 | 7.52 | 19500 | 4.5778 | 1.0 | | 4.1382 | 7.56 | 19600 | 4.5816 | 1.0 | | 4.1382 | 7.59 | 19700 | 4.5228 | 1.0 | | 4.1382 | 7.63 | 19800 | 4.5351 | 1.0 | | 4.1382 | 7.67 | 19900 | 4.5684 | 1.0 | | 4.1672 | 7.71 | 20000 | 4.5363 | 1.0 | | 4.1672 | 7.75 | 20100 | 4.5975 | 1.0 | | 4.1672 | 7.79 | 20200 | 4.5493 | 1.0 | | 4.1672 | 7.83 | 20300 | 4.5319 | 1.0 | | 4.1672 | 7.86 | 20400 | 4.5349 | 1.0 | | 4.171 | 7.9 | 20500 | 4.5395 | 1.0 | | 4.171 | 7.94 | 20600 | 4.5121 | 1.0 | | 4.171 | 7.98 | 20700 | 4.5475 | 1.0 | | 4.171 | 8.02 | 20800 | 4.5278 | 1.0 | | 4.171 | 8.06 | 20900 | 4.4753 | 1.0 | | 4.1569 | 8.1 | 21000 | 4.5646 | 1.0 | | 4.1569 | 8.13 | 21100 | 4.5385 | 1.0 | | 4.1569 | 8.17 | 21200 | 4.5302 | 1.0 | | 4.1569 | 8.21 | 21300 | 4.4978 | 1.0 | | 4.1569 | 8.25 | 21400 | 4.5313 | 1.0 | | 4.1708 | 8.29 | 21500 | 4.5062 | 1.0 | | 4.1708 | 8.33 | 21600 | 4.5365 | 1.0 | | 4.1708 | 8.37 | 21700 | 4.4771 | 1.0 | | 4.1708 | 8.4 | 21800 | 4.5899 | 1.0 | | 4.1708 | 8.44 | 21900 | 4.5667 | 1.0 | | 4.1756 | 8.48 | 22000 | 4.5478 | 1.0 | | 4.1756 | 8.52 | 22100 | 4.4779 | 1.0 | | 4.1756 | 8.56 | 22200 | 4.5599 | 1.0 | | 4.1756 | 8.6 | 22300 | 4.4761 | 1.0 | | 4.1756 | 8.64 | 22400 | 4.5487 | 1.0 | | 4.1541 | 8.67 | 22500 | 4.5875 | 1.0 | | 4.1541 | 8.71 | 22600 | 4.5143 | 1.0 | | 4.1541 | 8.75 | 22700 | 4.5563 | 1.0 | | 4.1541 | 8.79 | 22800 | 4.5486 | 1.0 | | 4.1541 | 8.83 | 22900 | 4.5503 | 1.0 | | 4.1424 | 8.87 | 23000 | 4.5155 | 1.0 | | 4.1424 | 8.91 | 23100 | 4.5571 | 1.0 | | 4.1424 | 8.94 | 23200 | 4.5171 | 1.0 | | 4.1424 | 8.98 | 23300 | 4.5438 | 1.0 | | 4.1424 | 9.02 | 23400 | 4.4792 | 1.0 | | 4.154 | 9.06 | 23500 | 4.5598 | 1.0 | | 4.154 | 9.1 | 23600 | 4.5516 | 1.0 | | 4.154 | 9.14 | 23700 | 4.5512 | 1.0 | | 4.154 | 9.18 | 23800 | 4.5392 | 1.0 | | 4.154 | 9.21 | 23900 | 4.5474 | 1.0 | | 4.1573 | 9.25 | 24000 | 4.5573 | 1.0 | | 4.1573 | 9.29 | 24100 | 4.5027 | 1.0 | | 4.1573 | 9.33 | 24200 | 4.5666 | 1.0 | | 4.1573 | 9.37 | 24300 | 4.4937 | 1.0 | | 4.1573 | 9.41 | 24400 | 4.5804 | 1.0 | | 4.1503 | 9.44 | 24500 | 4.5279 | 1.0 | | 4.1503 | 9.48 | 24600 | 4.4996 | 1.0 | | 4.1503 | 9.52 | 24700 | 4.5425 | 1.0 | | 4.1503 | 9.56 | 24800 | 4.5450 | 1.0 | | 4.1503 | 9.6 | 24900 | 4.5324 | 1.0 | | 4.1342 | 9.64 | 25000 | 4.5407 | 1.0 | | 4.1342 | 9.68 | 25100 | 4.5086 | 1.0 | | 4.1342 | 9.71 | 25200 | 4.5052 | 1.0 | | 4.1342 | 9.75 | 25300 | 4.5422 | 1.0 | | 4.1342 | 9.79 | 25400 | 4.6180 | 1.0 | | 4.1745 | 9.83 | 25500 | 4.5330 | 1.0 | | 4.1745 | 9.87 | 25600 | 4.5291 | 1.0 | | 4.1745 | 9.91 | 25700 | 4.5389 | 1.0 | | 4.1745 | 9.95 | 25800 | 4.4924 | 1.0 | | 4.1745 | 9.98 | 25900 | 4.5381 | 1.0 | | 4.1648 | 10.02 | 26000 | 4.5042 | 1.0 | | 4.1648 | 10.06 | 26100 | 4.5266 | 1.0 | | 4.1648 | 10.1 | 26200 | 4.5485 | 1.0 | | 4.1648 | 10.14 | 26300 | 4.5485 | 1.0 | | 4.1648 | 10.18 | 26400 | 4.5801 | 1.0 | | 4.1616 | 10.22 | 26500 | 4.5290 | 1.0 | | 4.1616 | 10.25 | 26600 | 4.5198 | 1.0 | | 4.1616 | 10.29 | 26700 | 4.5473 | 1.0 | | 4.1616 | 10.33 | 26800 | 4.5708 | 1.0 | | 4.1616 | 10.37 | 26900 | 4.5493 | 1.0 | | 4.1643 | 10.41 | 27000 | 4.5487 | 1.0 | | 4.1643 | 10.45 | 27100 | 4.5729 | 1.0 | | 4.1643 | 10.49 | 27200 | 4.5831 | 1.0 | | 4.1643 | 10.52 | 27300 | 4.5384 | 1.0 | | 4.1643 | 10.56 | 27400 | 4.5377 | 1.0 | | 4.1339 | 10.6 | 27500 | 4.5132 | 1.0 | | 4.1339 | 10.64 | 27600 | 4.5547 | 1.0 | | 4.1339 | 10.68 | 27700 | 4.5343 | 1.0 | | 4.1339 | 10.72 | 27800 | 4.5886 | 1.0 | | 4.1339 | 10.76 | 27900 | 4.5708 | 1.0 | | 4.15 | 10.79 | 28000 | 4.5498 | 1.0 | | 4.15 | 10.83 | 28100 | 4.5415 | 1.0 | | 4.15 | 10.87 | 28200 | 4.5294 | 1.0 | | 4.15 | 10.91 | 28300 | 4.5261 | 1.0 | | 4.15 | 10.95 | 28400 | 4.5713 | 1.0 | | 4.1442 | 10.99 | 28500 | 4.5613 | 1.0 | | 4.1442 | 11.03 | 28600 | 4.5691 | 1.0 | | 4.1442 | 11.06 | 28700 | 4.5553 | 1.0 | | 4.1442 | 11.1 | 28800 | 4.5442 | 1.0 | | 4.1442 | 11.14 | 28900 | 4.5930 | 1.0 | | 4.1304 | 11.18 | 29000 | 4.5713 | 1.0 | | 4.1304 | 11.22 | 29100 | 4.5810 | 1.0 | | 4.1304 | 11.26 | 29200 | 4.5594 | 1.0 | | 4.1304 | 11.3 | 29300 | 4.5515 | 1.0 | | 4.1304 | 11.33 | 29400 | 4.5566 | 1.0 | | 4.1402 | 11.37 | 29500 | 4.5712 | 1.0 | | 4.1402 | 11.41 | 29600 | 4.5697 | 1.0 | | 4.1402 | 11.45 | 29700 | 4.5513 | 1.0 | | 4.1402 | 11.49 | 29800 | 4.5739 | 1.0 | | 4.1402 | 11.53 | 29900 | 4.6001 | 1.0 | | 4.195 | 11.57 | 30000 | 4.5735 | 1.0 | | 4.195 | 11.6 | 30100 | 4.5603 | 1.0 | | 4.195 | 11.64 | 30200 | 4.5702 | 1.0 | | 4.195 | 11.68 | 30300 | 4.5459 | 1.0 | | 4.195 | 11.72 | 30400 | 4.5508 | 1.0 | | 4.135 | 11.76 | 30500 | 4.5375 | 1.0 | | 4.135 | 11.8 | 30600 | 4.5250 | 1.0 | | 4.135 | 11.84 | 30700 | 4.5578 | 1.0 | | 4.135 | 11.87 | 30800 | 4.5256 | 1.0 | | 4.135 | 11.91 | 30900 | 4.5443 | 1.0 | | 4.1696 | 11.95 | 31000 | 4.5366 | 1.0 | | 4.1696 | 11.99 | 31100 | 4.5574 | 1.0 | | 4.1696 | 12.03 | 31200 | 4.5514 | 1.0 | | 4.1696 | 12.07 | 31300 | 4.5625 | 1.0 | | 4.1696 | 12.1 | 31400 | 4.5378 | 1.0 | | 4.1405 | 12.14 | 31500 | 4.5773 | 1.0 | | 4.1405 | 12.18 | 31600 | 4.5503 | 1.0 | | 4.1405 | 12.22 | 31700 | 4.5753 | 1.0 | | 4.1405 | 12.26 | 31800 | 4.5475 | 1.0 | | 4.1405 | 12.3 | 31900 | 4.5768 | 1.0 | | 4.1778 | 12.34 | 32000 | 4.5732 | 1.0 | | 4.1778 | 12.37 | 32100 | 4.5518 | 1.0 | | 4.1778 | 12.41 | 32200 | 4.5752 | 1.0 | | 4.1778 | 12.45 | 32300 | 4.5878 | 1.0 | | 4.1778 | 12.49 | 32400 | 4.5367 | 1.0 | | 4.1242 | 12.53 | 32500 | 4.5586 | 1.0 | | 4.1242 | 12.57 | 32600 | 4.5744 | 1.0 | | 4.1242 | 12.61 | 32700 | 4.5373 | 1.0 | | 4.1242 | 12.64 | 32800 | 4.5624 | 1.0 | | 4.1242 | 12.68 | 32900 | 4.5548 | 1.0 | | 4.1441 | 12.72 | 33000 | 4.5713 | 1.0 | | 4.1441 | 12.76 | 33100 | 4.5437 | 1.0 | | 4.1441 | 12.8 | 33200 | 4.5435 | 1.0 | | 4.1441 | 12.84 | 33300 | 4.5863 | 1.0 | | 4.1441 | 12.88 | 33400 | 4.5653 | 1.0 | | 4.1563 | 12.91 | 33500 | 4.5587 | 1.0 | | 4.1563 | 12.95 | 33600 | 4.5508 | 1.0 | | 4.1563 | 12.99 | 33700 | 4.5376 | 1.0 | | 4.1563 | 13.03 | 33800 | 4.5343 | 1.0 | | 4.1563 | 13.07 | 33900 | 4.5554 | 1.0 | | 4.1531 | 13.11 | 34000 | 4.5575 | 1.0 | | 4.1531 | 13.15 | 34100 | 4.5525 | 1.0 | | 4.1531 | 13.18 | 34200 | 4.5654 | 1.0 | | 4.1531 | 13.22 | 34300 | 4.5674 | 1.0 | | 4.1531 | 13.26 | 34400 | 4.5382 | 1.0 | | 4.1443 | 13.3 | 34500 | 4.5145 | 1.0 | | 4.1443 | 13.34 | 34600 | 4.5612 | 1.0 | | 4.1443 | 13.38 | 34700 | 4.5411 | 1.0 | | 4.1443 | 13.42 | 34800 | 4.5757 | 1.0 | | 4.1443 | 13.45 | 34900 | 4.5439 | 1.0 | | 4.1453 | 13.49 | 35000 | 4.5571 | 1.0 | | 4.1453 | 13.53 | 35100 | 4.5523 | 1.0 | | 4.1453 | 13.57 | 35200 | 4.5563 | 1.0 | | 4.1453 | 13.61 | 35300 | 4.5610 | 1.0 | | 4.1453 | 13.65 | 35400 | 4.5749 | 1.0 | | 4.1227 | 13.69 | 35500 | 4.5580 | 1.0 | | 4.1227 | 13.72 | 35600 | 4.5739 | 1.0 | | 4.1227 | 13.76 | 35700 | 4.5472 | 1.0 | | 4.1227 | 13.8 | 35800 | 4.5956 | 1.0 | | 4.1227 | 13.84 | 35900 | 4.5676 | 1.0 | | 4.1778 | 13.88 | 36000 | 4.5454 | 1.0 | | 4.1778 | 13.92 | 36100 | 4.5527 | 1.0 | | 4.1778 | 13.96 | 36200 | 4.5483 | 1.0 | | 4.1778 | 13.99 | 36300 | 4.5611 | 1.0 | | 4.1778 | 14.03 | 36400 | 4.5552 | 1.0 | | 4.1532 | 14.07 | 36500 | 4.5607 | 1.0 | | 4.1532 | 14.11 | 36600 | 4.5542 | 1.0 | | 4.1532 | 14.15 | 36700 | 4.5544 | 1.0 | | 4.1532 | 14.19 | 36800 | 4.5486 | 1.0 | | 4.1532 | 14.23 | 36900 | 4.5616 | 1.0 | | 4.1485 | 14.26 | 37000 | 4.5575 | 1.0 | | 4.1485 | 14.3 | 37100 | 4.5511 | 1.0 | | 4.1485 | 14.34 | 37200 | 4.5432 | 1.0 | | 4.1485 | 14.38 | 37300 | 4.5428 | 1.0 | | 4.1485 | 14.42 | 37400 | 4.5501 | 1.0 | | 4.1402 | 14.46 | 37500 | 4.5544 | 1.0 | | 4.1402 | 14.49 | 37600 | 4.5502 | 1.0 | | 4.1402 | 14.53 | 37700 | 4.5512 | 1.0 | | 4.1402 | 14.57 | 37800 | 4.5572 | 1.0 | | 4.1402 | 14.61 | 37900 | 4.5567 | 1.0 | | 4.182 | 14.65 | 38000 | 4.5473 | 1.0 | | 4.182 | 14.69 | 38100 | 4.5556 | 1.0 | | 4.182 | 14.73 | 38200 | 4.5576 | 1.0 | | 4.182 | 14.76 | 38300 | 4.5512 | 1.0 | | 4.182 | 14.8 | 38400 | 4.5555 | 1.0 | | 4.1144 | 14.84 | 38500 | 4.5595 | 1.0 | | 4.1144 | 14.88 | 38600 | 4.5639 | 1.0 | | 4.1144 | 14.92 | 38700 | 4.5642 | 1.0 | | 4.1144 | 14.96 | 38800 | 4.5601 | 1.0 | | 4.1144 | 15.0 | 38900 | 4.5598 | 1.0 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
2554c88fc86e37eb6cc18578cd6143ec
Neulvo/bert-finetuned-ner
Neulvo
bert
14
9
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,513
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0793 - Precision: 0.9358 - Recall: 0.9510 - F1: 0.9433 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0247 | 1.0 | 1756 | 0.0798 | 0.9269 | 0.9435 | 0.9351 | 0.9840 | | 0.0136 | 2.0 | 3512 | 0.0776 | 0.9309 | 0.9495 | 0.9401 | 0.9857 | | 0.0097 | 3.0 | 5268 | 0.0793 | 0.9358 | 0.9510 | 0.9433 | 0.9862 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
f45440eda7e5716daaf594059e2e0d67
Dimitre/universal-sentence-encoder
Dimitre
null
5
0
tfhub
2
sentence-similarity
false
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
['text', 'sentence-similarity', 'use', 'universal-sentence-encoder', 'dan', 'tensorflow']
false
true
true
5,109
false
## Model name: universal-sentence-encoder ## Description adapted from [TFHub](https://tfhub.dev/google/universal-sentence-encoder/4) # Overview The Universal Sentence Encoder encodes text into high-dimensional vectors that can be used for text classification, semantic similarity, clustering and other natural language tasks. The model is trained and optimized for greater-than-word length text, such as sentences, phrases or short paragraphs. It is trained on a variety of data sources and a variety of tasks with the aim of dynamically accommodating a wide variety of natural language understanding tasks. The input is variable length English text and the output is a 512 dimensional vector. We apply this model to the [STS benchmark](https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) for semantic similarity, and the results can be seen in the [example notebook](https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb) made available. The universal-sentence-encoder model is trained with a deep averaging network (DAN) encoder. To learn more about text embeddings, refer to the [TensorFlow Embeddings](https://www.tensorflow.org/tutorials/text/word_embeddings) documentation. Our encoder differs from word level embedding models in that we train on a number of natural language prediction tasks that require modeling the meaning of word sequences rather than just individual words. Details are available in the paper "Universal Sentence Encoder" [1]. ## Universal Sentence Encoder family There are several versions of universal sentence encoder models trained with different goals including size/performance multilingual, and fine-grained question answer retrieval. - [Universal Sentence Encoder family](https://tfhub.dev/google/collections/universal-sentence-encoder/1) ### Example use ### Using TF Hub and HF Hub ``` model_path = snapshot_download(repo_id="Dimitre/universal-sentence-encoder") model = KerasLayer(handle=model_path) embeddings = model([ "The quick brown fox jumps over the lazy dog.", "I am a sentence for which I would like to get its embedding"]) print(embeddings) # The following are example embedding output of 512 dimensions per sentence # Embedding for: The quick brown fox jumps over the lazy dog. # [-0.03133016 -0.06338634 -0.01607501, ...] # Embedding for: I am a sentence for which I would like to get its embedding. # [0.05080863 -0.0165243 0.01573782, ...] ``` ### Using [TF Hub fork](https://github.com/dimitreOliveira/hub) ``` model = pull_from_hub(repo_id="Dimitre/universal-sentence-encoder") embeddings = model([ "The quick brown fox jumps over the lazy dog.", "I am a sentence for which I would like to get its embedding"]) print(embeddings) # The following are example embedding output of 512 dimensions per sentence # Embedding for: The quick brown fox jumps over the lazy dog. # [-0.03133016 -0.06338634 -0.01607501, ...] # Embedding for: I am a sentence for which I would like to get its embedding. # [0.05080863 -0.0165243 0.01573782, ...] ``` This module is about 1GB. Depending on your network speed, it might take a while to load the first time you run inference with it. After that, loading the model should be faster as modules are cached by default ([learn more about caching](https://www.tensorflow.org/hub/tf2_saved_model)). Further, once a module is loaded to memory, inference time should be relatively fast. ### Preprocessing The module does not require preprocessing the data before applying the module, it performs best effort text input preprocessing inside the graph. # Semantic Similarity ![Semantic Similarity Graphic](https://www.gstatic.com/aihub/tfhub/universal-sentence-encoder/example-similarity.png) Semantic similarity is a measure of the degree to which two pieces of text carry the same meaning. This is broadly useful in obtaining good coverage over the numerous ways that a thought can be expressed using language without needing to manually enumerate them. Simple applications include improving the coverage of systems that trigger behaviors on certain keywords, phrases or utterances. [This section of the notebook](https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb#scrollTo=BnvjATdy64eR) shows how to encode text and compare encoding distances as a proxy for semantic similarity. # Classification ![Text Classification Graphic](https://www.gstatic.com/aihub/tfhub/universal-sentence-encoder/example-classification.png) [This notebook](https://colab.research.google.com/github/tensorflow/hub/blob/master/docs/tutorials/text_classification_with_tf_hub.ipynb) shows how to train a simple binary text classifier on top of any TF-Hub module that can embed sentences. The Universal Sentence Encoder was partially trained with custom text classification tasks in mind. These kinds of classifiers can be trained to perform a wide variety of classification tasks often with a very small amount of labeled examples.
1dd0f2ca7161e598db3a76ae284d99ff
loicmagne/pr_dataset_metadata
loicmagne
null
10
0
null
0
null
true
false
false
apache-2.0
null
['imdb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,142
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pr_dataset_metadata This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6216 - eval_accuracy: 1.0 - eval_runtime: 0.4472 - eval_samples_per_second: 2.236 - eval_steps_per_second: 2.236 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
645dbaa776a02fdc6a93ee56444545c8
aaya/distilbert-base-uncased-finetuned-ner
aaya
distilbert
13
12
transformers
0
token-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
927
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
c7da53eabd45ffe6737f62d659f0b8a3
AlekseyKorshuk/6.7b-ri-reproduce-combined-4-gpu-0-val-v2
AlekseyKorshuk
opt
13
4
transformers
0
text-generation
true
false
false
other
null
['ChaiML/dalio_combined_v1']
null
16
16
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,073
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-ri-reproduce-combined-4-gpu-0-val-v2 This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the ChaiML/dalio_combined_v1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 100 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 15.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
cf8cda039a50c7283c5bb56e5a39f23d
coreml/coreml-waifu-diffusion-v1-4
coreml
null
4
0
null
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['coreml', 'stable-diffusion', 'text-to-image']
false
true
true
2,855
false
# Core ML Converted Model This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).<br> Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> wd-1-4-anime_e2_split-einsum.zip contains TextEncoder of wd-1-4-anime_e1_split-einsum.zip.<br> ![image](https://user-images.githubusercontent.com/26317155/210155933-db3a5f1a-1ec3-4777-915c-6deff2841ce9.png) <sub>masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, watercolor, night, turtleneck</sub> # Waifu Diffusion v1.4 Waifu Diffusion is a latent text-to-image diffusion model that has been conditioned on high-quality anime images through fine-tuning. - [Waifu Diffusion 1.4 Anime Epoch 1](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/wd-1-4-anime_e1.ckpt): A test model made to properly ensure that the training setup works. - [Waifu Diffusion 1.4 Anime Inference Config](https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/wd-1-4-anime_e1.yaml): A file included to allow for inference with Automatic's WebUI and with the original Stable Diffusion codebase. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## Downstream Uses This model can be used for entertainment purposes and as a generative art assistant. ## Team Members and Acknowledgements This project would not have been possible without the incredible work by Stability AI and NovelAI. - [Haru](https://github.com/harubaru) - [Salt](https://github.com/sALTaccount/) - [Cafe](https://twitter.com/cafeai_labs) In order to reach us, you can join our [Discord server](https://discord.gg/touhouai). [![Discord Server](https://discordapp.com/api/guilds/930499730843250783/widget.png?style=banner2)](https://discord.gg/touhouai)
46f59d9da0818c5c95fb23c7fce5f9b4
gokuls/mobilebert_add_GLUE_Experiment_mnli_128
gokuls
mobilebert
17
4
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,844
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_mnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.0985 - Accuracy: 0.3522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0987 | 1.0 | 3068 | 1.0987 | 0.3182 | | 1.0986 | 2.0 | 6136 | 1.0986 | 0.3182 | | 1.0986 | 3.0 | 9204 | 1.0988 | 0.3274 | | 1.0986 | 4.0 | 12272 | 1.0986 | 0.3182 | | 1.0986 | 5.0 | 15340 | 1.0985 | 0.3545 | | 1.0986 | 6.0 | 18408 | 1.0987 | 0.3274 | | 1.0986 | 7.0 | 21476 | 1.0988 | 0.3274 | | 1.0986 | 8.0 | 24544 | 1.0986 | 0.3545 | | 1.0986 | 9.0 | 27612 | 1.0986 | 0.3545 | | 1.0986 | 10.0 | 30680 | 1.0987 | 0.3182 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
af581471be49956a1c07cc2d117a5c3e
garyw/clinical-embeddings-100d-ft-oa-all
garyw
null
9
0
null
0
null
false
false
false
gpl-3.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,542
false
Pre-trained word embeddings using the text of published scientific manuscripts. These embeddings use 100 dimensions and were trained using the fasttext algorithm on all available manuscripts found in the [PMC Open Access Subset](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). See the paper here: https://pubmed.ncbi.nlm.nih.gov/34920127/ Citation: ``` @article{flamholz2022word, title={Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information}, author={Flamholz, Zachary N and Crane-Droesch, Andrew and Ungar, Lyle H and Weissman, Gary E}, journal={Journal of Biomedical Informatics}, volume={125}, pages={103971}, year={2022}, publisher={Elsevier} } ``` ## Quick start Word embeddings are compatible with the [`gensim` Python package](https://radimrehurek.com/gensim/) format. First download the files from this archive. Then load the embeddings into Python. ```python from gensim.models import FastText, Word2Vec, KeyedVectors # KeyedVectors are used to load the GloVe models # Load the model model = FastText.load('ft_oa_all_100d.bin') # Return 100-dimensional vector representations of each word model.wv.word_vec('diabetes') model.wv.word_vec('cardiac_arrest') model.wv.word_vec('lymphangioleiomyomatosis') # Try out cosine similarity model.wv.similarity('copd', 'chronic_obstructive_pulmonary_disease') model.wv.similarity('myocardial_infarction', 'heart_attack') model.wv.similarity('lymphangioleiomyomatosis', 'lam') ```
e22cee832299353f1274fb291a21ca24
kpriyanshu256/whisper-medium-as-100-32-1e-05-pretrain-bn
kpriyanshu256
whisper
17
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['as']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,415
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium-Assamese This model is a fine-tuned version of [kpriyanshu256/whisper-medium-as-200-32-1e-05-bn](https://huggingface.co/kpriyanshu256/whisper-medium-as-200-32-1e-05-bn) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2247 - Wer: 25.6271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0864 | 3.13 | 100 | 0.2247 | 25.6271 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1
446b6b871b331df195fc344a53b29781
aychang/bert-base-cased-trec-coarse
aychang
bert
9
253
transformers
0
text-classification
true
false
true
mit
['en']
['trec']
null
2
0
2
0
0
0
0
['text-classification']
true
true
true
2,143
false
# bert-base-cased trained on TREC 6-class task ## Model description A simple base BERT model trained on the "trec" dataset. ## Intended uses & limitations #### How to use ##### Transformers ```python # Load model and tokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Use pipeline from transformers import pipeline model_name = "aychang/bert-base-cased-trec-coarse" nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]) ``` ##### AdaptNLP ```python from adaptnlp import EasySequenceClassifier model_name = "aychang/bert-base-cased-trec-coarse" texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"] classifer = EasySequenceClassifier results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) ``` #### Limitations and bias This is minimal language model trained on a benchmark dataset. ## Training data TREC https://huggingface.co/datasets/trec ## Training procedure Preprocessing, hardware used, hyperparameters... #### Hardware One V100 #### Hyperparameters and Training Args ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir='./models', num_train_epochs=2, per_device_train_batch_size=16, per_device_eval_batch_size=16, warmup_steps=500, weight_decay=0.01, evaluation_strategy="steps", logging_dir='./logs', save_steps=3000 ) ``` ## Eval results ``` {'epoch': 2.0, 'eval_accuracy': 0.974, 'eval_f1': array([0.98181818, 0.94444444, 1. , 0.99236641, 0.96995708, 0.98159509]), 'eval_loss': 0.138086199760437, 'eval_precision': array([0.98540146, 0.98837209, 1. , 0.98484848, 0.94166667, 0.97560976]), 'eval_recall': array([0.97826087, 0.90425532, 1. , 1. , 1. , 0.98765432]), 'eval_runtime': 1.6132, 'eval_samples_per_second': 309.943} ```
0525bf127c1c73e6851085df2f8a220e
jonatasgrosman/exp_w2v2t_th_unispeech_s624
jonatasgrosman
unispeech
10
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['th']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'th']
false
true
true
472
false
# exp_w2v2t_th_unispeech_s624 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
050d069cb255e16fdde892a0acc6d4bc
SebastianS/codeparrot-ds
SebastianS
gpt2
17
2
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,250
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7149 | 0.85 | 1000 | 2.4905 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
e47c54026246e29576f3b779341fcd5b
naksu/distilbert-base-uncased-finetuned-cola
naksu
distilbert
44
12
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,571
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7831 - Matthews Correlation: 0.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5259 | 1.0 | 535 | 0.5289 | 0.4280 | | 0.3473 | 2.0 | 1070 | 0.5123 | 0.4783 | | 0.237 | 3.0 | 1605 | 0.5517 | 0.5235 | | 0.1736 | 4.0 | 2140 | 0.7831 | 0.5374 | | 0.1255 | 5.0 | 2675 | 0.8109 | 0.5361 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
97d8c07d7a898a08fadd1bab69aa79a0
Stc043/distilbert-base-multilingual-cased-finetuned-dakshina-ml
Stc043
distilbert
9
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,360
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-dakshina-ml This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5614 | 1.0 | 16 | 1.4559 | | 1.4984 | 2.0 | 32 | 1.3131 | | 1.3218 | 3.0 | 48 | 1.2369 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
6671ebc2c41724815266e29112bd26d1
JovialValley/model_syllable_onSet2
JovialValley
wav2vec2
12
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
11,465
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_syllable_onSet2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - 0 Precision: 1.0 - 0 Recall: 0.96 - 0 F1-score: 0.9796 - 0 Support: 25 - 1 Precision: 0.9643 - 1 Recall: 0.9643 - 1 F1-score: 0.9643 - 1 Support: 28 - 2 Precision: 1.0 - 2 Recall: 0.9643 - 2 F1-score: 0.9818 - 2 Support: 28 - 3 Precision: 0.8889 - 3 Recall: 1.0 - 3 F1-score: 0.9412 - 3 Support: 16 - Accuracy: 0.9691 - Macro avg Precision: 0.9633 - Macro avg Recall: 0.9721 - Macro avg F1-score: 0.9667 - Macro avg Support: 97 - Weighted avg Precision: 0.9714 - Weighted avg Recall: 0.9691 - Weighted avg F1-score: 0.9695 - Weighted avg Support: 97 - Wer: 0.2827 - Mtrix: [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer | Mtrix | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:--------------------------------------------------------------------------------------:| | 1.3102 | 4.16 | 100 | 1.2133 | 0.125 | 0.04 | 0.0606 | 25 | 0.0 | 0.0 | 0.0 | 28 | 0.3146 | 1.0 | 0.4786 | 28 | 0.0 | 0.0 | 0.0 | 16 | 0.2990 | 0.1099 | 0.26 | 0.1348 | 97 | 0.1230 | 0.2990 | 0.1538 | 97 | 0.9676 | [[0, 1, 2, 3], [0, 1, 0, 24, 0], [1, 7, 0, 21, 0], [2, 0, 0, 28, 0], [3, 0, 0, 16, 0]] | | 0.7368 | 8.33 | 200 | 0.7100 | 1.0 | 0.72 | 0.8372 | 25 | 0.3333 | 0.0357 | 0.0645 | 28 | 0.3684 | 1.0 | 0.5385 | 28 | 0.0 | 0.0 | 0.0 | 16 | 0.4845 | 0.4254 | 0.4389 | 0.3600 | 97 | 0.4603 | 0.4845 | 0.3898 | 97 | 0.8227 | [[0, 1, 2, 3], [0, 18, 2, 5, 0], [1, 0, 1, 27, 0], [2, 0, 0, 28, 0], [3, 0, 0, 16, 0]] | | 0.3813 | 12.49 | 300 | 0.3802 | 0.8519 | 0.92 | 0.8846 | 25 | 0.7333 | 0.7857 | 0.7586 | 28 | 0.9231 | 0.8571 | 0.8889 | 28 | 0.9286 | 0.8125 | 0.8667 | 16 | 0.8454 | 0.8592 | 0.8438 | 0.8497 | 97 | 0.8509 | 0.8454 | 0.8465 | 97 | 0.7694 | [[0, 1, 2, 3], [0, 23, 2, 0, 0], [1, 4, 22, 2, 0], [2, 0, 3, 24, 1], [3, 0, 3, 0, 13]] | | 0.2761 | 16.65 | 400 | 0.2263 | 1.0 | 1.0 | 1.0 | 25 | 1.0 | 0.9643 | 0.9818 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8889 | 1.0 | 0.9412 | 16 | 0.9794 | 0.9722 | 0.9821 | 0.9762 | 97 | 0.9817 | 0.9794 | 0.9798 | 97 | 0.4392 | [[0, 1, 2, 3], [0, 25, 0, 0, 0], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.1596 | 20.82 | 500 | 0.2283 | 1.0 | 0.96 | 0.9796 | 25 | 0.9310 | 0.9643 | 0.9474 | 28 | 0.9643 | 0.9643 | 0.9643 | 28 | 0.9375 | 0.9375 | 0.9375 | 16 | 0.9588 | 0.9582 | 0.9565 | 0.9572 | 97 | 0.9595 | 0.9588 | 0.9589 | 97 | 0.4971 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 1, 0], [2, 0, 0, 27, 1], [3, 0, 1, 0, 15]] | | 0.124 | 24.98 | 600 | 0.1841 | 1.0 | 0.96 | 0.9796 | 25 | 0.9655 | 1.0 | 0.9825 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9794 | 0.9767 | 0.9811 | 0.9784 | 97 | 0.9803 | 0.9794 | 0.9794 | 97 | 0.2955 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 28, 0, 0], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.1162 | 29.16 | 700 | 0.2286 | 1.0 | 0.96 | 0.9796 | 25 | 0.9333 | 1.0 | 0.9655 | 28 | 1.0 | 0.9286 | 0.9630 | 28 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9691 | 0.9686 | 0.9721 | 0.9694 | 97 | 0.9711 | 0.9691 | 0.9691 | 97 | 0.3627 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 28, 0, 0], [2, 0, 1, 26, 1], [3, 0, 0, 0, 16]] | | 0.1576 | 33.33 | 800 | 0.2259 | 1.0 | 0.92 | 0.9583 | 25 | 0.9333 | 1.0 | 0.9655 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9691 | 0.9686 | 0.9711 | 0.9688 | 97 | 0.9711 | 0.9691 | 0.9691 | 97 | 0.3210 | [[0, 1, 2, 3], [0, 23, 2, 0, 0], [1, 0, 28, 0, 0], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.0957 | 37.49 | 900 | 0.2757 | 1.0 | 0.96 | 0.9796 | 25 | 0.9643 | 0.9643 | 0.9643 | 28 | 0.9643 | 0.9643 | 0.9643 | 28 | 0.9412 | 1.0 | 0.9697 | 16 | 0.9691 | 0.9674 | 0.9721 | 0.9695 | 97 | 0.9697 | 0.9691 | 0.9691 | 97 | 0.3499 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 1, 0], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.1145 | 41.65 | 1000 | 0.2951 | 1.0 | 0.96 | 0.9796 | 25 | 1.0 | 0.9643 | 0.9818 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8421 | 1.0 | 0.9143 | 16 | 0.9691 | 0.9605 | 0.9721 | 0.9644 | 97 | 0.9740 | 0.9691 | 0.9701 | 97 | 0.3024 | [[0, 1, 2, 3], [0, 24, 0, 0, 1], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.121 | 45.82 | 1100 | 0.3262 | 1.0 | 0.96 | 0.9796 | 25 | 1.0 | 0.9643 | 0.9818 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8421 | 1.0 | 0.9143 | 16 | 0.9691 | 0.9605 | 0.9721 | 0.9644 | 97 | 0.9740 | 0.9691 | 0.9701 | 97 | 0.2885 | [[0, 1, 2, 3], [0, 24, 0, 0, 1], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.079 | 49.98 | 1200 | 0.3615 | 1.0 | 0.96 | 0.9796 | 25 | 0.9643 | 0.9643 | 0.9643 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8889 | 1.0 | 0.9412 | 16 | 0.9691 | 0.9633 | 0.9721 | 0.9667 | 97 | 0.9714 | 0.9691 | 0.9695 | 97 | 0.3615 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.0733 | 54.16 | 1300 | 0.3891 | 1.0 | 0.96 | 0.9796 | 25 | 0.9643 | 0.9643 | 0.9643 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8889 | 1.0 | 0.9412 | 16 | 0.9691 | 0.9633 | 0.9721 | 0.9667 | 97 | 0.9714 | 0.9691 | 0.9695 | 97 | 0.3082 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.0962 | 58.33 | 1400 | 0.3620 | 1.0 | 0.96 | 0.9796 | 25 | 0.9643 | 0.9643 | 0.9643 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8889 | 1.0 | 0.9412 | 16 | 0.9691 | 0.9633 | 0.9721 | 0.9667 | 97 | 0.9714 | 0.9691 | 0.9695 | 97 | 0.2851 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.0628 | 62.49 | 1500 | 0.4084 | 1.0 | 0.96 | 0.9796 | 25 | 0.9630 | 0.9286 | 0.9455 | 28 | 0.9643 | 0.9643 | 0.9643 | 28 | 0.8889 | 1.0 | 0.9412 | 16 | 0.9588 | 0.9540 | 0.9632 | 0.9576 | 97 | 0.9607 | 0.9588 | 0.9590 | 97 | 0.3001 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 26, 1, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | | 0.0675 | 66.65 | 1600 | 0.4231 | 1.0 | 0.96 | 0.9796 | 25 | 0.9643 | 0.9643 | 0.9643 | 28 | 1.0 | 0.9643 | 0.9818 | 28 | 0.8889 | 1.0 | 0.9412 | 16 | 0.9691 | 0.9633 | 0.9721 | 0.9667 | 97 | 0.9714 | 0.9691 | 0.9695 | 97 | 0.2827 | [[0, 1, 2, 3], [0, 24, 1, 0, 0], [1, 0, 27, 0, 1], [2, 0, 0, 27, 1], [3, 0, 0, 0, 16]] | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
cced43e8be7f5d6cbff33210fe22d723
nandysoham/2008_Sichuan_earthquake-clustered
nandysoham
distilbert
8
2
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,879
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/2008_Sichuan_earthquake-clustered This model is a fine-tuned version of [nandysoham16/12-clustered_aug](https://huggingface.co/nandysoham16/12-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4560 - Train End Logits Accuracy: 0.8854 - Train Start Logits Accuracy: 0.7882 - Validation Loss: 0.3706 - Validation End Logits Accuracy: 0.8947 - Validation Start Logits Accuracy: 0.8947 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4560 | 0.8854 | 0.7882 | 0.3706 | 0.8947 | 0.8947 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
26cac989496c9578c30d6caa35196643
DrishtiSharma/finetuned-SwinT-Indian-Food-Classification-v3
DrishtiSharma
swin
19
13
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['image-classification', 'generated_from_trainer']
true
true
true
3,314
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-SwinT-Indian-Food-Classification-v3 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2910 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9511 | 0.3 | 100 | 0.6092 | 0.8172 | | 0.6214 | 0.6 | 200 | 0.4406 | 0.8672 | | 0.7355 | 0.9 | 300 | 0.3665 | 0.8927 | | 0.6078 | 1.2 | 400 | 0.3285 | 0.9065 | | 0.439 | 1.5 | 500 | 0.3855 | 0.8916 | | 0.3644 | 1.8 | 600 | 0.4082 | 0.8969 | | 0.4748 | 2.1 | 700 | 0.3496 | 0.9022 | | 0.3966 | 2.4 | 800 | 0.3626 | 0.8905 | | 0.5799 | 2.7 | 900 | 0.4833 | 0.8767 | | 0.2995 | 3.0 | 1000 | 0.3387 | 0.9044 | | 0.3152 | 3.3 | 1100 | 0.3739 | 0.9097 | | 0.3284 | 3.6 | 1200 | 0.4217 | 0.8916 | | 0.3631 | 3.9 | 1300 | 0.4118 | 0.9044 | | 0.219 | 4.2 | 1400 | 0.3721 | 0.9139 | | 0.2874 | 4.5 | 1500 | 0.3030 | 0.9288 | | 0.2819 | 4.8 | 1600 | 0.4056 | 0.9150 | | 0.1755 | 5.11 | 1700 | 0.4039 | 0.9097 | | 0.2462 | 5.41 | 1800 | 0.3550 | 0.9118 | | 0.1737 | 5.71 | 1900 | 0.3444 | 0.9150 | | 0.174 | 6.01 | 2000 | 0.3667 | 0.9160 | | 0.1536 | 6.31 | 2100 | 0.3301 | 0.9288 | | 0.0911 | 6.61 | 2200 | 0.3390 | 0.9299 | | 0.0907 | 6.91 | 2300 | 0.2923 | 0.9288 | | 0.0921 | 7.21 | 2400 | 0.3502 | 0.9256 | | 0.1662 | 7.51 | 2500 | 0.3197 | 0.9341 | | 0.0607 | 7.81 | 2600 | 0.3092 | 0.9362 | | 0.111 | 8.11 | 2700 | 0.3146 | 0.9394 | | 0.0588 | 8.41 | 2800 | 0.3069 | 0.9341 | | 0.131 | 8.71 | 2900 | 0.2971 | 0.9405 | | 0.1903 | 9.01 | 3000 | 0.3078 | 0.9384 | | 0.2116 | 9.31 | 3100 | 0.3112 | 0.9341 | | 0.1415 | 9.61 | 3200 | 0.2956 | 0.9405 | | 0.1106 | 9.91 | 3300 | 0.2910 | 0.9437 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
f43bf5e6d3dc2b783f6fe6880e646862
anas-awadalla/t5-base-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
t5
17
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
958
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
bc0a9a526993a9697ad9b5efa6c80da0
l3cube-pune/mr-random-twt-1m
l3cube-pune
bert
8
2
transformers
0
fill-mask
true
false
false
cc-by-4.0
['mr']
['L3Cube-MahaCorpus']
null
0
0
0
0
0
0
0
[]
false
true
true
615
false
A MahaBERT (l3cube-pune/marathi-bert-v2) model finetuned on random 1 million Marathi Tweets. More details on the dataset, models, and baseline results can be found in our [paper] (<a href='https://arxiv.org/abs/2210.04267'> link </a>) Released under project: https://github.com/l3cube-pune/MarathiNLP ``` @article{gokhale2022spread, title={Spread Love Not Hate: Undermining the Importance of Hateful Pre-training for Hate Speech Detection}, author={Gokhale, Omkar and Kane, Aditya and Patankar, Shantanu and Chavan, Tanmay and Joshi, Raviraj}, journal={arXiv preprint arXiv:2210.04267}, year={2022} } ```
96a3629e356ccf4fc593ef8eacfb3415
henryscheible/eval_masked_102_wnli
henryscheible
null
13
0
null
0
null
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,011
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eval_masked_102_wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7126 - Accuracy: 0.3239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
ccb22cce7fa44d41cbd0b3b4422379e0
sd-concepts-library/ic0n
sd-concepts-library
null
12
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,258
false
### ic0n on Stable Diffusion This is the `<ic0n>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ic0n> 0](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/5.jpeg) ![<ic0n> 1](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/6.jpeg) ![<ic0n> 2](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/3.jpeg) ![<ic0n> 3](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/0.jpeg) ![<ic0n> 4](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/2.jpeg) ![<ic0n> 5](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/1.jpeg) ![<ic0n> 6](https://huggingface.co/sd-concepts-library/ic0n/resolve/main/concept_images/4.jpeg)
b8320e809fbc601df2fde3a0c4247ab7
Duskfallcrew/sailor-moon-mix
Duskfallcrew
null
21
23
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
1,138
false
### Sailor Moon Mix Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Concepts & More details: https://civitai.com/user/duskfallcrew If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk Do not sell merges or this model Do not let it bite you after midnight Rini might have rabies in this we haven't tested her. OVERALL: HAVE FUN anisenti88 (use that on your prompt)
18906016c311f9a3ca8cff2591a3a153
huggan/fastgan-few-shot-aurora
huggan
null
8
0
null
0
unconditional-image-generation
true
false
false
mit
null
['huggan/few-shot-aurora']
null
0
0
0
0
0
0
0
['huggan', 'gan', 'unconditional-image-generation']
false
true
true
1,864
false
# Generate aurora image using FastGAN ## Model description [FastGAN model](https://arxiv.org/abs/2101.04775) is a Generative Adversarial Networks (GAN) training on a small amount of high-fidelity images with minimum computing cost. Using a skip-layer channel-wise excitation module and a self-supervised discriminator trained as a feature-encoder, the model was able to converge after some hours of training for either 100 high-quality images or 1000 images datasets. This model was trained on a dataset of 272 high-quality images of aurora. #### How to use ```python # Clone this model git clone https://huggingface.co/huggan/fastgan-few-shot-aurora/ def load_generator(model_name_or_path): generator = Generator(in_channels=256, out_channels=3) generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3) _ = generator.eval() return generator def _denormalize(input: torch.Tensor) -> torch.Tensor: return (input * 127.5) + 127.5 # Load generator generator = load_generator("huggan/fastgan-few-shot-aurora") # Generate a random noise image noise = torch.zeros(1, 256, 1, 1, device=device).normal_(0.0, 1.0) with torch.no_grad(): gan_images, _ = generator(noise) gan_images = _denormalize(gan_images.detach()) save_image(gan_images, "sample.png", nrow=1, normalize=True) ``` #### Limitations and bias * Converge faster and better with small datasets (less than 1000 samples) ## Training data [few-shot-aurora](https://huggingface.co/datasets/huggan/few-shot-aurora) ## Generated Images ![Example image](example.png) ### BibTeX entry and citation info ```bibtex @article{FastGAN, title={Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis}, author={Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal}, journal={ICLR}, year={2021} } ```
c9b1b889a99f9b4d954ec46d3550c490
Fredium/wav2vec2-large-xlsr-53-demo-colab-telugu_new
Fredium
wav2vec2
11
15
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['openslr']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,044
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab-telugu_new This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the openslr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 2.7.1 - Tokenizers 0.13.2
c7a7446c9ae050d9f88c457fc3bf05a2
gustavecortal/distilcamembert-cae-no-feeling
gustavecortal
camembert
6
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,676
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilcamembert-cae-no-feeling This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7566 - Precision: 0.8160 - Recall: 0.7975 - F1: 0.7998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 1.174 | 1.0 | 40 | 0.9568 | 0.4398 | 0.4937 | 0.3881 | | 0.8722 | 2.0 | 80 | 0.7551 | 0.7716 | 0.7215 | 0.7120 | | 0.5255 | 3.0 | 120 | 0.7144 | 0.7533 | 0.6962 | 0.6937 | | 0.3102 | 4.0 | 160 | 0.6734 | 0.7711 | 0.7595 | 0.7627 | | 0.1804 | 5.0 | 200 | 0.7566 | 0.8160 | 0.7975 | 0.7998 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
795eb52107e8670850c5f7db75bb3e25
timm/convnext_base.fb_in22k_ft_in1k
timm
null
4
2,614
timm
0
image-classification
true
false
false
apache-2.0
null
['imagenet-1k', 'imagenet-22k']
null
0
0
0
0
0
0
0
['image-classification', 'timm']
false
true
true
21,429
false
# Model card for convnext_base.fb_in22k_ft_in1k A ConvNeXt image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 88.6 - GMACs: 15.4 - Activations (M): 28.8 - Image size: 224 x 224 - **Papers:** - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545 - **Original:** https://github.com/facebookresearch/ConvNeXt - **Dataset:** ImageNet-1k - **Pretrain Dataset:** ImageNet-22k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('convnext_base.fb_in22k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_base.fb_in22k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for convnext_base: # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'convnext_base.fb_in22k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | ### By Throughput (samples / sec) All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. |model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | ## Citation ```bibtex @article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
f6344b6e524d734b45ee8c8d8c444056
Helsinki-NLP/opus-mt-ja-pl
Helsinki-NLP
marian
11
10
transformers
0
translation
true
true
false
apache-2.0
['ja', 'pl']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,113
false
### jpn-pol * source group: Japanese * target group: Polish * OPUS readme: [jpn-pol](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-pol/README.md) * model: transformer-align * source language(s): jpn jpn_Bopo jpn_Hani jpn_Hira jpn_Kana jpn_Latn * target language(s): pol * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-pol/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-pol/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-pol/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.pol | 15.7 | 0.386 | ### System Info: - hf_name: jpn-pol - source_languages: jpn - target_languages: pol - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-pol/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'pl'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'pol'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-pol/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-pol/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: pol - short_pair: ja-pl - chrF2_score: 0.386 - bleu: 15.7 - brevity_penalty: 1.0 - ref_len: 69904.0 - src_name: Japanese - tgt_name: Polish - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: pl - prefer_old: False - long_pair: jpn-pol - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
8a950739f091d0029890abec6a909e47
KIZervus/KIZervus
KIZervus
distilbert
9
1
transformers
1
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,678
false
# KIZervus This model is a fine-tuned version of [distilbert-base-german-cased](https://huggingface.co/distilbert-base-german-cased). It is trained to classify german text into the classes "vulgar" speech and "non-vulgar" speech. The data set is a collection of other labeled sources in german. For an overview, see the github repository here: https://github.com/NKDataConv/KIZervus Both data and training procedure are documented in the GitHub repo. Your are welcome to contribute. It achieves the following results on the evaluation set: - Train Loss: 0.4640 - Train Accuracy: 0.7744 - Validation Loss: 0.4852 - Validation Accuracy: 0.7937 - Epoch: 1 ## Training procedure For details, see the repo and documentation here: https://github.com/NKDataConv/KIZervus ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 822, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4830 | 0.7617 | 0.5061 | 0.7406 | 0 | | 0.4640 | 0.7744 | 0.4852 | 0.7937 | 1 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1 ### Supporter ![BMBF Logo](./BMBF_Logo.png)
c22c663a202467993bb9e791d8f2b813
jhonparra18/roberta-base-cv-studio_name-medium
jhonparra18
roberta
10
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
813
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-cv-studio_name-medium This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description Predicts a studio name based on a CV text ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 10 ### Framework versions - Transformers 4.19.0 - Pytorch 1.8.2+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
115158982961a28fc4dee3def83083da
jonatasgrosman/exp_w2v2t_es_wavlm_s655
jonatasgrosman
wavlm
10
3
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['es']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'es']
false
true
true
439
false
# exp_w2v2t_es_wavlm_s655 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
06393096340b6acf690661d110b3fc63
shreyasgite/wav2vec2-large-xls-r-300m-dm32
shreyasgite
wav2vec2
11
2
transformers
0
null
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,827
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dm32 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5688 - Accuracy: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 22 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 2.41 | 34 | 0.6769 | 0.6458 | | No log | 4.83 | 68 | 0.6864 | 0.5208 | | No log | 7.28 | 102 | 0.6596 | 0.6042 | | 0.7106 | 9.69 | 136 | 0.6208 | 0.6875 | | 0.7106 | 12.14 | 170 | 0.6152 | 0.6875 | | 0.7106 | 14.55 | 204 | 0.6167 | 0.6875 | | 0.6464 | 16.97 | 238 | 0.5782 | 0.7708 | | 0.6464 | 19.41 | 272 | 0.6011 | 0.7292 | | 0.6464 | 21.83 | 306 | 0.5688 | 0.7917 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
e2bf159c56eb16da6672900bfd2314ac
baru98/bert-base-cased-finetuned-squad
baru98
bert
14
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,255
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 5.4212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 5.7012 | | No log | 2.0 | 14 | 5.5021 | | No log | 3.0 | 21 | 5.4212 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
f7a3f3a2a92e0b53b7322777a09425e0
muhtasham/bert-tiny-target-cola
muhtasham
bert
15
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,874
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-target-cola This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6626 - Matthews Correlation: 0.1458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6124 | 1.87 | 500 | 0.6192 | 0.0 | | 0.6016 | 3.73 | 1000 | 0.6167 | 0.0 | | 0.5838 | 5.6 | 1500 | 0.6166 | 0.0149 | | 0.5555 | 7.46 | 2000 | 0.6344 | 0.0465 | | 0.5272 | 9.33 | 2500 | 0.6542 | 0.1399 | | 0.5058 | 11.19 | 3000 | 0.6626 | 0.1458 | | 0.4791 | 13.06 | 3500 | 0.6868 | 0.1192 | | 0.4577 | 14.93 | 4000 | 0.7215 | 0.1230 | | 0.4425 | 16.79 | 4500 | 0.7322 | 0.1243 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
86e029e8a44a9da9225f017e27fcebc6
jonatasgrosman/exp_w2v2t_zh-cn_vp-100k_s131
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['zh-CN']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'zh-CN']
false
true
true
481
false
# exp_w2v2t_zh-cn_vp-100k_s131 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
67c7bf48719d12603fb7771061f40bb9
deepdml/whisper-small-eu
deepdml
whisper
18
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['eu']
['mozilla-foundation/common_voice_11_0']
null
0
0
0
0
0
0
0
['whisper-event', 'generated_from_trainer']
true
true
true
1,557
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small Basque-Euskera This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4485 - Wer: 19.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.048 | 4.04 | 1000 | 0.3402 | 21.7816 | | 0.0047 | 9.03 | 2000 | 0.3862 | 20.1694 | | 0.0012 | 14.02 | 3000 | 0.4221 | 19.7419 | | 0.0008 | 19.02 | 4000 | 0.4411 | 19.7174 | | 0.0006 | 24.01 | 5000 | 0.4485 | 19.7663 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
9bebd6956bafa8d2c4407ee7a06a9e90
luigisaetta/whisper-atco2-large
luigisaetta
whisper
22
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,588
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6750 - Wer: 16.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1978 | 2.01 | 100 | 0.5474 | 21.0692 | | 0.0087 | 4.02 | 200 | 0.6202 | 19.4969 | | 0.0029 | 6.04 | 300 | 0.6264 | 18.2390 | | 0.0003 | 8.05 | 400 | 0.6659 | 17.1908 | | 0.0002 | 10.06 | 500 | 0.6750 | 16.9811 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
36bf922003807cf16af959fc82304fb6
sd-concepts-library/franz-unterberger
sd-concepts-library
null
28
0
null
6
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,442
false
### Franz Unterberger on Stable Diffusion This is the `<franz-unterberger>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<franz-unterberger> 0](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/20.jpeg) ![<franz-unterberger> 1](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/6.jpeg) ![<franz-unterberger> 2](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/1.jpeg) ![<franz-unterberger> 3](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/18.jpeg) ![<franz-unterberger> 4](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/14.jpeg) ![<franz-unterberger> 5](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/8.jpeg) ![<franz-unterberger> 6](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/4.jpeg) ![<franz-unterberger> 7](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/19.jpeg) ![<franz-unterberger> 8](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/13.jpeg) ![<franz-unterberger> 9](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/22.jpeg) ![<franz-unterberger> 10](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/7.jpeg) ![<franz-unterberger> 11](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/17.jpeg) ![<franz-unterberger> 12](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/3.jpeg) ![<franz-unterberger> 13](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/11.jpeg) ![<franz-unterberger> 14](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/9.jpeg) ![<franz-unterberger> 15](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/0.jpeg) ![<franz-unterberger> 16](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/10.jpeg) ![<franz-unterberger> 17](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/15.jpeg) ![<franz-unterberger> 18](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/5.jpeg) ![<franz-unterberger> 19](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/21.jpeg) ![<franz-unterberger> 20](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/2.jpeg) ![<franz-unterberger> 21](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/16.jpeg) ![<franz-unterberger> 22](https://huggingface.co/sd-concepts-library/franz-unterberger/resolve/main/concept_images/12.jpeg)
314d7554ec262903a9da9d735aa4cbcb
clara-dumont/wav2vec2-base-timit-eng
clara-dumont
wav2vec2
12
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,984
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-eng This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5195 - Wer: 0.3418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5159 | 1.0 | 500 | 1.7153 | 1.0291 | | 0.8502 | 2.01 | 1000 | 0.5204 | 0.5146 | | 0.431 | 3.01 | 1500 | 0.4491 | 0.4537 | | 0.3073 | 4.02 | 2000 | 0.3883 | 0.4190 | | 0.2338 | 5.02 | 2500 | 0.4453 | 0.4230 | | 0.1956 | 6.02 | 3000 | 0.4599 | 0.3981 | | 0.1594 | 7.03 | 3500 | 0.4240 | 0.3916 | | 0.1423 | 8.03 | 4000 | 0.4756 | 0.3975 | | 0.1252 | 9.04 | 4500 | 0.4427 | 0.3827 | | 0.1064 | 10.04 | 5000 | 0.4489 | 0.3809 | | 0.101 | 11.04 | 5500 | 0.4531 | 0.3961 | | 0.0877 | 12.05 | 6000 | 0.4881 | 0.3883 | | 0.0817 | 13.05 | 6500 | 0.5023 | 0.3774 | | 0.0703 | 14.06 | 7000 | 0.5078 | 0.3679 | | 0.0663 | 15.06 | 7500 | 0.5279 | 0.3620 | | 0.0584 | 16.06 | 8000 | 0.5112 | 0.3653 | | 0.0579 | 17.07 | 8500 | 0.4959 | 0.3633 | | 0.0572 | 18.07 | 9000 | 0.4676 | 0.3626 | | 0.0502 | 19.08 | 9500 | 0.5216 | 0.3503 | | 0.0432 | 20.08 | 10000 | 0.4946 | 0.3480 | | 0.0417 | 21.08 | 10500 | 0.4949 | 0.3532 | | 0.0335 | 22.09 | 11000 | 0.5485 | 0.3557 | | 0.032 | 23.09 | 11500 | 0.5087 | 0.3464 | | 0.0334 | 24.1 | 12000 | 0.5313 | 0.3498 | | 0.0263 | 25.1 | 12500 | 0.5148 | 0.3457 | | 0.0242 | 26.1 | 13000 | 0.5232 | 0.3442 | | 0.0235 | 27.11 | 13500 | 0.5122 | 0.3418 | | 0.0221 | 28.11 | 14000 | 0.5074 | 0.3407 | | 0.0215 | 29.12 | 14500 | 0.5195 | 0.3418 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
a15705f41401ff5c4c89d627e3608691
Helsinki-NLP/opus-mt-sv-tll
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-sv-tll * source languages: sv * target languages: tll * OPUS readme: [sv-tll](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-tll/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-tll/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-tll/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-tll/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.tll | 24.9 | 0.484 |
b38b306c0d56850f832273098da111af
Someman/gpt2-nepali
Someman
gpt2
14
2
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,247
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-nepali This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9488 | 0.68 | 5000 | 1.5058 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
286bac3148078316d0a15b2e47e74182
svalabs/infoxlm-german-question-answering
svalabs
xlm-roberta
8
1,080
transformers
1
question-answering
true
false
false
cc-by-4.0
['de']
null
null
0
0
0
0
0
0
0
['question-answering', 'pytorch', 'qa', 'de']
false
true
true
859
false
# SVALabs - InfoXLM German QA In this repository we present our german question answering model. The trained model is based on [InfoXLM-large](https://huggingface.co/microsoft/infoxlm-large) and was finetuned using the [SQuAD](https://huggingface.co/datasets/squad) dataset and the [GermanQuAD](https://huggingface.co/datasets/deepset/germanquad) dataset. ### Model Details | | Description or Link | |---|---| |**Base model** | [```InfoXLM-large```](https://huggingface.co/microsoft/infoxlm-large) | |**Finetuning task**| Question Answering | |**Source datasets**| [```SQuAD```](https://huggingface.co/datasets/squad); [```GermanQuAD```](https://huggingface.co/datasets/deepset/germanquad)| ### Performance The model was tested on 1692 samples of the GermanQuAD test dataset (the other samples were used for validation) F1-Score: 89.05 EM: 74.76
11fcbe7badd2f3729d454f5ec27a903b
gngpostalsrvc/BERiT_14500
gngpostalsrvc
roberta
11
7
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,840
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_14500 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.0316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.3825 | 0.19 | 500 | 8.3006 | | 8.2426 | 0.39 | 1000 | 8.2751 | | 8.1622 | 0.58 | 1500 | 8.2504 | | 8.1673 | 0.77 | 2000 | 8.1935 | | 8.1597 | 0.97 | 2500 | 8.1928 | | 8.0644 | 1.16 | 3000 | 8.1111 | | 8.0724 | 1.36 | 3500 | 8.0820 | | 8.0654 | 1.55 | 4000 | 8.0655 | | 8.0649 | 1.74 | 4500 | 8.0896 | | 8.051 | 1.94 | 5000 | 8.0838 | | 8.0003 | 2.13 | 5500 | 8.0989 | | 7.9795 | 2.32 | 6000 | 8.0729 | | 7.9984 | 2.52 | 6500 | 8.0566 | | 7.9935 | 2.71 | 7000 | 8.0757 | | 7.9652 | 2.9 | 7500 | 8.0316 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
d69dc825b6a503177dd0f9e07b702f74
Helsinki-NLP/opus-mt-nyk-en
Helsinki-NLP
marian
10
11
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
776
false
### opus-mt-nyk-en * source languages: nyk * target languages: en * OPUS readme: [nyk-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nyk-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nyk-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nyk-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nyk-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nyk.en | 27.3 | 0.423 |
9aeb091bba4a6a45b0cb72b51897315d
theojolliffe/bart-model2-1409
theojolliffe
bart
12
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,269
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-1409 This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1-feedback](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1-feedback) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 434 | 0.0866 | 65.9374 | 57.1515 | 64.1273 | 64.1253 | 19.787 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
ead333e6fdeb3a2f9f78cacc9e4a137f
learningdude/wav2vec2-base-finetuned-ks
learningdude
wav2vec2
10
3
transformers
0
audio-classification
true
false
false
apache-2.0
null
['superb']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,560
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0834 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6111 | 1.0 | 399 | 0.5123 | 0.9388 | | 0.2901 | 2.0 | 798 | 0.1725 | 0.9782 | | 0.1916 | 3.0 | 1197 | 0.1060 | 0.9834 | | 0.1754 | 4.0 | 1596 | 0.0891 | 0.9829 | | 0.1384 | 5.0 | 1995 | 0.0834 | 0.9840 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.12.1
f8bad01ae8cbe9f660fdc6c3799b988f
felipeace96/cleaner-restaurant-names
felipeace96
t5
9
29
transformers
0
text2text-generation
true
false
false
unknown
['es']
null
null
0
0
0
0
0
0
0
[]
false
true
true
758
false
# Cleaner Names Model This model was trained using information from the google places API (10K+). These restaurants are from countries like Mexico and Colombia, so spanish is principal language. The idea is remove automatically the stopwords in the name. The model was trained using an specific prompt, you will have to adapt the name in this way: """ REGULAR NAME: {name}. CLEANED NAME: """ For better results use the name in upper case. Examples: - POB MCDONALDS POBLADO HAMBURGUESA - BURGER KING SHOPPING RECIFE 15883 - CENTRO COMERCIAL GRAN ESTACION, DOMINOS PIZZA Using the prompt: REGULAR NAME: CENTRO COMERCIAL GRAN ESTACION, DOMINOS PIZZA. CLEANED NAME: On the Eval Dataset the Bleu Score is higher than 0.7. Its good, but can be better.
0a20b728443a5400aec513856697b0d7
Helsinki-NLP/opus-mt-es-ln
Helsinki-NLP
marian
10
7
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-es-ln * source languages: es * target languages: ln * OPUS readme: [es-ln](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ln/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ln/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ln/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ln/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ln | 27.1 | 0.508 |
7a50a1474a0584a5154a8b10bc27c3e8
tuwonga/supermarionation
tuwonga
null
25
52
diffusers
31
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
3
0
3
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
2,932
false
### supermarionation This is a fine-tuned Stable Diffusion model (based on v1.5) trained on screenshots from Gerry Anderson **_Supermarionation_** stop motion animation movie, basically from **_Thunderbirds_** tv series. Use the token **_supermarionation_** in your prompts to use the style. _Download the ckpt file from "files and versions" tab into the stable diffusion models folder of your web-ui of choice._ _I've found interesting (and really funny ^^) the output in the img2img. You can see the results in the second and third pic (original/img2img). You can play around with denoising strength (40-70) and activate or not the restore face option._ ### supermarionation v2 In this version I've trained characters and vehicles. 47 images and 9400 steps, 20% text encoder. -- **Characters and vehicles rendered with this model:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_v2_prev1.jpg) _prompt and settings used: **[person/vehicle] in supermarionation style** | **Steps: 30, Sampler: Euler, CFG scale: 7.5**_ **Characters rendered with img2img:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_v2_prev2.jpg) _prompt and settings used: **[person] in supermarionation style** | **Steps: 30 - you can play around with settings**_ **Characters rendered with supermarionation in txt2img:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_prev1.jpg) _prompt and settings used: **[person] in supermarionation style** | **Steps: 40 - you can play around with settings**_ **Characters rendered with supermarionation in img2img:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_prev2.jpg) _prompt and settings used: **[person] in supermarionation style** | **Steps: 40 - you can play around with settings**_ -- Supermarionation v1 was trained with Dreambooth training by TheLastBen, using 43 images at 8600 steps with 18% of text encoder. -- ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
b2e048b8e841980edbfcae66003be3be
shed-e/testgen
shed-e
bart
15
6
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
919
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testgen This model is a fine-tuned version of [GanjinZero/biobart-v2-base](https://huggingface.co/GanjinZero/biobart-v2-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.0 - Tokenizers 0.13.2
8a7879547acfcd771dcf5adb5a282028
Helsinki-NLP/opus-mt-tc-big-gmq-he
Helsinki-NLP
marian
13
3
transformers
0
translation
true
true
false
cc-by-4.0
['da', 'he', 'sv']
null
null
0
0
0
0
0
0
0
['translation', 'opus-mt-tc']
true
true
true
7,392
false
# opus-mt-tc-big-gmq-he ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to Hebrew (he). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-28 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan nor swe - Target Language(s): heb - Language Pair(s): dan-heb swe-heb - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-07-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-heb/opusTCv20210807_transformer-big_2022-07-28.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-heb README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-heb/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Alle L.L. Zamenhofs tre bรธrn blev myrdet i holocausten.", "Tom visade sig vara spion." ] model_name = "pytorch-models/opus-mt-tc-big-gmq-he" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # ื›ืœ ืฉืœื•ืฉืช ื”ื™ืœื“ื™ื ืฉืœ ืืœ-ืืœ ื–ืืžื ื”ื•ืฃ ื ืจืฆื—ื• ื‘ืฉื•ืื”. # ืžืกืชื‘ืจ ืฉื˜ื•ื ื”ื™ื” ืžืจื’ืœ. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-he") print(pipe("Alle L.L. Zamenhofs tre bรธrn blev myrdet i holocausten.")) # expected output: ื›ืœ ืฉืœื•ืฉืช ื”ื™ืœื“ื™ื ืฉืœ ืืœ-ืืœ ื–ืืžื ื”ื•ืฃ ื ืจืฆื—ื• ื‘ืฉื•ืื”. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-heb/opusTCv20210807_transformer-big_2022-07-28.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-28.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-heb/opusTCv20210807_transformer-big_2022-07-28.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-28.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-heb/opusTCv20210807_transformer-big_2022-07-28.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-heb | flores101-devtest | 0.52815 | 22.9 | 1012 | 20749 | | isl-heb | flores101-devtest | 0.42284 | 14.2 | 1012 | 20749 | | nob-heb | flores101-devtest | 0.49492 | 19.2 | 1012 | 20749 | | swe-heb | flores101-devtest | 0.52408 | 23.0 | 1012 | 20749 | ## Citation Information * Publications: [OPUS-MT โ€“ Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge โ€“ Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unionโ€™s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unionโ€™s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:03:50 EEST 2022 * port machine: LM0-400-22516.local
f62911982094fdfc5078c0d617e7fea8