davanstrien HF staff commited on
Commit
c4a1496
1 Parent(s): d1867ea
Files changed (2) hide show
  1. README.md +3 -3
  2. amazonian_fish_classifier_data.py +14 -17
README.md CHANGED
@@ -42,8 +42,8 @@ dataset_info:
42
  '32': Tyttocharax
43
  splits:
44
  - name: train
45
- num_bytes: 578234
46
  num_examples: 3068
47
- download_size: 330476983
48
- dataset_size: 578234
49
  ---
 
42
  '32': Tyttocharax
43
  splits:
44
  - name: train
45
+ num_bytes: 1068363405
46
  num_examples: 3068
47
+ download_size: 330399200
48
+ dataset_size: 1068363405
49
  ---
amazonian_fish_classifier_data.py CHANGED
@@ -14,9 +14,8 @@
14
  """TODO."""
15
 
16
 
17
- import os
18
- import pandas as pd
19
  import datasets
 
20
 
21
  _CITATION = """TODO"""
22
 
@@ -32,7 +31,6 @@ _LICENSE = "CC BY 4.0"
32
 
33
  _URLS = {
34
  "images": "https://smithsonian.figshare.com/ndownloader/files/31975544",
35
- "labels": "https://smithsonian.figshare.com/ndownloader/files/31975646",
36
  }
37
 
38
 
@@ -94,23 +92,22 @@ class AmazonianFish(datasets.GeneratorBasedBuilder):
94
  )
95
 
96
  def _split_generators(self, dl_manager):
97
- images = dl_manager.download_and_extract(_URLS["images"])
98
- labels = dl_manager.download(_URLS["labels"])
99
- df = pd.read_csv(labels)
100
- labels = df.to_dict(orient="records")
101
  return [
102
  datasets.SplitGenerator(
103
  name=datasets.Split.TRAIN,
104
- gen_kwargs={
105
- "images": os.path.join(images, "training_images"),
106
- "labels": labels,
107
- },
108
  ),
109
  ]
110
 
111
- def _generate_examples(self, images, labels):
112
- for id_, example in enumerate(labels):
113
- yield id_, {
114
- "image": str(os.path.join(images, example["Genus"], example["Image_name"])),
115
- "label": example["Genus"],
116
- }
 
 
 
 
 
 
14
  """TODO."""
15
 
16
 
 
 
17
  import datasets
18
+ from pathlib import Path
19
 
20
  _CITATION = """TODO"""
21
 
 
31
 
32
  _URLS = {
33
  "images": "https://smithsonian.figshare.com/ndownloader/files/31975544",
 
34
  }
35
 
36
 
 
92
  )
93
 
94
  def _split_generators(self, dl_manager):
95
+ images = dl_manager.download(_URLS["images"])
 
 
 
96
  return [
97
  datasets.SplitGenerator(
98
  name=datasets.Split.TRAIN,
99
+ gen_kwargs={"archive": dl_manager.iter_archive(images)},
 
 
 
100
  ),
101
  ]
102
 
103
+ def _generate_examples(self, archive):
104
+ id_ = 0
105
+ for fname, fobject in archive:
106
+ if fname.startswith("._"):
107
+ continue
108
+ if Path(fname).suffix != ".jpg":
109
+ continue
110
+ image = fobject.read()
111
+ label = str(Path(fname).parts[-2])
112
+ id_ += 1
113
+ yield id_, {"image": image, "label": label}