|
"""Functions for building the face recognition network. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import imageio |
|
import os |
|
from subprocess import Popen, PIPE |
|
import tensorflow.compat.v1 as tf |
|
from tensorflow.python.framework import ops |
|
import numpy as np |
|
from scipy import misc |
|
from sklearn.model_selection import KFold |
|
from scipy import interpolate |
|
from tensorflow.python.training import training |
|
import random |
|
import re |
|
from tensorflow.python.platform import gfile |
|
|
|
|
|
def triplet_loss(anchor, positive, negative, alpha): |
|
"""Calculate the triplet loss according to the FaceNet paper |
|
|
|
Args: |
|
anchor: the embeddings for the anchor images. |
|
positive: the embeddings for the positive images. |
|
negative: the embeddings for the negative images. |
|
|
|
Returns: |
|
the triplet loss according to the FaceNet paper as a float tensor. |
|
""" |
|
with tf.variable_scope('triplet_loss'): |
|
pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1) |
|
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1) |
|
|
|
basic_loss = tf.add(tf.subtract(pos_dist,neg_dist), alpha) |
|
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) |
|
|
|
return loss |
|
|
|
def decov_loss(xs): |
|
"""Decov loss as described in https://arxiv.org/pdf/1511.06068.pdf |
|
'Reducing Overfitting In Deep Networks by Decorrelating Representation' |
|
""" |
|
x = tf.reshape(xs, [int(xs.get_shape()[0]), -1]) |
|
m = tf.reduce_mean(x, 0, True) |
|
z = tf.expand_dims(x-m, 2) |
|
corr = tf.reduce_mean(tf.matmul(z, tf.transpose(z, perm=[0,2,1])), 0) |
|
corr_frob_sqr = tf.reduce_sum(tf.square(corr)) |
|
corr_diag_sqr = tf.reduce_sum(tf.square(tf.diag_part(corr))) |
|
loss = 0.5*(corr_frob_sqr - corr_diag_sqr) |
|
return loss |
|
|
|
def center_loss(features, label, alfa, nrof_classes): |
|
"""Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition" |
|
(http://ydwen.github.io/papers/WenECCV16.pdf) |
|
""" |
|
nrof_features = features.get_shape()[1] |
|
centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32, |
|
initializer=tf.constant_initializer(0), trainable=False) |
|
label = tf.reshape(label, [-1]) |
|
centers_batch = tf.gather(centers, label) |
|
diff = (1 - alfa) * (centers_batch - features) |
|
centers = tf.scatter_sub(centers, label, diff) |
|
loss = tf.reduce_mean(tf.square(features - centers_batch)) |
|
return loss, centers |
|
|
|
def get_image_paths_and_labels(dataset): |
|
image_paths_flat = [] |
|
labels_flat = [] |
|
for i in range(len(dataset)): |
|
image_paths_flat += dataset[i].image_paths |
|
labels_flat += [i] * len(dataset[i].image_paths) |
|
return image_paths_flat, labels_flat |
|
|
|
def shuffle_examples(image_paths, labels): |
|
shuffle_list = list(zip(image_paths, labels)) |
|
random.shuffle(shuffle_list) |
|
image_paths_shuff, labels_shuff = zip(*shuffle_list) |
|
return image_paths_shuff, labels_shuff |
|
|
|
def read_images_from_disk(input_queue): |
|
"""Consumes a single filename and label as a ' '-delimited string. |
|
Args: |
|
filename_and_label_tensor: A scalar string tensor. |
|
Returns: |
|
Two tensors: the decoded image, and the string label. |
|
""" |
|
label = input_queue[1] |
|
file_contents = tf.read_file(input_queue[0]) |
|
example = tf.image.decode_png(file_contents, channels=3) |
|
return example, label |
|
|
|
def random_rotate_image(image): |
|
angle = np.random.uniform(low=-10.0, high=10.0) |
|
return misc.imrotate(image, angle, 'bicubic') |
|
|
|
def read_and_augment_data(image_list, label_list, image_size, batch_size, max_nrof_epochs, |
|
random_crop, random_flip, random_rotate, nrof_preprocess_threads, shuffle=True): |
|
|
|
images = ops.convert_to_tensor(image_list, dtype=tf.string) |
|
labels = ops.convert_to_tensor(label_list, dtype=tf.int32) |
|
|
|
|
|
input_queue = tf.train.slice_input_producer([images, labels], |
|
num_epochs=max_nrof_epochs, shuffle=shuffle) |
|
|
|
images_and_labels = [] |
|
for _ in range(nrof_preprocess_threads): |
|
image, label = read_images_from_disk(input_queue) |
|
if random_rotate: |
|
image = tf.py_func(random_rotate_image, [image], tf.uint8) |
|
if random_crop: |
|
image = tf.random_crop(image, [image_size, image_size, 3]) |
|
else: |
|
image = tf.image.resize_image_with_crop_or_pad(image, image_size, image_size) |
|
if random_flip: |
|
image = tf.image.random_flip_left_right(image) |
|
|
|
image.set_shape((image_size, image_size, 3)) |
|
image = tf.image.per_image_standardization(image) |
|
images_and_labels.append([image, label]) |
|
|
|
image_batch, label_batch = tf.train.batch_join( |
|
images_and_labels, batch_size=batch_size, |
|
capacity=4 * nrof_preprocess_threads * batch_size, |
|
allow_smaller_final_batch=True) |
|
|
|
return image_batch, label_batch |
|
|
|
def _add_loss_summaries(total_loss): |
|
"""Add summaries for losses. |
|
|
|
Generates moving average for all losses and associated summaries for |
|
visualizing the performance of the network. |
|
|
|
Args: |
|
total_loss: Total loss from loss(). |
|
Returns: |
|
loss_averages_op: op for generating moving averages of losses. |
|
""" |
|
|
|
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') |
|
losses = tf.get_collection('losses') |
|
loss_averages_op = loss_averages.apply(losses + [total_loss]) |
|
|
|
|
|
|
|
for l in losses + [total_loss]: |
|
|
|
|
|
tf.summary.scalar(l.op.name +' (raw)', l) |
|
tf.summary.scalar(l.op.name, loss_averages.average(l)) |
|
|
|
return loss_averages_op |
|
|
|
def train(total_loss, global_step, optimizer, learning_rate, moving_average_decay, update_gradient_vars, log_histograms=True): |
|
|
|
loss_averages_op = _add_loss_summaries(total_loss) |
|
|
|
|
|
with tf.control_dependencies([loss_averages_op]): |
|
if optimizer=='ADAGRAD': |
|
opt = tf.train.AdagradOptimizer(learning_rate) |
|
elif optimizer=='ADADELTA': |
|
opt = tf.train.AdadeltaOptimizer(learning_rate, rho=0.9, epsilon=1e-6) |
|
elif optimizer=='ADAM': |
|
opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) |
|
elif optimizer=='RMSPROP': |
|
opt = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.9, epsilon=1.0) |
|
elif optimizer=='MOM': |
|
opt = tf.train.MomentumOptimizer(learning_rate, 0.9, use_nesterov=True) |
|
else: |
|
raise ValueError('Invalid optimization algorithm') |
|
|
|
grads = opt.compute_gradients(total_loss, update_gradient_vars) |
|
|
|
|
|
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) |
|
|
|
|
|
if log_histograms: |
|
for var in tf.trainable_variables(): |
|
tf.summary.histogram(var.op.name, var) |
|
|
|
|
|
if log_histograms: |
|
for grad, var in grads: |
|
if grad is not None: |
|
tf.summary.histogram(var.op.name + '/gradients', grad) |
|
|
|
|
|
variable_averages = tf.train.ExponentialMovingAverage( |
|
moving_average_decay, global_step) |
|
variables_averages_op = variable_averages.apply(tf.trainable_variables()) |
|
|
|
with tf.control_dependencies([apply_gradient_op, variables_averages_op]): |
|
train_op = tf.no_op(name='train') |
|
|
|
return train_op |
|
|
|
def prewhiten(x): |
|
mean = np.mean(x) |
|
std = np.std(x) |
|
std_adj = np.maximum(std, 1.0/np.sqrt(x.size)) |
|
y = np.multiply(np.subtract(x, mean), 1/std_adj) |
|
return y |
|
|
|
def crop(image, random_crop, image_size): |
|
if image.shape[1]>image_size: |
|
sz1 = int(image.shape[1]//2) |
|
sz2 = int(image_size//2) |
|
if random_crop: |
|
diff = sz1-sz2 |
|
(h, v) = (np.random.randint(-diff, diff+1), np.random.randint(-diff, diff+1)) |
|
else: |
|
(h, v) = (0,0) |
|
image = image[(sz1-sz2+v):(sz1+sz2+v),(sz1-sz2+h):(sz1+sz2+h),:] |
|
return image |
|
|
|
def flip(image, random_flip): |
|
if random_flip and np.random.choice([True, False]): |
|
image = np.fliplr(image) |
|
return image |
|
|
|
def to_rgb(img): |
|
w, h = img.shape |
|
ret = np.empty((w, h, 3), dtype=np.uint8) |
|
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img |
|
return ret |
|
|
|
def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True): |
|
nrof_samples = len(image_paths) |
|
images = np.zeros((nrof_samples, image_size, image_size, 3)) |
|
for i in range(nrof_samples): |
|
img = imageio.imread(image_paths[i]) |
|
if img.ndim == 2: |
|
img = to_rgb(img) |
|
if do_prewhiten: |
|
img = prewhiten(img) |
|
img = crop(img, do_random_crop, image_size) |
|
img = flip(img, do_random_flip) |
|
images[i,:,:,:] = img |
|
return images |
|
|
|
def get_label_batch(label_data, batch_size, batch_index): |
|
nrof_examples = np.size(label_data, 0) |
|
j = batch_index*batch_size % nrof_examples |
|
if j+batch_size<=nrof_examples: |
|
batch = label_data[j:j+batch_size] |
|
else: |
|
x1 = label_data[j:nrof_examples] |
|
x2 = label_data[0:nrof_examples-j] |
|
batch = np.vstack([x1,x2]) |
|
batch_int = batch.astype(np.int64) |
|
return batch_int |
|
|
|
def get_batch(image_data, batch_size, batch_index): |
|
nrof_examples = np.size(image_data, 0) |
|
j = batch_index*batch_size % nrof_examples |
|
if j+batch_size<=nrof_examples: |
|
batch = image_data[j:j+batch_size,:,:,:] |
|
else: |
|
x1 = image_data[j:nrof_examples,:,:,:] |
|
x2 = image_data[0:nrof_examples-j,:,:,:] |
|
batch = np.vstack([x1,x2]) |
|
batch_float = batch.astype(np.float32) |
|
return batch_float |
|
|
|
def get_triplet_batch(triplets, batch_index, batch_size): |
|
ax, px, nx = triplets |
|
a = get_batch(ax, int(batch_size/3), batch_index) |
|
p = get_batch(px, int(batch_size/3), batch_index) |
|
n = get_batch(nx, int(batch_size/3), batch_index) |
|
batch = np.vstack([a, p, n]) |
|
return batch |
|
|
|
def get_learning_rate_from_file(filename, epoch): |
|
with open(filename, 'r') as f: |
|
for line in f.readlines(): |
|
line = line.split('#', 1)[0] |
|
if line: |
|
par = line.strip().split(':') |
|
e = int(par[0]) |
|
lr = float(par[1]) |
|
if e <= epoch: |
|
learning_rate = lr |
|
else: |
|
return learning_rate |
|
|
|
class ImageClass(): |
|
"Stores the paths to images for a given class" |
|
def __init__(self, name, image_paths): |
|
self.name = name |
|
self.image_paths = image_paths |
|
|
|
def __str__(self): |
|
return self.name + ', ' + str(len(self.image_paths)) + ' images' |
|
|
|
def __len__(self): |
|
return len(self.image_paths) |
|
|
|
def get_dataset(paths, has_class_directories=True): |
|
dataset = [] |
|
for path in paths.split(':'): |
|
path_exp = os.path.expanduser(path) |
|
classes = os.listdir(path_exp) |
|
classes.sort() |
|
nrof_classes = len(classes) |
|
for i in range(nrof_classes): |
|
class_name = classes[i] |
|
facedir = os.path.join(path_exp, class_name) |
|
image_paths = get_image_paths(facedir) |
|
dataset.append(ImageClass(class_name, image_paths)) |
|
|
|
return dataset |
|
|
|
def get_image_paths(facedir): |
|
image_paths = [] |
|
if os.path.isdir(facedir): |
|
images = os.listdir(facedir) |
|
image_paths = [os.path.join(facedir,img) for img in images] |
|
return image_paths |
|
|
|
def split_dataset(dataset, split_ratio, mode): |
|
if mode=='SPLIT_CLASSES': |
|
nrof_classes = len(dataset) |
|
class_indices = np.arange(nrof_classes) |
|
np.random.shuffle(class_indices) |
|
split = int(round(nrof_classes*split_ratio)) |
|
train_set = [dataset[i] for i in class_indices[0:split]] |
|
test_set = [dataset[i] for i in class_indices[split:-1]] |
|
elif mode=='SPLIT_IMAGES': |
|
train_set = [] |
|
test_set = [] |
|
min_nrof_images = 2 |
|
for cls in dataset: |
|
paths = cls.image_paths |
|
np.random.shuffle(paths) |
|
split = int(round(len(paths)*split_ratio)) |
|
if split<min_nrof_images: |
|
continue |
|
train_set.append(ImageClass(cls.name, paths[0:split])) |
|
test_set.append(ImageClass(cls.name, paths[split:-1])) |
|
else: |
|
raise ValueError('Invalid train/test split mode "%s"' % mode) |
|
return train_set, test_set |
|
|
|
def load_model(model): |
|
|
|
|
|
model_exp = os.path.expanduser(model) |
|
if (os.path.isfile(model_exp)): |
|
print('Model filename: %s' % model_exp) |
|
with gfile.FastGFile(model_exp,'rb') as f: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
tf.import_graph_def(graph_def, name='') |
|
else: |
|
print('Model directory: %s' % model_exp) |
|
meta_file, ckpt_file = get_model_filenames(model_exp) |
|
|
|
print('Metagraph file: %s' % meta_file) |
|
print('Checkpoint file: %s' % ckpt_file) |
|
|
|
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file)) |
|
saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file)) |
|
|
|
def get_model_filenames(model_dir): |
|
files = os.listdir(model_dir) |
|
meta_files = [s for s in files if s.endswith('.meta')] |
|
if len(meta_files)==0: |
|
raise ValueError('No meta file found in the model directory (%s)' % model_dir) |
|
elif len(meta_files)>1: |
|
raise ValueError('There should not be more than one meta file in the model directory (%s)' % model_dir) |
|
meta_file = meta_files[0] |
|
meta_files = [s for s in files if '.ckpt' in s] |
|
max_step = -1 |
|
for f in files: |
|
step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', f) |
|
if step_str is not None and len(step_str.groups())>=2: |
|
step = int(step_str.groups()[1]) |
|
if step > max_step: |
|
max_step = step |
|
ckpt_file = step_str.groups()[0] |
|
return meta_file, ckpt_file |
|
|
|
def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10): |
|
assert(embeddings1.shape[0] == embeddings2.shape[0]) |
|
assert(embeddings1.shape[1] == embeddings2.shape[1]) |
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) |
|
nrof_thresholds = len(thresholds) |
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False) |
|
|
|
tprs = np.zeros((nrof_folds,nrof_thresholds)) |
|
fprs = np.zeros((nrof_folds,nrof_thresholds)) |
|
accuracy = np.zeros((nrof_folds)) |
|
|
|
diff = np.subtract(embeddings1, embeddings2) |
|
dist = np.sum(np.square(diff),1) |
|
indices = np.arange(nrof_pairs) |
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): |
|
|
|
|
|
acc_train = np.zeros((nrof_thresholds)) |
|
for threshold_idx, threshold in enumerate(thresholds): |
|
_, _, acc_train[threshold_idx] = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) |
|
best_threshold_index = np.argmax(acc_train) |
|
for threshold_idx, threshold in enumerate(thresholds): |
|
tprs[fold_idx,threshold_idx], fprs[fold_idx,threshold_idx], _ = calculate_accuracy(threshold, dist[test_set], actual_issame[test_set]) |
|
_, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) |
|
|
|
tpr = np.mean(tprs,0) |
|
fpr = np.mean(fprs,0) |
|
return tpr, fpr, accuracy |
|
|
|
def calculate_accuracy(threshold, dist, actual_issame): |
|
predict_issame = np.less(dist, threshold) |
|
tp = np.sum(np.logical_and(predict_issame, actual_issame)) |
|
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) |
|
tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) |
|
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) |
|
|
|
tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn) |
|
fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn) |
|
acc = float(tp+tn)/dist.size |
|
return tpr, fpr, acc |
|
|
|
|
|
|
|
def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10): |
|
assert(embeddings1.shape[0] == embeddings2.shape[0]) |
|
assert(embeddings1.shape[1] == embeddings2.shape[1]) |
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) |
|
nrof_thresholds = len(thresholds) |
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False) |
|
|
|
val = np.zeros(nrof_folds) |
|
far = np.zeros(nrof_folds) |
|
|
|
diff = np.subtract(embeddings1, embeddings2) |
|
dist = np.sum(np.square(diff),1) |
|
indices = np.arange(nrof_pairs) |
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): |
|
|
|
|
|
far_train = np.zeros(nrof_thresholds) |
|
for threshold_idx, threshold in enumerate(thresholds): |
|
_, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set]) |
|
if np.max(far_train)>=far_target: |
|
f = interpolate.interp1d(far_train, thresholds, kind='slinear') |
|
threshold = f(far_target) |
|
else: |
|
threshold = 0.0 |
|
|
|
val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) |
|
|
|
val_mean = np.mean(val) |
|
far_mean = np.mean(far) |
|
val_std = np.std(val) |
|
return val_mean, val_std, far_mean |
|
|
|
|
|
def calculate_val_far(threshold, dist, actual_issame): |
|
predict_issame = np.less(dist, threshold) |
|
true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) |
|
false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) |
|
n_same = np.sum(actual_issame) |
|
n_diff = np.sum(np.logical_not(actual_issame)) |
|
val = float(true_accept) / float(n_same) |
|
far = float(false_accept) / float(n_diff) |
|
return val, far |
|
|
|
def store_revision_info(src_path, output_dir, arg_string): |
|
|
|
|
|
gitproc = Popen(['git', 'rev-parse', 'HEAD'], stdout = PIPE, cwd=src_path) |
|
(stdout, _) = gitproc.communicate() |
|
git_hash = stdout.strip() |
|
|
|
|
|
gitproc = Popen(['git', 'diff', 'HEAD'], stdout = PIPE, cwd=src_path) |
|
(stdout, _) = gitproc.communicate() |
|
git_diff = stdout.strip() |
|
|
|
|
|
rev_info_filename = os.path.join(output_dir, 'revision_info.txt') |
|
with open(rev_info_filename, "w") as text_file: |
|
text_file.write('arguments: %s\n--------------------\n' % arg_string) |
|
text_file.write('git hash: %s\n--------------------\n' % git_hash) |
|
text_file.write('%s' % git_diff) |
|
|
|
def list_variables(filename): |
|
reader = training.NewCheckpointReader(filename) |
|
variable_map = reader.get_variable_to_shape_map() |
|
names = sorted(variable_map.keys()) |
|
return names |
|
|
|
def put_images_on_grid(images, shape=(16,8)): |
|
nrof_images = images.shape[0] |
|
img_size = images.shape[1] |
|
bw = 3 |
|
img = np.zeros((shape[1]*(img_size+bw)+bw, shape[0]*(img_size+bw)+bw, 3), np.float32) |
|
for i in range(shape[1]): |
|
x_start = i*(img_size+bw)+bw |
|
for j in range(shape[0]): |
|
img_index = i*shape[0]+j |
|
if img_index>=nrof_images: |
|
break |
|
y_start = j*(img_size+bw)+bw |
|
img[x_start:x_start+img_size, y_start:y_start+img_size, :] = images[img_index, :, :, :] |
|
if img_index>=nrof_images: |
|
break |
|
return img |
|
|
|
def write_arguments_to_file(args, filename): |
|
with open(filename, 'w') as f: |
|
for key, value in vars(args).iteritems(): |
|
f.write('%s: %s\n' % (key, str(value))) |
|
|