|
import os
|
|
import os.path
|
|
import sys
|
|
import torch
|
|
import torch.utils.data as data
|
|
import cv2
|
|
import numpy as np
|
|
|
|
class WiderFaceDetection(data.Dataset):
|
|
def __init__(self, txt_path, preproc=None):
|
|
self.preproc = preproc
|
|
self.imgs_path = []
|
|
self.words = []
|
|
f = open(txt_path,'r')
|
|
lines = f.readlines()
|
|
isFirst = True
|
|
labels = []
|
|
for line in lines:
|
|
line = line.rstrip()
|
|
if line.startswith('#'):
|
|
if isFirst is True:
|
|
isFirst = False
|
|
else:
|
|
labels_copy = labels.copy()
|
|
self.words.append(labels_copy)
|
|
labels.clear()
|
|
path = line[2:]
|
|
path = txt_path.replace('label.txt','images/') + path
|
|
self.imgs_path.append(path)
|
|
else:
|
|
line = line.split(' ')
|
|
label = [float(x) for x in line]
|
|
labels.append(label)
|
|
|
|
self.words.append(labels)
|
|
|
|
def __len__(self):
|
|
return len(self.imgs_path)
|
|
|
|
def __getitem__(self, index):
|
|
img = cv2.imread(self.imgs_path[index])
|
|
height, width, _ = img.shape
|
|
|
|
labels = self.words[index]
|
|
annotations = np.zeros((0, 15))
|
|
if len(labels) == 0:
|
|
return annotations
|
|
for idx, label in enumerate(labels):
|
|
annotation = np.zeros((1, 15))
|
|
|
|
annotation[0, 0] = label[0]
|
|
annotation[0, 1] = label[1]
|
|
annotation[0, 2] = label[0] + label[2]
|
|
annotation[0, 3] = label[1] + label[3]
|
|
|
|
|
|
annotation[0, 4] = label[4]
|
|
annotation[0, 5] = label[5]
|
|
annotation[0, 6] = label[7]
|
|
annotation[0, 7] = label[8]
|
|
annotation[0, 8] = label[10]
|
|
annotation[0, 9] = label[11]
|
|
annotation[0, 10] = label[13]
|
|
annotation[0, 11] = label[14]
|
|
annotation[0, 12] = label[16]
|
|
annotation[0, 13] = label[17]
|
|
if (annotation[0, 4]<0):
|
|
annotation[0, 14] = -1
|
|
else:
|
|
annotation[0, 14] = 1
|
|
|
|
annotations = np.append(annotations, annotation, axis=0)
|
|
target = np.array(annotations)
|
|
if self.preproc is not None:
|
|
img, target = self.preproc(img, target)
|
|
|
|
return torch.from_numpy(img), target
|
|
|
|
def detection_collate(batch):
|
|
"""Custom collate fn for dealing with batches of images that have a different
|
|
number of associated object annotations (bounding boxes).
|
|
|
|
Arguments:
|
|
batch: (tuple) A tuple of tensor images and lists of annotations
|
|
|
|
Return:
|
|
A tuple containing:
|
|
1) (tensor) batch of images stacked on their 0 dim
|
|
2) (list of tensors) annotations for a given image are stacked on 0 dim
|
|
"""
|
|
targets = []
|
|
imgs = []
|
|
for _, sample in enumerate(batch):
|
|
for _, tup in enumerate(sample):
|
|
if torch.is_tensor(tup):
|
|
imgs.append(tup)
|
|
elif isinstance(tup, type(np.empty(0))):
|
|
annos = torch.from_numpy(tup).float()
|
|
targets.append(annos)
|
|
|
|
return (torch.stack(imgs, 0), targets)
|
|
|