|
import torch
|
|
import torch.nn as nn
|
|
import torchvision.models.detection.backbone_utils as backbone_utils
|
|
import torchvision.models._utils as _utils
|
|
import torch.nn.functional as F
|
|
from collections import OrderedDict
|
|
|
|
from models.net import MobileNetV1 as MobileNetV1
|
|
from models.net import FPN as FPN
|
|
from models.net import SSH as SSH
|
|
|
|
|
|
|
|
class ClassHead(nn.Module):
|
|
def __init__(self,inchannels=512,num_anchors=3):
|
|
super(ClassHead,self).__init__()
|
|
self.num_anchors = num_anchors
|
|
self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)
|
|
|
|
def forward(self,x):
|
|
out = self.conv1x1(x)
|
|
out = out.permute(0,2,3,1).contiguous()
|
|
|
|
return out.view(out.shape[0], -1, 2)
|
|
|
|
class BboxHead(nn.Module):
|
|
def __init__(self,inchannels=512,num_anchors=3):
|
|
super(BboxHead,self).__init__()
|
|
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)
|
|
|
|
def forward(self,x):
|
|
out = self.conv1x1(x)
|
|
out = out.permute(0,2,3,1).contiguous()
|
|
|
|
return out.view(out.shape[0], -1, 4)
|
|
|
|
class LandmarkHead(nn.Module):
|
|
def __init__(self,inchannels=512,num_anchors=3):
|
|
super(LandmarkHead,self).__init__()
|
|
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)
|
|
|
|
def forward(self,x):
|
|
out = self.conv1x1(x)
|
|
out = out.permute(0,2,3,1).contiguous()
|
|
|
|
return out.view(out.shape[0], -1, 10)
|
|
|
|
class RetinaFace(nn.Module):
|
|
def __init__(self, cfg = None, phase = 'test'):
|
|
"""
|
|
:param cfg: Network related settings.
|
|
:param phase: test or test.
|
|
"""
|
|
super(RetinaFace,self).__init__()
|
|
self.phase = phase
|
|
backbone = None
|
|
if cfg['name'] == 'mobilenet0.25':
|
|
backbone = MobileNetV1()
|
|
if cfg['pretrain']:
|
|
checkpoint = torch.load("./Retinaface_model_v2/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
|
|
from collections import OrderedDict
|
|
new_state_dict = OrderedDict()
|
|
for k, v in checkpoint['state_dict'].items():
|
|
name = k[7:]
|
|
new_state_dict[name] = v
|
|
|
|
backbone.load_state_dict(new_state_dict)
|
|
elif cfg['name'] == 'Resnet50':
|
|
import torchvision.models as models
|
|
backbone = models.resnet50(pretrained=cfg['pretrain'])
|
|
|
|
self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])
|
|
in_channels_stage2 = cfg['in_channel']
|
|
in_channels_list = [
|
|
in_channels_stage2 * 2,
|
|
in_channels_stage2 * 4,
|
|
in_channels_stage2 * 8,
|
|
]
|
|
out_channels = cfg['out_channel']
|
|
self.fpn = FPN(in_channels_list,out_channels)
|
|
self.ssh1 = SSH(out_channels, out_channels)
|
|
self.ssh2 = SSH(out_channels, out_channels)
|
|
self.ssh3 = SSH(out_channels, out_channels)
|
|
|
|
self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
|
|
self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
|
|
self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
|
|
|
|
def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
|
classhead = nn.ModuleList()
|
|
for i in range(fpn_num):
|
|
classhead.append(ClassHead(inchannels,anchor_num))
|
|
return classhead
|
|
|
|
def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
|
bboxhead = nn.ModuleList()
|
|
for i in range(fpn_num):
|
|
bboxhead.append(BboxHead(inchannels,anchor_num))
|
|
return bboxhead
|
|
|
|
def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
|
landmarkhead = nn.ModuleList()
|
|
for i in range(fpn_num):
|
|
landmarkhead.append(LandmarkHead(inchannels,anchor_num))
|
|
return landmarkhead
|
|
|
|
def forward(self,inputs):
|
|
out = self.body(inputs)
|
|
|
|
|
|
fpn = self.fpn(out)
|
|
|
|
|
|
feature1 = self.ssh1(fpn[0])
|
|
feature2 = self.ssh2(fpn[1])
|
|
feature3 = self.ssh3(fpn[2])
|
|
features = [feature1, feature2, feature3]
|
|
|
|
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
|
|
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)],dim=1)
|
|
ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1)
|
|
|
|
if self.phase == 'test':
|
|
output = (bbox_regressions, classifications, ldm_regressions)
|
|
else:
|
|
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
|
|
return output |