|
""" |
|
day2timelapse_dataset.py: |
|
Dataset loader for day2timelapse. It loads images belonging to Waymo |
|
Day/Dusk/Dawn/Night splits and it applies a tone mapping operator to |
|
the "Day" ones in order to drive learning with CoMoGAN. |
|
It has support for custom options in DatasetOptions. |
|
""" |
|
|
|
import os.path |
|
|
|
import numpy as np |
|
import math |
|
from data.base_dataset import BaseDataset, get_transform |
|
from PIL import Image |
|
import random |
|
from torchvision.transforms import ToTensor |
|
import torch |
|
import munch |
|
|
|
|
|
def DatasetOptions(): |
|
do = munch.Munch() |
|
do.num_threads = 4 |
|
do.batch_size = 1 |
|
do.preprocess = 'none' |
|
do.max_dataset_size = float('inf') |
|
do.no_flip = False |
|
do.serial_batches = False |
|
return do |
|
|
|
|
|
class Day2TimelapseDataset(BaseDataset): |
|
""" |
|
This dataset class can load unaligned/unpaired datasets. |
|
|
|
It requires two directories to host training images from domain A '/path/to/data/trainA' |
|
and from domain B '/path/to/data/trainB' respectively. |
|
You can train the model with the dataset flag '--dataroot /path/to/data'. |
|
Similarly, you need to prepare two directories: |
|
'/path/to/data/testA' and '/path/to/data/testB' during test time. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize this dataset class. |
|
|
|
Parameters: |
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
BaseDataset.__init__(self, opt) |
|
self.dir_day = os.path.join(opt.dataroot, 'sunny', 'Day') |
|
self.dir_dusk = os.path.join(opt.dataroot, 'sunny', 'Dawn', 'Dusk') |
|
self.dir_night = os.path.join(opt.dataroot, 'sunny', 'Night') |
|
self.A_paths = [os.path.join(self.dir_day, x) for x in os.listdir(self.dir_day)] |
|
self.B_paths = [os.path.join(self.dir_dusk, x) for x in os.listdir(self.dir_dusk)] |
|
self.B_paths += [os.path.join(self.dir_night, x) for x in os.listdir(self.dir_night)] |
|
|
|
self.A_size = len(self.A_paths) |
|
self.B_size = len(self.B_paths) |
|
self.A_paths.sort() |
|
self.B_paths.sort() |
|
self.transform_A = get_transform(self.opt, grayscale=(opt.input_nc == 1), convert=False) |
|
self.transform_B = get_transform(self.opt, grayscale=(opt.output_nc == 1), convert=False) |
|
|
|
self.__tonemapping = torch.tensor(np.loadtxt('./data/daytime_model_lut.csv', delimiter=','), |
|
dtype=torch.float32) |
|
|
|
self.__xyz_matrix = torch.tensor([[0.5149, 0.3244, 0.1607], |
|
[0.2654, 0.6704, 0.0642], |
|
[0.0248, 0.1248, 0.8504]]) |
|
|
|
def __getitem__(self, index): |
|
"""Return a data point and its metadata information. |
|
|
|
Parameters: |
|
index (int) -- a random integer for data indexing |
|
|
|
Returns a dictionary that contains A, B, A_paths and B_paths |
|
A (tensor) -- an image in the input domain |
|
B (tensor) -- its corresponding image in the target domain |
|
A_paths (str) -- image paths |
|
B_paths (str) -- image paths |
|
""" |
|
A_path = self.A_paths[index % self.A_size] |
|
index_B = random.randint(0, self.B_size - 1) |
|
B_path = self.B_paths[index_B] |
|
|
|
A_img = Image.open(A_path).convert('RGB') |
|
B_img = Image.open(B_path).convert('RGB') |
|
|
|
|
|
A = self.transform_A(A_img) |
|
B = self.transform_B(B_img) |
|
|
|
|
|
A = ToTensor()(A) |
|
B = ToTensor()(B) |
|
|
|
phi = random.random() * 2 * math.pi |
|
continuity_sin = math.sin(phi) |
|
cos_phi = math.cos(phi) |
|
|
|
A_cont = self.__apply_colormap(A, cos_phi, continuity_sin) |
|
|
|
phi_prime = random.random() * 2 * math.pi |
|
sin_phi_prime = math.sin(phi_prime) |
|
cos_phi_prime = math.cos(phi_prime) |
|
|
|
A_cont_compare = self.__apply_colormap(A, cos_phi_prime, sin_phi_prime) |
|
|
|
|
|
A = (A * 2) - 1 |
|
B = (B * 2) - 1 |
|
A_cont = (A_cont * 2) - 1 |
|
A_cont_compare = (A_cont_compare * 2) - 1 |
|
|
|
|
|
return {'A': A, 'B': B, 'A_cont': A_cont, 'A_paths': A_path, 'B_paths': B_path, 'cos_phi': float(cos_phi), |
|
'sin_phi': float(continuity_sin), 'sin_phi_prime': float(sin_phi_prime), |
|
'cos_phi_prime': float(cos_phi_prime), 'A_cont_compare': A_cont_compare, 'phi': phi, |
|
'phi_prime': phi_prime,} |
|
|
|
def __len__(self): |
|
"""Return the total number of images in the dataset. |
|
|
|
As we have two datasets with potentially different number of images, |
|
we take a maximum of |
|
""" |
|
return max(self.A_size, self.B_size) |
|
|
|
def __apply_colormap(self, im, cos_phi, sin_phi, eps = 1e-8): |
|
size_0, size_1, size_2 = im.size() |
|
cos_phi_norm = 1 - (cos_phi + 1) / 2 |
|
im_buf = im.permute(1, 2, 0).view(-1, 3) |
|
im_buf = torch.matmul(im_buf, self.__xyz_matrix) |
|
|
|
X = im_buf[:, 0] + eps |
|
Y = im_buf[:, 1] |
|
Z = im_buf[:, 2] |
|
|
|
V = Y * (1.33 * (1 + (Y + Z) / X) - 1.68) |
|
|
|
tmp_index_lower = int(cos_phi_norm * self.__tonemapping.size(0)) |
|
|
|
if tmp_index_lower < self.__tonemapping.size(0) - 1: |
|
tmp_index_higher = tmp_index_lower + 1 |
|
else: |
|
tmp_index_higher = tmp_index_lower |
|
interp_index = cos_phi_norm * self.__tonemapping.size(0) - tmp_index_lower |
|
try: |
|
color_lower = self.__tonemapping[tmp_index_lower, :3] |
|
except IndexError: |
|
color_lower = self.__tonemapping[-2, :3] |
|
try: |
|
color_higher = self.__tonemapping[tmp_index_higher, :3] |
|
except IndexError: |
|
color_higher = self.__tonemapping[-2, :3] |
|
color = color_lower * (1 - interp_index) + color_higher * interp_index |
|
|
|
|
|
if sin_phi >= 0: |
|
|
|
corr = torch.tensor([0.1, 0, 0.1]) * sin_phi |
|
if sin_phi < 0: |
|
|
|
corr = torch.tensor([0.1, 0, 0]) * (- sin_phi) |
|
|
|
color += corr |
|
im_degree = V.unsqueeze(1) * torch.matmul(color, self.__xyz_matrix) |
|
im_degree = torch.matmul(im_degree, self.__xyz_matrix.inverse()).view(size_1, size_2, size_0).permute(2, 0, 1) |
|
im_final = im_degree * cos_phi_norm + im * (1 - cos_phi_norm) + corr.unsqueeze(-1).unsqueeze(-1).repeat(1, im_degree.size(1), im_degree.size(2)) |
|
|
|
im_final = im_final.clamp(0, 1) |
|
return im_final |
|
|