|
""" |
|
continuous_munit_cyclepoint_residual.py |
|
This is CoMo-MUNIT *logic*, so how the network is trained. |
|
""" |
|
|
|
import math |
|
import torch |
|
import itertools |
|
from .base_model import BaseModel |
|
from .backbones import comomunit as networks |
|
import random |
|
import munch |
|
|
|
|
|
def ModelOptions(): |
|
mo = munch.Munch() |
|
|
|
mo.gen_dim = 64 |
|
mo.style_dim = 8 |
|
mo.gen_activ = 'relu' |
|
mo.n_downsample = 2 |
|
mo.n_res = 4 |
|
mo.gen_pad_type = 'reflect' |
|
mo.mlp_dim = 256 |
|
|
|
|
|
mo.disc_dim = 64 |
|
mo.disc_norm = 'none' |
|
mo.disc_activ = 'lrelu' |
|
mo.disc_n_layer = 4 |
|
mo.num_scales = 3 |
|
mo.disc_pad_type = 'reflect' |
|
|
|
|
|
mo.init_type_gen = 'kaiming' |
|
mo.init_type_disc = 'normal' |
|
mo.init_gain = 0.02 |
|
|
|
|
|
mo.lambda_gan = 1 |
|
mo.lambda_rec_image = 10 |
|
mo.lambda_rec_style = 1 |
|
mo.lambda_rec_content = 1 |
|
mo.lambda_rec_cycle = 10 |
|
mo.lambda_vgg = 0.1 |
|
mo.lambda_idt = 1 |
|
mo.lambda_Phinet_A = 1 |
|
|
|
mo.resblocks_cont = 1 |
|
mo.lambda_physics = 10 |
|
mo.lambda_compare = 10 |
|
mo.lambda_physics_compare = 1 |
|
|
|
return mo |
|
|
|
|
|
class CoMoMUNITModel(BaseModel): |
|
|
|
def __init__(self, opt): |
|
BaseModel.__init__(self, opt) |
|
|
|
self.loss_names = ['D_A', 'G_A', 'cycle_A', 'rec_A', 'rec_style_B', 'rec_content_A', 'vgg_A', 'phi_net_A', |
|
'D_B', 'G_B', 'cycle_B', 'rec_B', 'rec_style_A', 'rec_content_B', 'vgg_B', 'idt_B', |
|
'recon_physics', 'phi_net'] |
|
|
|
visual_names_A = ['x', 'y', 'rec_A_img', 'rec_A_cycle', 'y_M_tilde', 'y_M'] |
|
visual_names_B = ['y_tilde', 'fake_A', 'rec_B_img', 'rec_B_cycle', 'idt_B_img'] |
|
|
|
self.visual_names = visual_names_A + visual_names_B |
|
|
|
self.model_names = ['G_A', 'D_A', 'G_B', 'D_B', 'DRB', 'Phi_net', 'Phi_net_A'] |
|
|
|
self.netG_A = networks.define_G_munit(opt.input_nc, opt.output_nc, opt.gen_dim, opt.style_dim, opt.n_downsample, |
|
opt.n_res, opt.gen_pad_type, opt.mlp_dim, opt.gen_activ, opt.init_type_gen, |
|
opt.init_gain, self.gpu_ids) |
|
self.netG_B = networks.define_G_munit(opt.output_nc, opt.input_nc, opt.gen_dim, opt.style_dim, opt.n_downsample, |
|
opt.n_res, opt.gen_pad_type, opt.mlp_dim, opt.gen_activ, opt.init_type_gen, |
|
opt.init_gain, self.gpu_ids) |
|
|
|
self.netDRB = networks.define_DRB_munit(opt.resblocks_cont, opt.gen_dim * (2 ** opt.n_downsample), 'instance', opt.gen_activ, |
|
opt.gen_pad_type, opt.init_type_gen, opt.init_gain, self.gpu_ids) |
|
|
|
self.netD_A = networks.define_D_munit(opt.output_nc, opt.disc_dim, opt.disc_norm, opt.disc_activ, opt.disc_n_layer, |
|
opt.gan_mode, opt.num_scales, opt.disc_pad_type, opt.init_type_disc, |
|
opt.init_gain, self.gpu_ids) |
|
|
|
self.netD_B = networks.define_D_munit(opt.input_nc, opt.disc_dim, opt.disc_norm, opt.disc_activ, opt.disc_n_layer, |
|
opt.gan_mode, opt.num_scales, opt.disc_pad_type, opt.init_type_disc, |
|
opt.init_gain, self.gpu_ids) |
|
|
|
|
|
self.netPhi_net = networks.init_net(networks.StyleEncoder(4, opt.input_nc * 2, opt.gen_dim, 2, norm='instance', |
|
activ='lrelu', pad_type=opt.gen_pad_type), init_type=opt.init_type_gen, |
|
init_gain = opt.init_gain, gpu_ids = opt.gpu_ids) |
|
|
|
self.netPhi_net_A = networks.init_net(networks.StyleEncoder(4, opt.input_nc, opt.gen_dim, 1, norm='instance', |
|
activ='lrelu', pad_type=opt.gen_pad_type), init_type=opt.init_type_gen, |
|
init_gain = opt.init_gain, gpu_ids = opt.gpu_ids) |
|
|
|
|
|
self.reconCriterion = torch.nn.L1Loss() |
|
self.criterionPhysics = torch.nn.L1Loss() |
|
self.criterionIdt = torch.nn.L1Loss() |
|
|
|
|
|
|
|
if opt.lambda_vgg > 0: |
|
self.instance_norm = torch.nn.InstanceNorm2d(512) |
|
self.vgg = networks.Vgg16() |
|
self.vgg.load_state_dict(torch.load('res/vgg_imagenet.pth')) |
|
self.vgg.eval() |
|
for param in self.vgg.parameters(): |
|
param.requires_grad = False |
|
|
|
def configure_optimizers(self): |
|
opt_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters(), |
|
self.netDRB.parameters(), self.netPhi_net.parameters(), |
|
self.netPhi_net_A.parameters()), |
|
weight_decay=0.0001, lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) |
|
opt_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), |
|
weight_decay=0.0001, lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) |
|
|
|
scheduler_G = self.get_scheduler(self.opt, opt_G) |
|
scheduler_D = self.get_scheduler(self.opt, opt_D) |
|
return [opt_D, opt_G], [scheduler_D, scheduler_G] |
|
|
|
def set_input(self, input): |
|
|
|
self.x = input['A'] |
|
|
|
self.image_paths = input['A_paths'] |
|
|
|
|
|
self.phi = input['phi'].float() |
|
self.cos_phi = input['cos_phi'].float() |
|
self.sin_phi = input['sin_phi'].float() |
|
|
|
self.phi_prime = input['phi_prime'].float() |
|
self.cos_phi_prime = input['cos_phi_prime'].float() |
|
self.sin_phi_prime = input['sin_phi_prime'].float() |
|
|
|
self.y_M_tilde = input['A_cont'] |
|
|
|
self.y_M_tilde_prime = input['A_cont_compare'] |
|
|
|
self.y_tilde = input['B'] |
|
|
|
def __vgg_preprocess(self, batch): |
|
tensortype = type(batch) |
|
(r, g, b) = torch.chunk(batch, 3, dim=1) |
|
batch = torch.cat((b, g, r), dim=1) |
|
batch = (batch + 1) * 255 * 0.5 |
|
mean = tensortype(batch.data.size()).to(self.device) |
|
|
|
mean[:, 0, :, :] = 103.939 |
|
mean[:, 1, :, :] = 116.779 |
|
mean[:, 2, :, :] = 123.680 |
|
batch = batch.sub(mean) |
|
return batch |
|
|
|
def __compute_vgg_loss(self, img, target): |
|
img_vgg = self.__vgg_preprocess(img) |
|
target_vgg = self.__vgg_preprocess(target) |
|
img_fea = self.vgg(img_vgg) |
|
target_fea = self.vgg(target_vgg) |
|
return torch.mean((self.instance_norm(img_fea) - self.instance_norm(target_fea)) ** 2) |
|
|
|
|
|
def forward(self, img, phi = None, style_B_fake = None): |
|
"""Run forward pass; called by both functions <optimize_parameters> and <test>.""" |
|
|
|
if style_B_fake is None: |
|
style_B_fake = torch.randn(img.size(0), self.opt.style_dim, 1, 1).to(self.device) |
|
if phi is None: |
|
phi = torch.zeros(1).fill_(random.random()).to(self.device) * math.pi * 2 |
|
|
|
self.cos_phi = torch.cos(phi) |
|
self.sin_phi = torch.sin(phi) |
|
|
|
|
|
self.content_A, self.style_A_real = self.netG_A.encode(img) |
|
|
|
features_A = self.netG_B.assign_adain(self.content_A, style_B_fake) |
|
features_A_real, features_A_physics = self.netDRB(features_A, self.cos_phi, self.sin_phi) |
|
fake_B = self.netG_B.decode(features_A_real) |
|
return fake_B |
|
|
|
def training_step_D(self): |
|
with torch.no_grad(): |
|
|
|
self.style_A_fake = torch.randn(self.x.size(0), self.opt.style_dim, 1, 1).to(self.device) |
|
self.style_B_fake = torch.randn(self.y_tilde.size(0), self.opt.style_dim, 1, 1).to(self.device) |
|
|
|
self.content_A, self.style_A_real = self.netG_A.encode(self.x) |
|
features_A = self.netG_B.assign_adain(self.content_A, self.style_B_fake) |
|
features_A_real, features_A_physics = self.netDRB(features_A, self.cos_phi, self.sin_phi) |
|
self.y = self.netG_B.decode(features_A_real) |
|
|
|
|
|
self.content_B, self.style_B_real = self.netG_B.encode(self.y_tilde) |
|
features_B = self.netG_A.assign_adain(self.content_B, self.style_A_fake) |
|
features_B_real, _ = self.netDRB(features_B, |
|
torch.ones(self.cos_phi.size()).to(self.device), |
|
torch.zeros(self.sin_phi.size()).to(self.device) |
|
) |
|
self.fake_A = self.netG_A.decode(features_B_real) |
|
|
|
self.loss_D_A = self.netD_A.calc_dis_loss(self.y, self.y_tilde) * self.opt.lambda_gan |
|
self.loss_D_B = self.netD_B.calc_dis_loss(self.fake_A, self.x) * self.opt.lambda_gan |
|
|
|
loss_D = self.loss_D_A + self.loss_D_B |
|
return loss_D |
|
|
|
|
|
def phi_loss_fn(self): |
|
|
|
|
|
|
|
input_zerodistance = torch.cat((self.y, self.y_M_tilde), dim = 1) |
|
|
|
|
|
|
|
input_normaldistance = torch.cat((self.y, self.y_M_tilde_prime), dim = 1) |
|
|
|
|
|
input_regolarize = torch.cat((self.y_M_tilde, self.y_M_tilde_prime), dim = 1) |
|
|
|
|
|
|
|
distance_cos = (torch.cos(self.phi) - torch.cos(self.phi_prime)) / 2 |
|
distance_sin = (torch.sin(self.phi) - torch.sin(self.phi_prime)) / 2 |
|
|
|
|
|
output_zerodistance = torch.tanh(self.netPhi_net(input_zerodistance)) |
|
output_normaldistance = torch.tanh(self.netPhi_net(input_normaldistance)) |
|
output_regolarize = torch.tanh(self.netPhi_net(input_regolarize)) |
|
|
|
loss_cos = torch.pow(output_zerodistance[:, 0] - 0, 2).mean() |
|
loss_cos += torch.pow(output_normaldistance[:, 0] - distance_cos, 2).mean() |
|
loss_cos += torch.pow(output_regolarize[:, 0] - distance_cos, 2).mean() |
|
|
|
loss_sin = torch.pow(output_zerodistance[:, 1] - 0, 2).mean() |
|
loss_sin += torch.pow(output_normaldistance[:, 1] - distance_sin, 2).mean() |
|
loss_sin += torch.pow(output_regolarize[:, 1] - distance_sin, 2).mean() |
|
|
|
|
|
|
|
|
|
|
|
input_physics_zerodistance = torch.cat((self.y_M, self.y_M_tilde), dim = 1) |
|
input_physics_regolarize = torch.cat((self.y_M, self.y_M_tilde_prime), dim = 1) |
|
output_physics_zerodistance = torch.tanh(self.netPhi_net(input_physics_zerodistance)) |
|
output_physics_regolarize = torch.tanh(self.netPhi_net(input_physics_regolarize)) |
|
|
|
loss_cos += torch.pow(output_physics_zerodistance[:, 0] - 0, 2).mean() * self.opt.lambda_physics_compare |
|
loss_cos += torch.pow(output_physics_regolarize[:, 0] - distance_cos, |
|
2).mean() * self.opt.lambda_physics_compare |
|
loss_sin += torch.pow(output_physics_zerodistance[:, 1] - 0, 2).mean() * self.opt.lambda_physics_compare |
|
loss_sin += torch.pow(output_physics_regolarize[:, 1] - distance_sin, |
|
2).mean() * self.opt.lambda_physics_compare |
|
|
|
|
|
input_twoheads = torch.cat((self.y_M, self.y), dim = 1) |
|
output_twoheads = torch.tanh(self.netPhi_net(input_twoheads)) |
|
|
|
loss_cos += torch.pow(output_twoheads[:, 0] - 0, 2).mean() |
|
loss_sin += torch.pow(output_twoheads[:, 1] - 0, 2).mean() |
|
|
|
loss = loss_cos + loss_sin * 0.5 |
|
|
|
return loss |
|
|
|
def training_step_G(self): |
|
self.style_B_fake = torch.randn(self.y_tilde.size(0), self.opt.style_dim, 1, 1).to(self.device) |
|
self.style_A_fake = torch.randn(self.x.size(0), self.opt.style_dim, 1, 1).to(self.device) |
|
|
|
self.content_A, self.style_A_real = self.netG_A.encode(self.x) |
|
self.content_B, self.style_B_real = self.netG_B.encode(self.y_tilde) |
|
self.phi_est = torch.sigmoid(self.netPhi_net_A.forward(self.y_tilde).view(self.y_tilde.size(0), -1)).view(self.y_tilde.size(0)) * 2 * math.pi |
|
self.estimated_cos_B = torch.cos(self.phi_est) |
|
self.estimated_sin_B = torch.sin(self.phi_est) |
|
|
|
|
|
features_A_reconstruction = self.netG_A.assign_adain(self.content_A, self.style_A_real) |
|
features_A_reconstruction, _ = self.netDRB(features_A_reconstruction, |
|
torch.ones(self.estimated_cos_B.size()).to(self.device), |
|
torch.zeros(self.estimated_sin_B.size()).to(self.device)) |
|
|
|
self.rec_A_img = self.netG_A.decode(features_A_reconstruction) |
|
|
|
features_B_reconstruction = self.netG_B.assign_adain(self.content_B, self.style_B_real) |
|
features_B_reconstruction, _ = self.netDRB(features_B_reconstruction, self.estimated_cos_B, self.estimated_sin_B) |
|
|
|
self.rec_B_img = self.netG_B.decode(features_B_reconstruction) |
|
|
|
|
|
features_A = self.netG_B.assign_adain(self.content_A, self.style_B_fake) |
|
features_A_real, features_A_physics = self.netDRB(features_A, self.cos_phi, self.sin_phi) |
|
self.y_M = self.netG_B.decode(features_A_physics) |
|
self.y = self.netG_B.decode(features_A_real) |
|
|
|
features_B = self.netG_A.assign_adain(self.content_B, self.style_A_fake) |
|
features_B_real, _ = self.netDRB(features_B, |
|
torch.ones(self.cos_phi.size()).to(self.device), |
|
torch.zeros(self.sin_phi.size()).to(self.device)) |
|
self.fake_A = self.netG_A.decode(features_B_real) |
|
|
|
self.rec_content_B, self.rec_style_A = self.netG_A.encode(self.fake_A) |
|
self.rec_content_A, self.rec_style_B = self.netG_B.encode(self.y) |
|
|
|
if self.opt.lambda_rec_cycle > 0: |
|
features_A_reconstruction_cycle = self.netG_A.assign_adain(self.rec_content_A, self.style_A_real) |
|
features_A_reconstruction_cycle, _ = self.netDRB(features_A_reconstruction_cycle, |
|
torch.ones(self.cos_phi.size()).to(self.device), |
|
torch.zeros(self.sin_phi.size()).to(self.device)) |
|
self.rec_A_cycle = self.netG_A.decode(features_A_reconstruction_cycle) |
|
|
|
features_B_reconstruction_cycle = self.netG_B.assign_adain(self.rec_content_B, self.style_B_real) |
|
features_B_reconstruction_cycle, _ = self.netDRB(features_B_reconstruction_cycle, self.estimated_cos_B, self.estimated_sin_B) |
|
self.rec_B_cycle = self.netG_B.decode(features_B_reconstruction_cycle) |
|
if self.opt.lambda_idt > 0: |
|
features_B_identity = self.netG_B.assign_adain(self.content_A, torch.randn(self.style_B_fake.size()).to(self.device)) |
|
features_B_identity, _ = self.netDRB(features_B_identity, |
|
torch.ones(self.estimated_cos_B.size()).to(self.device), |
|
torch.zeros(self.estimated_sin_B.size()).to(self.device)) |
|
self.idt_B_img = self.netG_B.decode(features_B_identity) |
|
|
|
|
|
if self.opt.lambda_idt > 0: |
|
self.loss_idt_A = 0 |
|
self.loss_idt_B = self.criterionIdt(self.idt_B_img, self.x) * self.opt.lambda_gan * self.opt.lambda_idt |
|
else: |
|
self.loss_idt_A = 0 |
|
self.loss_idt_B = 0 |
|
|
|
continuity_angle_fake = torch.sigmoid(self.netPhi_net_A.forward(self.y).view(self.y_tilde.size(0), -1)).view(self.y_tilde.size(0)) * 2 * math.pi |
|
|
|
continuity_cos_fake = 1 - ((torch.cos(continuity_angle_fake) + 1) / 2) |
|
continuity_cos_gt = 1 - ((torch.cos(self.phi) + 1) / 2) |
|
continuity_sin_fake = 1 - ((torch.sin(continuity_angle_fake) + 1) / 2) |
|
continuity_sin_gt = 1 - ((torch.sin(self.phi) + 1) / 2) |
|
distance_cos_fake = (continuity_cos_fake - continuity_cos_gt) |
|
distance_sin_fake = (continuity_sin_fake - continuity_sin_gt) |
|
|
|
self.loss_phi_net_A = (distance_cos_fake ** 2) * self.opt.lambda_Phinet_A |
|
self.loss_phi_net_A += (distance_sin_fake ** 2) * self.opt.lambda_Phinet_A |
|
|
|
self.loss_rec_A = self.reconCriterion(self.rec_A_img, self.x) * self.opt.lambda_rec_image |
|
self.loss_rec_B = self.reconCriterion(self.rec_B_img, self.y_tilde) * self.opt.lambda_rec_image |
|
|
|
self.loss_rec_style_B = self.reconCriterion(self.rec_style_B, self.style_B_fake) * self.opt.lambda_rec_style |
|
self.loss_rec_style_A = self.reconCriterion(self.rec_style_A, self.style_A_fake) * self.opt.lambda_rec_style |
|
|
|
self.loss_rec_content_A = self.reconCriterion(self.rec_content_A, self.content_A) * self.opt.lambda_rec_content |
|
self.loss_rec_content_B = self.reconCriterion(self.rec_content_B, self.content_B) * self.opt.lambda_rec_content |
|
|
|
if self.opt.lambda_rec_cycle > 0: |
|
self.loss_cycle_A = self.reconCriterion(self.rec_A_cycle, self.x) * self.opt.lambda_rec_cycle |
|
self.loss_cycle_B = self.reconCriterion(self.rec_B_cycle, self.y_tilde) * self.opt.lambda_rec_cycle |
|
else: |
|
self.loss_cycle_A = 0 |
|
|
|
self.loss_G_A = self.netD_A.calc_gen_loss(self.y) * self.opt.lambda_gan |
|
self.loss_G_B = self.netD_B.calc_gen_loss(self.fake_A) * self.opt.lambda_gan |
|
|
|
self.loss_recon_physics = self.opt.lambda_physics * self.criterionPhysics(self.y_M, self.y_M_tilde) |
|
self.loss_phi_net = self.phi_loss_fn() * self.opt.lambda_compare |
|
|
|
if self.opt.lambda_vgg > 0: |
|
self.loss_vgg_A = self.__compute_vgg_loss(self.fake_A, self.y_tilde) * self.opt.lambda_vgg |
|
self.loss_vgg_B = self.__compute_vgg_loss(self.y, self.x) * self.opt.lambda_vgg |
|
else: |
|
self.loss_vgg_A = 0 |
|
self.loss_vgg_B = 0 |
|
|
|
self.loss_G = self.loss_rec_A + self.loss_rec_style_B + self.loss_rec_content_A + \ |
|
self.loss_cycle_A + self.loss_G_B + self.loss_vgg_A + \ |
|
self.loss_rec_B + self.loss_rec_style_A + self.loss_rec_content_B + \ |
|
self.loss_cycle_B + self.loss_G_A + self.loss_vgg_B + \ |
|
self.loss_recon_physics + self.loss_phi_net + self.loss_idt_B + self.loss_phi_net_A |
|
|
|
return self.loss_G |
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx): |
|
|
|
self.set_input(batch) |
|
if optimizer_idx == 0: |
|
self.set_requires_grad([self.netD_A, self.netD_B], True) |
|
self.set_requires_grad([self.netG_A, self.netG_B], False) |
|
|
|
return self.training_step_D() |
|
elif optimizer_idx == 1: |
|
self.set_requires_grad([self.netD_A, self.netD_B], False) |
|
self.set_requires_grad([self.netG_A, self.netG_B], True) |
|
|
|
return self.training_step_G() |
|
|