CoMoGAN_Modified / networks /base_model.py
datnguyentien204's picture
Upload 38 files
3894c45 verified
raw
history blame
4.02 kB
"""
base_model.py
Abstract definition of a model, where helper functions as image extraction and gradient propagation are defined.
"""
from collections import OrderedDict
from abc import abstractmethod
import pytorch_lightning as pl
from torch.optim import lr_scheduler
from torchvision.transforms import ToPILImage
class BaseModel(pl.LightningModule):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.loss_names = []
self.model_names = []
self.visual_names = []
self.image_paths = []
self.save_hyperparameters()
self.schedulers = []
self.metric = 0 # used for learning rate policy 'plateau'
@abstractmethod
def set_input(self, input):
pass
def eval(self):
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.eval()
def compute_visuals(self):
pass
def get_image_paths(self):
return self.image_paths
def update_learning_rate(self):
for scheduler in self.schedulers:
if self.opt.lr_policy == 'plateau':
scheduler.step(self.metric)
else:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
return lr
def get_current_visuals(self):
visual_ret = OrderedDict()
for name in self.visual_names:
if isinstance(name, str):
visual_ret[name] = (getattr(self, name).detach() + 1) / 2
return visual_ret
def log_current_losses(self):
losses = '\n'
for name in self.loss_names:
if isinstance(name, str):
loss_value = float(getattr(self, 'loss_' + name))
self.logger.log_metrics({'loss_{}'.format(name): loss_value}, self.trainer.global_step)
losses += 'loss_{}={:.4f}\t'.format(name, loss_value)
print(losses)
def log_current_visuals(self):
visuals = self.get_current_visuals()
for key, viz in visuals.items():
self.logger.experiment.add_image('img_{}'.format(key), viz[0].cpu(), self.trainer.global_step)
def get_scheduler(self, opt, optimizer):
if opt.lr_policy == 'linear':
def lambda_rule(iter):
lr_l = 1.0 - max(0, self.trainer.global_step - opt.static_iters) / float(opt.decay_iters + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.decay_iters_step, gamma=0.5)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def print_networks(self):
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
def get_optimizer_dict(self):
return_dict = {}
for index, opt in enumerate(self.optimizers):
return_dict['Optimizer_{}'.format(index)] = opt
return return_dict
def set_requires_grad(self, nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad