|
''' |
|
* Copyright (c) 2022, salesforce.com, inc. |
|
* All rights reserved. |
|
* SPDX-License-Identifier: BSD-3-Clause |
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
* By Junnan Li |
|
''' |
|
import argparse |
|
import os |
|
import ruamel_yaml as yaml |
|
import numpy as np |
|
import random |
|
import time |
|
import datetime |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
|
|
from models.blip_retrieval import blip_retrieval |
|
import utils |
|
from data.video_dataset import VideoDataset |
|
|
|
|
|
@torch.no_grad() |
|
def evaluation(model, data_loader, tokenizer, device, config): |
|
|
|
model.eval() |
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
header = 'Evaluation:' |
|
|
|
print('Computing features for evaluation...') |
|
start_time = time.time() |
|
|
|
texts = data_loader.dataset.text |
|
num_text = len(texts) |
|
text_bs = 256 |
|
text_ids = [] |
|
text_embeds = [] |
|
text_atts = [] |
|
for i in range(0, num_text, text_bs): |
|
text = texts[i: min(num_text, i+text_bs)] |
|
text_input = tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device) |
|
text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text') |
|
text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:])) |
|
text_embeds.append(text_embed) |
|
text_ids.append(text_input.input_ids) |
|
text_atts.append(text_input.attention_mask) |
|
|
|
text_embeds = torch.cat(text_embeds,dim=0) |
|
text_ids = torch.cat(text_ids,dim=0) |
|
text_atts = torch.cat(text_atts,dim=0) |
|
text_ids[:,0] = tokenizer.additional_special_tokens_ids[0] |
|
|
|
video_feats = [] |
|
video_embeds = [] |
|
for video, video_id in data_loader: |
|
|
|
B,N,C,W,H = video.size() |
|
video = video.view(-1,C,W,H) |
|
video = video.to(device,non_blocking=True) |
|
video_feat = model.visual_encoder(video) |
|
video_embed = model.vision_proj(video_feat[:,0,:]) |
|
video_embed = video_embed.view(B,N,-1).mean(dim=1) |
|
video_embed = F.normalize(video_embed,dim=-1) |
|
|
|
video_feat = video_feat.view(B,-1,video_feat.shape[-1]) |
|
video_feats.append(video_feat.cpu()) |
|
video_embeds.append(video_embed) |
|
|
|
video_feats = torch.cat(video_feats,dim=0) |
|
video_embeds = torch.cat(video_embeds,dim=0) |
|
|
|
sims_matrix = video_embeds @ text_embeds.t() |
|
score_matrix_v2t = torch.full((len(texts),len(texts)),-100.0).to(device) |
|
|
|
num_tasks = utils.get_world_size() |
|
rank = utils.get_rank() |
|
step = sims_matrix.size(0)//num_tasks + 1 |
|
start = rank*step |
|
end = min(sims_matrix.size(0),start+step) |
|
|
|
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): |
|
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0) |
|
|
|
encoder_output = video_feats[start+i].repeat(config['k_test'],1,1).to(device,non_blocking=True) |
|
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True) |
|
output = model.text_encoder(text_ids[topk_idx], |
|
attention_mask = text_atts[topk_idx], |
|
encoder_hidden_states = encoder_output, |
|
encoder_attention_mask = encoder_att, |
|
return_dict = True, |
|
) |
|
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1] |
|
score_matrix_v2t[start+i,topk_idx] = score + topk_sim |
|
|
|
sims_matrix = sims_matrix.t() |
|
score_matrix_t2v = torch.full((len(texts),len(texts)),-100.0).to(device) |
|
|
|
step = sims_matrix.size(0)//num_tasks + 1 |
|
start = rank*step |
|
end = min(sims_matrix.size(0),start+step) |
|
|
|
for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): |
|
|
|
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0) |
|
encoder_output = video_feats[topk_idx].to(device,non_blocking=True) |
|
encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device,non_blocking=True) |
|
output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1), |
|
attention_mask = text_atts[start+i].repeat(config['k_test'],1), |
|
encoder_hidden_states = encoder_output, |
|
encoder_attention_mask = encoder_att, |
|
return_dict = True, |
|
) |
|
score = model.itm_head(output.last_hidden_state[:,0,:])[:,1] |
|
score_matrix_t2v[start+i,topk_idx] = score + topk_sim |
|
|
|
if args.distributed: |
|
dist.barrier() |
|
torch.distributed.all_reduce(score_matrix_v2t, op=torch.distributed.ReduceOp.SUM) |
|
torch.distributed.all_reduce(score_matrix_t2v, op=torch.distributed.ReduceOp.SUM) |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Evaluation time {}'.format(total_time_str)) |
|
|
|
return score_matrix_v2t.cpu().numpy(), score_matrix_t2v.cpu().numpy() |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def itm_eval(scores_v2t, scores_t2v, txt2vmg, vid2txt): |
|
|
|
|
|
ranks = np.zeros(scores_v2t.shape[0]) |
|
for index,score in enumerate(scores_v2t): |
|
inds = np.argsort(score)[::-1] |
|
ranks[index] = np.where(inds == vid2txt[index])[0][0] |
|
|
|
|
|
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) |
|
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) |
|
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) |
|
|
|
|
|
ranks = np.zeros(scores_t2v.shape[0]) |
|
|
|
for index,score in enumerate(scores_t2v): |
|
inds = np.argsort(score)[::-1] |
|
ranks[index] = np.where(inds == txt2vmg[index])[0][0] |
|
|
|
mdR = np.median(ranks+1) |
|
|
|
|
|
vr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) |
|
vr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) |
|
vr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) |
|
|
|
tr_mean = (tr1 + tr5 + tr10) / 3 |
|
vr_mean = (vr1 + vr5 + vr10) / 3 |
|
r_mean = (tr_mean + vr_mean) / 2 |
|
|
|
eval_result = {'txt_r1': tr1, |
|
'txt_r5': tr5, |
|
'txt_r10': tr10, |
|
'txt_r_mean': tr_mean, |
|
'vid_r1': vr1, |
|
'vid_r5': vr5, |
|
'vid_r10': vr10, |
|
'vid_r_mean': vr_mean, |
|
'vid_mdR': mdR, |
|
'r_mean': r_mean} |
|
return eval_result |
|
|
|
|
|
|
|
|
|
def main(args, config): |
|
utils.init_distributed_mode(args) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
cudnn.benchmark = True |
|
|
|
|
|
print("Creating retrieval dataset") |
|
test_dataset = VideoDataset(config['video_root'],config['ann_root'],num_frm=config['num_frm_test'], |
|
max_img_size=config['image_size'], frm_sampling_strategy='uniform') |
|
|
|
test_loader = DataLoader( |
|
test_dataset, |
|
batch_size=config['batch_size'], |
|
num_workers=4, |
|
pin_memory=True, |
|
drop_last=False, |
|
shuffle=False, |
|
) |
|
|
|
|
|
print("Creating model") |
|
model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit']) |
|
|
|
model = model.to(device) |
|
|
|
model_without_ddp = model |
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
model_without_ddp = model.module |
|
|
|
score_v2t, score_t2v, = evaluation(model_without_ddp, test_loader, model_without_ddp.tokenizer, device, config) |
|
|
|
if utils.is_main_process(): |
|
|
|
test_result = itm_eval(score_v2t, score_t2v, test_loader.dataset.txt2video, test_loader.dataset.video2txt) |
|
print(test_result) |
|
|
|
log_stats = {**{f'{k}': v for k, v in test_result.items()},} |
|
with open(os.path.join(args.output_dir, "test_result.txt"),"a") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', default='./configs/retrieval_msrvtt.yaml') |
|
parser.add_argument('--output_dir', default='output/Retrieval_msrvtt') |
|
parser.add_argument('--device', default='cuda') |
|
parser.add_argument('--seed', default=42, type=int) |
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') |
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
parser.add_argument('--distributed', default=True, type=bool) |
|
args = parser.parse_args() |
|
|
|
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) |
|
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w')) |
|
|
|
main(args, config) |