|
""" NAdamW Optimizer |
|
|
|
Based on simplified algorithm in https://github.com/mlcommons/algorithmic-efficiency/tree/main/baselines/nadamw |
|
|
|
Added multi-tensor (foreach) path. |
|
""" |
|
import math |
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from ._types import ParamsT |
|
|
|
|
|
|
|
class NAdamW(torch.optim.Optimizer): |
|
""" Implements NAdamW algorithm. |
|
|
|
See Table 1 in https://arxiv.org/abs/1910.05446 for the implementation of |
|
the NAdam algorithm (there is also a comment in the code which highlights |
|
the only difference of NAdamW and AdamW). |
|
|
|
For further details regarding the algorithm we refer to |
|
- Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 |
|
- On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ |
|
|
|
Args: |
|
params: iterable of parameters to optimize or dicts defining parameter groups |
|
lr: learning rate |
|
betas: coefficients used for computing running averages of gradient and its square |
|
eps: term added to the denominator to improve numerical stability |
|
weight_decay: weight decay coefficient |
|
caution: enable caution |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: float = 1e-3, |
|
betas: Tuple[float, float] = (0.9, 0.999), |
|
eps: float = 1e-8, |
|
weight_decay: float = 1e-2, |
|
caution: bool = False, |
|
maximize: bool = False, |
|
foreach: Optional[bool] = None, |
|
capturable: bool = False, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError(f'Invalid learning rate: {lr}') |
|
if not 0.0 <= eps: |
|
raise ValueError(f'Invalid epsilon value: {eps}') |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f'Invalid weight_decay value: {weight_decay}') |
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
caution=caution, |
|
foreach=foreach, |
|
maximize=maximize, |
|
capturable=capturable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s['step'] = torch.tensor(float(s['step'])) |
|
for group in self.param_groups: |
|
group.setdefault('caution', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
exp_avg_sqs = [] |
|
state_steps = [] |
|
beta1, beta2 = group['betas'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError('NAdamW does not support sparse gradients') |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = torch.tensor(0.) |
|
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
exp_avg_sqs.append(state['exp_avg_sq']) |
|
state_steps.append(state['step']) |
|
|
|
nadamw( |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group['lr'], |
|
weight_decay=group['weight_decay'], |
|
eps=group['eps'], |
|
caution=group['caution'], |
|
maximize=group['maximize'], |
|
capturable=group['capturable'], |
|
) |
|
|
|
return loss |
|
|
|
|
|
def nadamw( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
foreach: Optional[bool] = None, |
|
capturable: bool = False, |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float, |
|
caution: bool, |
|
maximize: bool, |
|
) -> None: |
|
r"""Functional API that performs NAdamW algorithm computation. |
|
See NAdamW class for details. |
|
""" |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError( |
|
'API has changed, `state_steps` argument must contain a list of' + |
|
' singleton tensors') |
|
|
|
if foreach is None: |
|
try: |
|
|
|
foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads() |
|
except: |
|
foreach = False |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_nadamw |
|
else: |
|
func = _single_tensor_nadamw |
|
|
|
func( |
|
params, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
eps=eps, |
|
caution=caution, |
|
maximize=maximize, |
|
capturable=capturable, |
|
) |
|
|
|
|
|
def _single_tensor_nadamw( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float, |
|
caution: bool, |
|
maximize: bool, |
|
capturable: bool |
|
): |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] if not maximize else -grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
step_t = state_steps[i] |
|
|
|
|
|
step_t += 1 |
|
|
|
|
|
param.mul_(1. - lr * weight_decay) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
if capturable: |
|
step = step_t |
|
|
|
|
|
|
|
bias_correction1 = 1 - torch.pow(beta1, step) |
|
bias_correction2 = 1 - torch.pow(beta2, step) |
|
|
|
step_size = lr / bias_correction1 |
|
step_size_neg = step_size.neg() |
|
|
|
bias_correction2_sqrt = bias_correction2.sqrt() |
|
|
|
|
|
|
|
exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) |
|
|
|
denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg) |
|
|
|
if caution: |
|
|
|
|
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg.mul_(mask) |
|
|
|
param.addcdiv_(exp_avg, denom) |
|
else: |
|
step = step_t.item() |
|
bias_correction1 = 1 - beta1 ** step |
|
bias_correction2 = 1 - beta2 ** step |
|
step_size = lr / bias_correction1 |
|
bias_correction2_sqrt = math.sqrt(bias_correction2) |
|
|
|
|
|
|
|
exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) |
|
denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) |
|
|
|
if caution: |
|
|
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg.mul_(mask) |
|
|
|
param.addcdiv_(exp_avg, denom, value=-step_size) |
|
|
|
|
|
def _multi_tensor_nadamw( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float, |
|
caution: bool, |
|
maximize: bool, |
|
capturable: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
if capturable: |
|
assert all( |
|
p.is_cuda and step.is_cuda for p, step in zip(params, state_steps) |
|
), "If capturable=True, params and state_steps must be CUDA tensors." |
|
|
|
if maximize: |
|
grads = torch._foreach_neg(tuple(grads)) |
|
|
|
grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] |
|
exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] |
|
exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avg_sqs] |
|
params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] |
|
|
|
|
|
torch._foreach_add_(state_steps, 1) |
|
|
|
|
|
torch._foreach_mul_(params, 1 - lr * weight_decay) |
|
|
|
|
|
torch._foreach_mul_(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
torch._foreach_mul_(exp_avg_sqs, beta2) |
|
torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2) |
|
|
|
if capturable: |
|
|
|
bias_correction1 = [torch.pow(beta1, step) for step in state_steps] |
|
bias_correction2 = [torch.pow(beta2, step) for step in state_steps] |
|
|
|
torch._foreach_sub_(bias_correction1, 1) |
|
torch._foreach_sub_(bias_correction2, 1) |
|
torch._foreach_neg_(bias_correction1) |
|
torch._foreach_neg_(bias_correction2) |
|
|
|
|
|
step_size = torch._foreach_div(bias_correction1, lr) |
|
torch._foreach_reciprocal_(step_size) |
|
torch._foreach_neg_(step_size) |
|
|
|
bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2) |
|
|
|
|
|
|
|
exp_avgs = torch._foreach_mul(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) |
|
torch._foreach_div_( |
|
exp_avg_sq_sqrt, |
|
torch._foreach_mul(bias_correction2_sqrt, step_size) |
|
) |
|
eps_over_step_size = torch._foreach_div(step_size, eps) |
|
torch._foreach_reciprocal_(eps_over_step_size) |
|
denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size) |
|
|
|
if caution: |
|
|
|
masks = torch._foreach_mul(exp_avgs, grads) |
|
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] |
|
mask_scale = [m.mean() for m in masks] |
|
torch._foreach_maximum_(mask_scale, 1e-3) |
|
torch._foreach_div_(masks, mask_scale) |
|
torch._foreach_mul_(exp_avgs, masks) |
|
|
|
torch._foreach_addcdiv_(params, exp_avgs, denom) |
|
else: |
|
bias_correction1 = [1 - beta1 ** step.item() for step in state_steps] |
|
bias_correction2 = [1 - beta2 ** step.item() for step in state_steps] |
|
|
|
step_size = [(lr / bc) * -1 for bc in bias_correction1] |
|
|
|
bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2] |
|
|
|
|
|
|
|
exp_avgs = torch._foreach_mul(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) |
|
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) |
|
denom = torch._foreach_add(exp_avg_sq_sqrt, eps) |
|
|
|
if caution: |
|
|
|
masks = torch._foreach_mul(exp_avgs, grads) |
|
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] |
|
mask_scale = [m.mean() for m in masks] |
|
torch._foreach_maximum_(mask_scale, 1e-3) |
|
torch._foreach_div_(masks, mask_scale) |
|
torch._foreach_mul_(exp_avgs, masks) |
|
|
|
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size) |
|
|