|
import math |
|
from copy import deepcopy |
|
from functools import partial |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.jit import Final |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \ |
|
get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn |
|
|
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv |
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
|
|
|
|
|
def window_partition(x, window_size: Tuple[int, int]): |
|
""" |
|
Partition into non-overlapping windows with padding if needed. |
|
Args: |
|
x (tensor): input tokens with [B, H, W, C]. |
|
window_size (int): window size. |
|
Returns: |
|
windows: windows after partition with [B * num_windows, window_size, window_size, C]. |
|
(Hp, Wp): padded height and width before partition |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) |
|
return windows |
|
|
|
|
|
def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]): |
|
""" |
|
Window unpartition into original sequences and removing padding. |
|
Args: |
|
x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. |
|
window_size (int): window size. |
|
hw (Tuple): original height and width (H, W) before padding. |
|
Returns: |
|
x: unpartitioned sequences with [B, H, W, C]. |
|
""" |
|
H, W = hw |
|
B = windows.shape[0] // (H * W // window_size[0] // window_size[1]) |
|
x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]: |
|
pad_h = (window_size[0] - H % window_size[0]) % window_size[0] |
|
pad_w = (window_size[1] - W % window_size[1]) % window_size[1] |
|
Hp, Wp = H + pad_h, W + pad_w |
|
return Hp, Wp, pad_h, pad_w |
|
|
|
|
|
class MultiScaleAttention(nn.Module): |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: int, |
|
num_heads: int, |
|
q_pool: nn.Module = None, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.dim_out = dim_out |
|
self.num_heads = num_heads |
|
head_dim = dim_out // num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.q_pool = q_pool |
|
self.qkv = nn.Linear(dim, dim_out * 3) |
|
self.proj = nn.Linear(dim_out, dim_out) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, H, W, _ = x.shape |
|
|
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) |
|
|
|
|
|
q, k, v = torch.unbind(qkv, 2) |
|
|
|
|
|
if self.q_pool is not None: |
|
q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) |
|
q = self.q_pool(q).permute(0, 2, 3, 1) |
|
H, W = q.shape[1:3] |
|
q = q.reshape(B, H * W, self.num_heads, -1) |
|
|
|
|
|
q = q.transpose(1, 2) |
|
k = k.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention(q, k, v) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-1, -2) |
|
attn = attn.softmax(dim=-1) |
|
x = attn @ v |
|
|
|
|
|
x = x.transpose(1, 2).reshape(B, H, W, -1) |
|
|
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class MultiScaleBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
q_stride: Optional[Tuple[int, int]] = None, |
|
norm_layer: Union[nn.Module, str] = "LayerNorm", |
|
act_layer: Union[nn.Module, str] = "GELU", |
|
window_size: int = 0, |
|
init_values: Optional[float] = None, |
|
drop_path: float = 0.0, |
|
): |
|
super().__init__() |
|
norm_layer = get_norm_layer(norm_layer) |
|
act_layer = get_act_layer(act_layer) |
|
self.window_size = to_2tuple(window_size) |
|
self.is_windowed = any(self.window_size) |
|
self.dim = dim |
|
self.dim_out = dim_out |
|
self.q_stride = q_stride |
|
|
|
if dim != dim_out: |
|
self.proj = nn.Linear(dim, dim_out) |
|
else: |
|
self.proj = nn.Identity() |
|
self.pool = None |
|
if self.q_stride: |
|
|
|
self.pool = nn.MaxPool2d( |
|
kernel_size=q_stride, |
|
stride=q_stride, |
|
ceil_mode=False, |
|
) |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = MultiScaleAttention( |
|
dim, |
|
dim_out, |
|
num_heads=num_heads, |
|
q_pool=deepcopy(self.pool), |
|
) |
|
self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim_out) |
|
self.mlp = Mlp( |
|
dim_out, |
|
int(dim_out * mlp_ratio), |
|
act_layer=act_layer, |
|
) |
|
self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
|
|
if self.dim != self.dim_out: |
|
shortcut = self.proj(x) |
|
if self.pool is not None: |
|
shortcut = shortcut.permute(0, 3, 1, 2) |
|
shortcut = self.pool(shortcut).permute(0, 2, 3, 1) |
|
|
|
|
|
window_size = self.window_size |
|
H, W = x.shape[1:3] |
|
Hp, Wp = H, W |
|
if self.is_windowed: |
|
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) |
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) |
|
x = window_partition(x, window_size) |
|
|
|
|
|
x = self.attn(x) |
|
if self.q_stride is not None: |
|
|
|
window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1]) |
|
H, W = shortcut.shape[1:3] |
|
Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) |
|
|
|
|
|
if self.is_windowed: |
|
x = window_unpartition(x, window_size, (Hp, Wp)) |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = shortcut + self.drop_path1(self.ls1(x)) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class HieraPatchEmbed(nn.Module): |
|
""" |
|
Image to Patch Embedding. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
kernel_size: Tuple[int, ...] = (7, 7), |
|
stride: Tuple[int, ...] = (4, 4), |
|
padding: Tuple[int, ...] = (3, 3), |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
): |
|
""" |
|
Args: |
|
kernel_size (Tuple): kernel size of the projection layer. |
|
stride (Tuple): stride of the projection layer. |
|
padding (Tuple): padding size of the projection layer. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): embed_dim (int): Patch embedding dimension. |
|
""" |
|
super().__init__() |
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|
|
|
|
class HieraDet(nn.Module): |
|
""" |
|
Reference: https://arxiv.org/abs/2306.00989 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
embed_dim: int = 96, |
|
num_heads: int = 1, |
|
patch_kernel: Tuple[int, ...] = (7, 7), |
|
patch_stride: Tuple[int, ...] = (4, 4), |
|
patch_padding: Tuple[int, ...] = (3, 3), |
|
patch_size: Optional[Tuple[int, ...]] = None, |
|
q_pool: int = 3, |
|
q_stride: Tuple[int, int] = (2, 2), |
|
stages: Tuple[int, ...] = (2, 3, 16, 3), |
|
dim_mul: float = 2.0, |
|
head_mul: float = 2.0, |
|
global_pos_size: Tuple[int, int] = (7, 7), |
|
|
|
window_spec: Tuple[int, ...] = ( |
|
8, |
|
4, |
|
14, |
|
7, |
|
), |
|
|
|
global_att_blocks: Tuple[int, ...] = ( |
|
12, |
|
16, |
|
20, |
|
), |
|
init_values: Optional[float] = None, |
|
weight_init: str = '', |
|
fix_init: bool = True, |
|
head_init_scale: float = 0.001, |
|
drop_rate: float = 0.0, |
|
drop_path_rate: float = 0.0, |
|
norm_layer: Union[nn.Module, str] = "LayerNorm", |
|
act_layer: Union[nn.Module, str] = "GELU", |
|
): |
|
super().__init__() |
|
norm_layer = get_norm_layer(norm_layer) |
|
act_layer = get_act_layer(act_layer) |
|
assert len(stages) == len(window_spec) |
|
self.num_classes = num_classes |
|
self.window_spec = window_spec |
|
self.output_fmt = 'NHWC' |
|
|
|
depth = sum(stages) |
|
self.q_stride = q_stride |
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] |
|
assert 0 <= q_pool <= len(self.stage_ends[:-1]) |
|
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] |
|
|
|
if patch_size is not None: |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=None, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
output_fmt='NHWC', |
|
dynamic_img_pad=True, |
|
) |
|
else: |
|
self.patch_embed = HieraPatchEmbed( |
|
kernel_size=patch_kernel, |
|
stride=patch_stride, |
|
padding=patch_padding, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
self.global_att_blocks = global_att_blocks |
|
|
|
|
|
self.global_pos_size = global_pos_size |
|
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size)) |
|
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
cur_stage = 0 |
|
self.blocks = nn.Sequential() |
|
self.feature_info = [] |
|
for i in range(depth): |
|
dim_out = embed_dim |
|
|
|
|
|
|
|
window_size = self.window_spec[cur_stage] |
|
|
|
if self.global_att_blocks is not None: |
|
window_size = 0 if i in self.global_att_blocks else window_size |
|
|
|
if i - 1 in self.stage_ends: |
|
dim_out = int(embed_dim * dim_mul) |
|
num_heads = int(num_heads * head_mul) |
|
cur_stage += 1 |
|
|
|
block = MultiScaleBlock( |
|
dim=embed_dim, |
|
dim_out=dim_out, |
|
num_heads=num_heads, |
|
drop_path=dpr[i], |
|
q_stride=self.q_stride if i in self.q_pool_blocks else None, |
|
window_size=window_size, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
) |
|
|
|
embed_dim = dim_out |
|
self.blocks.append(block) |
|
if i in self.stage_ends: |
|
self.feature_info += [ |
|
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] |
|
|
|
self.num_features = self.head_hidden_size = embed_dim |
|
self.head = ClNormMlpClassifierHead( |
|
embed_dim, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
|
|
if self.pos_embed is not None: |
|
nn.init.trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
if self.pos_embed_window is not None: |
|
nn.init.trunc_normal_(self.pos_embed_window, std=0.02) |
|
|
|
if weight_init != 'skip': |
|
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit |
|
init_fn = partial(init_fn, classifier_name='head.fc') |
|
named_apply(init_fn, self) |
|
|
|
if fix_init: |
|
self.fix_init_weight() |
|
|
|
if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear): |
|
self.head.fc.weight.data.mul_(head_init_scale) |
|
self.head.fc.bias.data.mul_(head_init_scale) |
|
|
|
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: |
|
h, w = x.shape[1:3] |
|
window_embed = self.pos_embed_window |
|
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") |
|
tile_h = pos_embed.shape[-2] // window_embed.shape[-2] |
|
tile_w = pos_embed.shape[-1] // window_embed.shape[-1] |
|
pos_embed = pos_embed + window_embed.tile((tile_h, tile_w)) |
|
pos_embed = pos_embed.permute(0, 2, 3, 1) |
|
return x + pos_embed |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, _layer_id): |
|
param.div_(math.sqrt(2.0 * _layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return ['pos_embed', 'pos_embed_window'] |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse: bool = False) -> Dict: |
|
return dict( |
|
stem=r'^pos_embed|pos_embed_window|patch_embed', |
|
blocks=[(r'^blocks\.(\d+)', None)] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable: bool = True) -> None: |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = True, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
coarse: bool = True, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to all intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
coarse: Take coarse features (stage ends) if true, otherwise all block featrures |
|
Returns: |
|
|
|
""" |
|
assert not norm, 'normalization of features not supported' |
|
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' |
|
if coarse: |
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) |
|
take_indices = [self.stage_ends[i] for i in take_indices] |
|
max_index = self.stage_ends[max_index] |
|
else: |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
|
|
x = self.patch_embed(x) |
|
x = self._pos_embed(x) |
|
|
|
intermediates = [] |
|
if torch.jit.is_scripting() or not stop_early: |
|
blocks = self.blocks |
|
else: |
|
blocks = self.blocks[:max_index + 1] |
|
for i, blk in enumerate(blocks): |
|
x = blk(x) |
|
if i in take_indices: |
|
x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x |
|
intermediates.append(x_out) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
coarse: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
if coarse: |
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) |
|
max_index = self.stage_ends[max_index] |
|
else: |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
self.blocks = self.blocks[:max_index + 1] |
|
if prune_head: |
|
self.head.reset(0, reset_other=prune_norm) |
|
return take_indices |
|
|
|
def forward_features(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_embed(x) |
|
x = self._pos_embed(x) |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: |
|
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28), |
|
'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224), |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
"sam2_hiera_tiny.r224": _cfg( |
|
hf_hub_id='facebook/sam2-hiera-tiny', |
|
hf_hub_filename='sam2_hiera_tiny.pt', |
|
input_size=(3, 224, 224), pool_size=(7, 7), |
|
), |
|
"sam2_hiera_tiny.r896": _cfg( |
|
hf_hub_id='facebook/sam2-hiera-tiny', |
|
hf_hub_filename='sam2_hiera_tiny.pt', |
|
), |
|
"sam2_hiera_small": _cfg( |
|
hf_hub_id='facebook/sam2-hiera-small', |
|
hf_hub_filename='sam2_hiera_small.pt', |
|
), |
|
"sam2_hiera_base_plus": _cfg( |
|
hf_hub_id='facebook/sam2-hiera-base-plus', |
|
hf_hub_filename='sam2_hiera_base_plus.pt', |
|
), |
|
"sam2_hiera_large": _cfg( |
|
hf_hub_id='facebook/sam2-hiera-large', |
|
hf_hub_filename='sam2_hiera_large.pt', |
|
min_input_size=(3, 256, 256), |
|
input_size=(3, 1024, 1024), pool_size=(32, 32), |
|
), |
|
"hieradet_small.untrained": _cfg( |
|
num_classes=1000, |
|
input_size=(3, 256, 256), pool_size=(8, 8), |
|
), |
|
}) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model=None, prefix=''): |
|
state_dict = state_dict.get('model', state_dict) |
|
|
|
output = {} |
|
for k, v in state_dict.items(): |
|
if k.startswith(prefix): |
|
k = k.replace(prefix, '') |
|
else: |
|
continue |
|
k = k.replace('mlp.layers.0', 'mlp.fc1') |
|
k = k.replace('mlp.layers.1', 'mlp.fc2') |
|
output[k] = v |
|
return output |
|
|
|
|
|
def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet: |
|
out_indices = kwargs.pop('out_indices', 4) |
|
checkpoint_prefix = '' |
|
if 'sam2' in variant: |
|
|
|
|
|
kwargs.setdefault('pretrained_strict', False) |
|
checkpoint_prefix = 'image_encoder.trunk.' |
|
return build_model_with_cfg( |
|
HieraDet, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix), |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
|
|
|
|
@register_model |
|
def sam2_hiera_tiny(pretrained=False, **kwargs): |
|
model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9)) |
|
return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def sam2_hiera_small(pretrained=False, **kwargs): |
|
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13)) |
|
return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def sam2_hiera_base_plus(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14)) |
|
return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def sam2_hiera_large(pretrained=False, **kwargs): |
|
model_args = dict( |
|
embed_dim=144, |
|
num_heads=2, |
|
stages=(2, 6, 36, 4), |
|
global_att_blocks=(23, 33, 43), |
|
window_spec=(8, 4, 16, 8), |
|
) |
|
return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hieradet_small(pretrained=False, **kwargs): |
|
model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5) |
|
return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|