|
""" The EfficientNet Family in PyTorch |
|
|
|
An implementation of EfficienNet that covers variety of related models with efficient architectures: |
|
|
|
* EfficientNet-V2 |
|
- `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 |
|
|
|
* EfficientNet (B0-B8, L2 + Tensorflow pretrained AutoAug/RandAug/AdvProp/NoisyStudent weight ports) |
|
- EfficientNet: Rethinking Model Scaling for CNNs - https://arxiv.org/abs/1905.11946 |
|
- CondConv: Conditionally Parameterized Convolutions for Efficient Inference - https://arxiv.org/abs/1904.04971 |
|
- Adversarial Examples Improve Image Recognition - https://arxiv.org/abs/1911.09665 |
|
- Self-training with Noisy Student improves ImageNet classification - https://arxiv.org/abs/1911.04252 |
|
|
|
* MixNet (Small, Medium, and Large) |
|
- MixConv: Mixed Depthwise Convolutional Kernels - https://arxiv.org/abs/1907.09595 |
|
|
|
* MNasNet B1, A1 (SE), Small |
|
- MnasNet: Platform-Aware Neural Architecture Search for Mobile - https://arxiv.org/abs/1807.11626 |
|
|
|
* FBNet-C |
|
- FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable NAS - https://arxiv.org/abs/1812.03443 |
|
|
|
* Single-Path NAS Pixel1 |
|
- Single-Path NAS: Designing Hardware-Efficient ConvNets - https://arxiv.org/abs/1904.02877 |
|
|
|
* TinyNet |
|
- Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets - https://arxiv.org/abs/2010.14819 |
|
- Definitions & weights borrowed from https://github.com/huawei-noah/CV-Backbones/tree/master/tinynet_pytorch |
|
|
|
* And likely more... |
|
|
|
The majority of the above models (EfficientNet*, MixNet, MnasNet) and original weights were made available |
|
by Mingxing Tan, Quoc Le, and other members of their Google Brain team. Thanks for consistently releasing |
|
the models and weights open source! |
|
|
|
Hacked together by / Copyright 2019, Ross Wightman |
|
""" |
|
from functools import partial |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from timm.layers import create_conv2d, create_classifier, get_norm_act_layer, LayerType, \ |
|
GroupNormAct, LayerNormAct2d, EvoNorm2dS0 |
|
from ._builder import build_model_with_cfg, pretrained_cfg_for_features |
|
from ._efficientnet_blocks import SqueezeExcite |
|
from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \ |
|
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT |
|
from ._features import FeatureInfo, FeatureHooks, feature_take_indices |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
|
|
|
__all__ = ['EfficientNet', 'EfficientNetFeatures'] |
|
|
|
|
|
class EfficientNet(nn.Module): |
|
""" EfficientNet |
|
|
|
A flexible and performant PyTorch implementation of efficient network architectures, including: |
|
* EfficientNet-V2 Small, Medium, Large, XL & B0-B3 |
|
* EfficientNet B0-B8, L2 |
|
* EfficientNet-EdgeTPU |
|
* EfficientNet-CondConv |
|
* MixNet S, M, L, XL |
|
* MnasNet A1, B1, and small |
|
* MobileNet-V2 |
|
* FBNet C |
|
* Single-Path NAS Pixel1 |
|
* TinyNet |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block_args: BlockArgs, |
|
num_classes: int = 1000, |
|
num_features: int = 1280, |
|
in_chans: int = 3, |
|
stem_size: int = 32, |
|
stem_kernel_size: int = 3, |
|
fix_stem: bool = False, |
|
output_stride: int = 32, |
|
pad_type: str = '', |
|
act_layer: Optional[LayerType] = None, |
|
norm_layer: Optional[LayerType] = None, |
|
aa_layer: Optional[LayerType] = None, |
|
se_layer: Optional[LayerType] = None, |
|
round_chs_fn: Callable = round_channels, |
|
drop_rate: float = 0., |
|
drop_path_rate: float = 0., |
|
global_pool: str = 'avg' |
|
): |
|
super(EfficientNet, self).__init__() |
|
act_layer = act_layer or nn.ReLU |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
se_layer = se_layer or SqueezeExcite |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
|
|
|
|
if not fix_stem: |
|
stem_size = round_chs_fn(stem_size) |
|
self.conv_stem = create_conv2d(in_chans, stem_size, stem_kernel_size, stride=2, padding=pad_type) |
|
self.bn1 = norm_act_layer(stem_size, inplace=True) |
|
|
|
|
|
builder = EfficientNetBuilder( |
|
output_stride=output_stride, |
|
pad_type=pad_type, |
|
round_chs_fn=round_chs_fn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
aa_layer=aa_layer, |
|
se_layer=se_layer, |
|
drop_path_rate=drop_path_rate, |
|
) |
|
self.blocks = nn.Sequential(*builder(stem_size, block_args)) |
|
self.feature_info = builder.features |
|
self.stage_ends = [f['stage'] for f in self.feature_info] |
|
head_chs = builder.in_chs |
|
|
|
|
|
if num_features > 0: |
|
self.conv_head = create_conv2d(head_chs, num_features, 1, padding=pad_type) |
|
self.bn2 = norm_act_layer(num_features, inplace=True) |
|
self.num_features = self.head_hidden_size = num_features |
|
else: |
|
self.conv_head = nn.Identity() |
|
self.bn2 = nn.Identity() |
|
self.num_features = self.head_hidden_size = head_chs |
|
|
|
self.global_pool, self.classifier = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
efficientnet_init_weights(self) |
|
|
|
def as_sequential(self): |
|
layers = [self.conv_stem, self.bn1] |
|
layers.extend(self.blocks) |
|
layers.extend([self.conv_head, self.bn2, self.global_pool]) |
|
layers.extend([nn.Dropout(self.drop_rate), self.classifier]) |
|
return nn.Sequential(*layers) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^conv_stem|bn1', |
|
blocks=[ |
|
(r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), |
|
(r'conv_head|bn2', (99999,)) |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.classifier |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.classifier = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
extra_blocks: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
if extra_blocks: |
|
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices) |
|
else: |
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) |
|
take_indices = [self.stage_ends[i] for i in take_indices] |
|
max_index = self.stage_ends[max_index] |
|
|
|
feat_idx = 0 |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
if feat_idx in take_indices: |
|
intermediates.append(x) |
|
|
|
if torch.jit.is_scripting() or not stop_early: |
|
blocks = self.blocks |
|
else: |
|
blocks = self.blocks[:max_index] |
|
for blk in blocks: |
|
feat_idx += 1 |
|
x = blk(x) |
|
if feat_idx in take_indices: |
|
intermediates.append(x) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
if feat_idx == self.stage_ends[-1]: |
|
x = self.conv_head(x) |
|
x = self.bn2(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
extra_blocks: bool = False, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
if extra_blocks: |
|
take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices) |
|
else: |
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) |
|
max_index = self.stage_ends[max_index] |
|
self.blocks = self.blocks[:max_index] |
|
if prune_norm or max_index < len(self.blocks): |
|
self.conv_head = nn.Identity() |
|
self.bn2 = nn.Identity() |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x, flatten=True) |
|
else: |
|
x = self.blocks(x) |
|
x = self.conv_head(x) |
|
x = self.bn2(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
return x if pre_logits else self.classifier(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
class EfficientNetFeatures(nn.Module): |
|
""" EfficientNet Feature Extractor |
|
|
|
A work-in-progress feature extraction module for EfficientNet, to use as a backbone for segmentation |
|
and object detection models. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block_args: BlockArgs, |
|
out_indices: Tuple[int, ...] = (0, 1, 2, 3, 4), |
|
feature_location: str = 'bottleneck', |
|
in_chans: int = 3, |
|
stem_size: int = 32, |
|
stem_kernel_size: int = 3, |
|
fix_stem: bool = False, |
|
output_stride: int = 32, |
|
pad_type: str = '', |
|
act_layer: Optional[LayerType] = None, |
|
norm_layer: Optional[LayerType] = None, |
|
aa_layer: Optional[LayerType] = None, |
|
se_layer: Optional[LayerType] = None, |
|
round_chs_fn: Callable = round_channels, |
|
drop_rate: float = 0., |
|
drop_path_rate: float = 0., |
|
): |
|
super(EfficientNetFeatures, self).__init__() |
|
act_layer = act_layer or nn.ReLU |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
se_layer = se_layer or SqueezeExcite |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
|
|
|
|
if not fix_stem: |
|
stem_size = round_chs_fn(stem_size) |
|
self.conv_stem = create_conv2d(in_chans, stem_size, stem_kernel_size, stride=2, padding=pad_type) |
|
self.bn1 = norm_act_layer(stem_size, inplace=True) |
|
|
|
|
|
builder = EfficientNetBuilder( |
|
output_stride=output_stride, |
|
pad_type=pad_type, |
|
round_chs_fn=round_chs_fn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
aa_layer=aa_layer, |
|
se_layer=se_layer, |
|
drop_path_rate=drop_path_rate, |
|
feature_location=feature_location, |
|
) |
|
self.blocks = nn.Sequential(*builder(stem_size, block_args)) |
|
self.feature_info = FeatureInfo(builder.features, out_indices) |
|
self._stage_out_idx = {f['stage']: f['index'] for f in self.feature_info.get_dicts()} |
|
|
|
efficientnet_init_weights(self) |
|
|
|
|
|
self.feature_hooks = None |
|
if feature_location != 'bottleneck': |
|
hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) |
|
self.feature_hooks = FeatureHooks(hooks, self.named_modules()) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
def forward(self, x) -> List[torch.Tensor]: |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
if self.feature_hooks is None: |
|
features = [] |
|
if 0 in self._stage_out_idx: |
|
features.append(x) |
|
for i, b in enumerate(self.blocks): |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(b, x) |
|
else: |
|
x = b(x) |
|
if i + 1 in self._stage_out_idx: |
|
features.append(x) |
|
return features |
|
else: |
|
self.blocks(x) |
|
out = self.feature_hooks.get_output(x.device) |
|
return list(out.values()) |
|
|
|
|
|
def _create_effnet(variant, pretrained=False, **kwargs): |
|
features_mode = '' |
|
model_cls = EfficientNet |
|
kwargs_filter = None |
|
if kwargs.pop('features_only', False): |
|
if 'feature_cfg' in kwargs or 'feature_cls' in kwargs: |
|
features_mode = 'cfg' |
|
else: |
|
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool') |
|
model_cls = EfficientNetFeatures |
|
features_mode = 'cls' |
|
|
|
model = build_model_with_cfg( |
|
model_cls, |
|
variant, |
|
pretrained, |
|
features_only=features_mode == 'cfg', |
|
pretrained_strict=features_mode != 'cls', |
|
kwargs_filter=kwargs_filter, |
|
**kwargs, |
|
) |
|
if features_mode == 'cls': |
|
model.pretrained_cfg = model.default_cfg = pretrained_cfg_for_features(model.pretrained_cfg) |
|
return model |
|
|
|
|
|
def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a mnasnet-a1 model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet |
|
Paper: https://arxiv.org/pdf/1807.11626.pdf. |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16_noskip'], |
|
|
|
['ir_r2_k3_s2_e6_c24'], |
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25'], |
|
|
|
['ir_r4_k3_s2_e6_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], |
|
|
|
['ir_r1_k3_s1_e6_c320'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=32, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a mnasnet-b1 model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet |
|
Paper: https://arxiv.org/pdf/1807.11626.pdf. |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_c16_noskip'], |
|
|
|
['ir_r3_k3_s2_e3_c24'], |
|
|
|
['ir_r3_k5_s2_e3_c40'], |
|
|
|
['ir_r3_k5_s2_e6_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c96'], |
|
|
|
['ir_r4_k5_s2_e6_c192'], |
|
|
|
['ir_r1_k3_s1_e6_c320_noskip'] |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=32, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a mnasnet-b1 model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet |
|
Paper: https://arxiv.org/pdf/1807.11626.pdf. |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_c8'], |
|
['ir_r1_k3_s2_e3_c16'], |
|
['ir_r2_k3_s2_e6_c16'], |
|
['ir_r4_k5_s2_e6_c32_se0.25'], |
|
['ir_r3_k3_s1_e6_c32_se0.25'], |
|
['ir_r3_k5_s2_e6_c88_se0.25'], |
|
['ir_r1_k3_s1_e6_c144'] |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=8, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mobilenet_v1( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, |
|
group_size=None, fix_stem_head=False, head_conv=False, pretrained=False, **kwargs |
|
): |
|
""" |
|
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py |
|
Paper: https://arxiv.org/abs/1801.04381 |
|
""" |
|
arch_def = [ |
|
['dsa_r1_k3_s1_c64'], |
|
['dsa_r2_k3_s2_c128'], |
|
['dsa_r2_k3_s2_c256'], |
|
['dsa_r6_k3_s2_c512'], |
|
['dsa_r2_k3_s2_c1024'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier) |
|
head_features = (1024 if fix_stem_head else max(1024, round_chs_fn(1024))) if head_conv else 0 |
|
model_kwargs = dict( |
|
block_args=decode_arch_def( |
|
arch_def, |
|
depth_multiplier=depth_multiplier, |
|
fix_first_last=fix_stem_head, |
|
group_size=group_size, |
|
), |
|
num_features=head_features, |
|
stem_size=32, |
|
fix_stem=fix_stem_head, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'relu6'), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mobilenet_v2( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, |
|
group_size=None, fix_stem_head=False, pretrained=False, **kwargs |
|
): |
|
""" Generate MobileNet-V2 network |
|
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py |
|
Paper: https://arxiv.org/abs/1801.04381 |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_c16'], |
|
['ir_r2_k3_s2_e6_c24'], |
|
['ir_r3_k3_s2_e6_c32'], |
|
['ir_r4_k3_s2_e6_c64'], |
|
['ir_r3_k3_s1_e6_c96'], |
|
['ir_r3_k3_s2_e6_c160'], |
|
['ir_r1_k3_s1_e6_c320'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def( |
|
arch_def, |
|
depth_multiplier=depth_multiplier, |
|
fix_first_last=fix_stem_head, |
|
group_size=group_size, |
|
), |
|
num_features=1280 if fix_stem_head else max(1280, round_chs_fn(1280)), |
|
stem_size=32, |
|
fix_stem=fix_stem_head, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'relu6'), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
""" FBNet-C |
|
|
|
Paper: https://arxiv.org/abs/1812.03443 |
|
Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py |
|
|
|
NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper, |
|
it was used to confirm some building block details |
|
""" |
|
arch_def = [ |
|
['ir_r1_k3_s1_e1_c16'], |
|
['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], |
|
['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], |
|
['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], |
|
['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], |
|
['ir_r4_k5_s2_e6_c184'], |
|
['ir_r1_k3_s1_e6_c352'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=16, |
|
num_features=1984, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates the Single-Path NAS model from search targeted for Pixel1 phone. |
|
|
|
Paper: https://arxiv.org/abs/1904.02877 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_c16_noskip'], |
|
|
|
['ir_r3_k3_s2_e3_c24'], |
|
|
|
['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], |
|
|
|
['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], |
|
|
|
['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], |
|
|
|
['ir_r4_k5_s2_e6_c192'], |
|
|
|
['ir_r1_k3_s1_e6_c320_noskip'] |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=32, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnet( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, channel_divisor=8, |
|
group_size=None, pretrained=False, **kwargs |
|
): |
|
"""Creates an EfficientNet model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py |
|
Paper: https://arxiv.org/abs/1905.11946 |
|
|
|
EfficientNet params |
|
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) |
|
'efficientnet-b0': (1.0, 1.0, 224, 0.2), |
|
'efficientnet-b1': (1.0, 1.1, 240, 0.2), |
|
'efficientnet-b2': (1.1, 1.2, 260, 0.3), |
|
'efficientnet-b3': (1.2, 1.4, 300, 0.3), |
|
'efficientnet-b4': (1.4, 1.8, 380, 0.4), |
|
'efficientnet-b5': (1.6, 2.2, 456, 0.4), |
|
'efficientnet-b6': (1.8, 2.6, 528, 0.5), |
|
'efficientnet-b7': (2.0, 3.1, 600, 0.5), |
|
'efficientnet-b8': (2.2, 3.6, 672, 0.5), |
|
'efficientnet-l2': (4.3, 5.3, 800, 0.5), |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer |
|
depth_multiplier: multiplier to number of repeats per stage |
|
|
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16_se0.25'], |
|
['ir_r2_k3_s2_e6_c24_se0.25'], |
|
['ir_r2_k5_s2_e6_c40_se0.25'], |
|
['ir_r3_k3_s2_e6_c80_se0.25'], |
|
['ir_r3_k5_s1_e6_c112_se0.25'], |
|
['ir_r4_k5_s2_e6_c192_se0.25'], |
|
['ir_r1_k3_s1_e6_c320_se0.25'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, divisor=channel_divisor) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=round_chs_fn(1280), |
|
stem_size=32, |
|
round_chs_fn=round_chs_fn, |
|
act_layer=resolve_act_layer(kwargs, 'swish'), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnet_edge( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs |
|
): |
|
""" Creates an EfficientNet-EdgeTPU model |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu |
|
""" |
|
|
|
arch_def = [ |
|
|
|
|
|
['er_r1_k3_s1_e4_c24_fc24_noskip'], |
|
['er_r2_k3_s2_e8_c32'], |
|
['er_r4_k3_s2_e8_c48'], |
|
['ir_r5_k5_s2_e8_c96'], |
|
['ir_r4_k5_s1_e8_c144'], |
|
['ir_r2_k5_s2_e8_c192'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=round_chs_fn(1280), |
|
stem_size=32, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'relu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnet_condconv( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs |
|
): |
|
"""Creates an EfficientNet-CondConv model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16_se0.25'], |
|
['ir_r2_k3_s2_e6_c24_se0.25'], |
|
['ir_r2_k5_s2_e6_c40_se0.25'], |
|
['ir_r3_k3_s2_e6_c80_se0.25'], |
|
['ir_r3_k5_s1_e6_c112_se0.25_cc4'], |
|
['ir_r4_k5_s2_e6_c192_se0.25_cc4'], |
|
['ir_r1_k3_s1_e6_c320_se0.25_cc4'], |
|
] |
|
|
|
|
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier), |
|
num_features=round_chs_fn(1280), |
|
stem_size=32, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'swish'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates an EfficientNet-Lite model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite |
|
Paper: https://arxiv.org/abs/1905.11946 |
|
|
|
EfficientNet params |
|
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) |
|
'efficientnet-lite0': (1.0, 1.0, 224, 0.2), |
|
'efficientnet-lite1': (1.0, 1.1, 240, 0.2), |
|
'efficientnet-lite2': (1.1, 1.2, 260, 0.3), |
|
'efficientnet-lite3': (1.2, 1.4, 280, 0.3), |
|
'efficientnet-lite4': (1.4, 1.8, 300, 0.3), |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer |
|
depth_multiplier: multiplier to number of repeats per stage |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16'], |
|
['ir_r2_k3_s2_e6_c24'], |
|
['ir_r2_k5_s2_e6_c40'], |
|
['ir_r3_k3_s2_e6_c80'], |
|
['ir_r3_k5_s1_e6_c112'], |
|
['ir_r4_k5_s2_e6_c192'], |
|
['ir_r1_k3_s1_e6_c320'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), |
|
num_features=1280, |
|
stem_size=32, |
|
fix_stem=True, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
act_layer=resolve_act_layer(kwargs, 'relu6'), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnetv2_base( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs |
|
): |
|
""" Creates an EfficientNet-V2 base model |
|
|
|
Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 |
|
Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 |
|
""" |
|
arch_def = [ |
|
['cn_r1_k3_s1_e1_c16_skip'], |
|
['er_r2_k3_s2_e4_c32'], |
|
['er_r2_k3_s2_e4_c48'], |
|
['ir_r3_k3_s2_e4_c96_se0.25'], |
|
['ir_r5_k3_s1_e6_c112_se0.25'], |
|
['ir_r8_k3_s2_e6_c192_se0.25'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=round_chs_fn(1280), |
|
stem_size=32, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnetv2_s( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, rw=False, pretrained=False, **kwargs |
|
): |
|
""" Creates an EfficientNet-V2 Small model |
|
|
|
Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 |
|
Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 |
|
|
|
NOTE: `rw` flag sets up 'small' variant to behave like my initial v2 small model, |
|
before ref the impl was released. |
|
""" |
|
arch_def = [ |
|
['cn_r2_k3_s1_e1_c24_skip'], |
|
['er_r4_k3_s2_e4_c48'], |
|
['er_r4_k3_s2_e4_c64'], |
|
['ir_r6_k3_s2_e4_c128_se0.25'], |
|
['ir_r9_k3_s1_e6_c160_se0.25'], |
|
['ir_r15_k3_s2_e6_c256_se0.25'], |
|
] |
|
num_features = 1280 |
|
if rw: |
|
|
|
arch_def[0] = ['er_r2_k3_s1_e1_c24'] |
|
arch_def[-1] = ['ir_r15_k3_s2_e6_c272_se0.25'] |
|
num_features = 1792 |
|
|
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=round_chs_fn(num_features), |
|
stem_size=24, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnetv2_m( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs |
|
): |
|
""" Creates an EfficientNet-V2 Medium model |
|
|
|
Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 |
|
Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 |
|
""" |
|
|
|
arch_def = [ |
|
['cn_r3_k3_s1_e1_c24_skip'], |
|
['er_r5_k3_s2_e4_c48'], |
|
['er_r5_k3_s2_e4_c80'], |
|
['ir_r7_k3_s2_e4_c160_se0.25'], |
|
['ir_r14_k3_s1_e6_c176_se0.25'], |
|
['ir_r18_k3_s2_e6_c304_se0.25'], |
|
['ir_r5_k3_s1_e6_c512_se0.25'], |
|
] |
|
|
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=1280, |
|
stem_size=24, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnetv2_l( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs |
|
): |
|
""" Creates an EfficientNet-V2 Large model |
|
|
|
Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 |
|
Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 |
|
""" |
|
|
|
arch_def = [ |
|
['cn_r4_k3_s1_e1_c32_skip'], |
|
['er_r7_k3_s2_e4_c64'], |
|
['er_r7_k3_s2_e4_c96'], |
|
['ir_r10_k3_s2_e4_c192_se0.25'], |
|
['ir_r19_k3_s1_e6_c224_se0.25'], |
|
['ir_r25_k3_s2_e6_c384_se0.25'], |
|
['ir_r7_k3_s1_e6_c640_se0.25'], |
|
] |
|
|
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=1280, |
|
stem_size=32, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnetv2_xl( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs |
|
): |
|
""" Creates an EfficientNet-V2 Xtra-Large model |
|
|
|
Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 |
|
Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 |
|
""" |
|
|
|
arch_def = [ |
|
['cn_r4_k3_s1_e1_c32_skip'], |
|
['er_r8_k3_s2_e4_c64'], |
|
['er_r8_k3_s2_e4_c96'], |
|
['ir_r16_k3_s2_e4_c192_se0.25'], |
|
['ir_r24_k3_s1_e6_c256_se0.25'], |
|
['ir_r32_k3_s2_e6_c512_se0.25'], |
|
['ir_r8_k3_s1_e6_c640_se0.25'], |
|
] |
|
|
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=1280, |
|
stem_size=32, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_efficientnet_x( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.0, channel_divisor=8, |
|
group_size=None, version=1, pretrained=False, **kwargs |
|
): |
|
"""Creates an EfficientNet model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py |
|
Paper: https://arxiv.org/abs/1905.11946 |
|
|
|
EfficientNet params |
|
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) |
|
'efficientnet-x-b0': (1.0, 1.0, 224, 0.2), |
|
'efficientnet-x-b1': (1.0, 1.1, 240, 0.2), |
|
'efficientnet-x-b2': (1.1, 1.2, 260, 0.3), |
|
'efficientnet-x-b3': (1.2, 1.4, 300, 0.3), |
|
'efficientnet-x-b4': (1.4, 1.8, 380, 0.4), |
|
'efficientnet-x-b5': (1.6, 2.2, 456, 0.4), |
|
'efficientnet-x-b6': (1.8, 2.6, 528, 0.5), |
|
'efficientnet-x-b7': (2.0, 3.1, 600, 0.5), |
|
'efficientnet-x-b8': (2.2, 3.6, 672, 0.5), |
|
'efficientnet-l2': (4.3, 5.3, 800, 0.5), |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer |
|
depth_multiplier: multiplier to number of repeats per stage |
|
|
|
""" |
|
""" |
|
if version == 1: |
|
blocks_args = [ |
|
'r1_k3_s11_e1_i32_o16_se0.25_d1_a0', |
|
'r2_k3_s22_e6_i16_o24_se0.25_f1_d2_a1', |
|
'r2_k5_s22_e6_i24_o40_se0.25_f1_a1', |
|
'r3_k3_s22_e6_i40_o80_se0.25_a0', |
|
'r3_k5_s11_e6_i80_o112_se0.25_a0', |
|
'r4_k5_s22_e6_i112_o192_se0.25_a0', |
|
'r1_k3_s11_e6_i192_o320_se0.25_a0', |
|
] |
|
elif version == 2: |
|
blocks_args = [ |
|
'r1_k3_s11_e1_i32_o16_se0.25_d1_a0', |
|
'r2_k3_s22_e4_i16_o24_se0.25_f1_d2_a1', |
|
'r2_k5_s22_e4_i24_o40_se0.25_f1_a1', |
|
'r3_k3_s22_e4_i40_o80_se0.25_a0', |
|
'r3_k5_s11_e6_i80_o112_se0.25_a0', |
|
'r4_k5_s22_e6_i112_o192_se0.25_a0', |
|
'r1_k3_s11_e6_i192_o320_se0.25_a0', |
|
] |
|
""" |
|
if version == 1: |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16_se0.25_d1'], |
|
['er_r2_k3_s2_e6_c24_se0.25_nre'], |
|
['er_r2_k5_s2_e6_c40_se0.25_nre'], |
|
['ir_r3_k3_s2_e6_c80_se0.25'], |
|
['ir_r3_k5_s1_e6_c112_se0.25'], |
|
['ir_r4_k5_s2_e6_c192_se0.25'], |
|
['ir_r1_k3_s1_e6_c320_se0.25'], |
|
] |
|
else: |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16_se0.25_d1'], |
|
['er_r2_k3_s2_e4_c24_se0.25_nre'], |
|
['er_r2_k5_s2_e4_c40_se0.25_nre'], |
|
['ir_r3_k3_s2_e4_c80_se0.25'], |
|
['ir_r3_k5_s1_e6_c112_se0.25'], |
|
['ir_r4_k5_s2_e6_c192_se0.25'], |
|
['ir_r1_k3_s1_e6_c320_se0.25'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, divisor=channel_divisor) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), |
|
num_features=round_chs_fn(1280), |
|
stem_size=32, |
|
round_chs_fn=round_chs_fn, |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a MixNet Small model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet |
|
Paper: https://arxiv.org/abs/1907.09595 |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16'], |
|
|
|
['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], |
|
|
|
['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], |
|
|
|
['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], |
|
|
|
['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], |
|
|
|
['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], |
|
|
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
num_features=1536, |
|
stem_size=16, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a MixNet Medium-Large model. |
|
|
|
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet |
|
Paper: https://arxiv.org/abs/1907.09595 |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c24'], |
|
|
|
['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], |
|
|
|
['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], |
|
|
|
['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], |
|
|
|
['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], |
|
|
|
['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], |
|
|
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), |
|
num_features=1536, |
|
stem_size=24, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_tinynet(variant, model_width=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a TinyNet model. |
|
""" |
|
arch_def = [ |
|
['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], |
|
['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], |
|
['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], |
|
['ir_r1_k3_s1_e6_c320_se0.25'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), |
|
num_features=max(1280, round_channels(1280, model_width, 8, None)), |
|
stem_size=32, |
|
fix_stem=True, |
|
round_chs_fn=partial(round_channels, multiplier=model_width), |
|
act_layer=resolve_act_layer(kwargs, 'swish'), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mobilenet_edgetpu(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): |
|
""" |
|
Based on definitions in: https://github.com/tensorflow/models/tree/d2427a562f401c9af118e47af2f030a0a5599f55/official/projects/edgetpu/vision |
|
""" |
|
if 'edgetpu_v2' in variant: |
|
stem_size = 64 |
|
stem_kernel_size = 5 |
|
group_size = 64 |
|
num_features = 1280 |
|
act_layer = resolve_act_layer(kwargs, 'relu') |
|
|
|
def _arch_def(chs: List[int], group_size: int): |
|
return [ |
|
|
|
[f'cn_r1_k1_s1_c{chs[0]}'], |
|
|
|
[f'er_r1_k3_s2_e8_c{chs[1]}', f'er_r1_k3_s1_e4_gs{group_size}_c{chs[1]}'], |
|
|
|
[ |
|
f'er_r1_k3_s2_e8_c{chs[2]}', |
|
f'er_r1_k3_s1_e4_gs{group_size}_c{chs[2]}', |
|
f'er_r1_k3_s1_e4_c{chs[2]}', |
|
f'er_r1_k3_s1_e4_gs{group_size}_c{chs[2]}', |
|
], |
|
|
|
[f'er_r1_k3_s2_e8_c{chs[3]}', f'ir_r3_k3_s1_e4_c{chs[3]}'], |
|
|
|
[f'ir_r1_k3_s1_e8_c{chs[4]}', f'ir_r3_k3_s1_e4_c{chs[4]}'], |
|
|
|
[f'ir_r1_k3_s2_e8_c{chs[5]}', f'ir_r3_k3_s1_e4_c{chs[5]}'], |
|
|
|
[f'ir_r1_k3_s1_e8_c{chs[6]}'], |
|
] |
|
|
|
if 'edgetpu_v2_xs' in variant: |
|
stem_size = 32 |
|
stem_kernel_size = 3 |
|
channels = [16, 32, 48, 96, 144, 160, 192] |
|
elif 'edgetpu_v2_s' in variant: |
|
channels = [24, 48, 64, 128, 160, 192, 256] |
|
elif 'edgetpu_v2_m' in variant: |
|
channels = [32, 64, 80, 160, 192, 240, 320] |
|
num_features = 1344 |
|
elif 'edgetpu_v2_l' in variant: |
|
stem_kernel_size = 7 |
|
group_size = 128 |
|
channels = [32, 64, 96, 192, 240, 256, 384] |
|
num_features = 1408 |
|
else: |
|
assert False |
|
|
|
arch_def = _arch_def(channels, group_size) |
|
else: |
|
|
|
stem_size = 32 |
|
stem_kernel_size = 3 |
|
num_features = 1280 |
|
act_layer = resolve_act_layer(kwargs, 'relu') |
|
arch_def = [ |
|
|
|
['cn_r1_k1_s1_c16'], |
|
|
|
['er_r1_k3_s2_e8_c32', 'er_r3_k3_s1_e4_c32'], |
|
|
|
['er_r1_k3_s2_e8_c48', 'er_r3_k3_s1_e4_c48'], |
|
|
|
['ir_r1_k3_s2_e8_c96', 'ir_r3_k3_s1_e4_c96'], |
|
|
|
['ir_r1_k3_s1_e8_c96_noskip', 'ir_r3_k3_s1_e4_c96'], |
|
|
|
['ir_r1_k5_s2_e8_c160', 'ir_r3_k5_s1_e4_c160'], |
|
|
|
['ir_r1_k3_s1_e8_c192'], |
|
] |
|
|
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier), |
|
num_features=num_features, |
|
stem_size=stem_size, |
|
stem_kernel_size=stem_kernel_size, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=act_layer, |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_test_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): |
|
""" Minimal test EfficientNet generator. |
|
""" |
|
arch_def = [ |
|
['cn_r1_k3_s1_e1_c16_skip'], |
|
['er_r1_k3_s2_e4_c24'], |
|
['er_r1_k3_s2_e4_c32'], |
|
['ir_r1_k3_s2_e4_c48_se0.25'], |
|
['ir_r1_k3_s2_e4_c64_se0.25'], |
|
] |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def, depth_multiplier), |
|
num_features=round_chs_fn(256), |
|
stem_size=24, |
|
round_chs_fn=round_chs_fn, |
|
norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'silu'), |
|
**kwargs, |
|
) |
|
model = _create_effnet(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv_stem', 'classifier': 'classifier', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'mnasnet_050.untrained': _cfg(), |
|
'mnasnet_075.untrained': _cfg(), |
|
'mnasnet_100.rmsp_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth', |
|
hf_hub_id='timm/'), |
|
'mnasnet_140.untrained': _cfg(), |
|
|
|
'semnasnet_050.untrained': _cfg(), |
|
'semnasnet_075.rmsp_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/semnasnet_075-18710866.pth', |
|
hf_hub_id='timm/'), |
|
'semnasnet_100.rmsp_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth', |
|
hf_hub_id='timm/'), |
|
'semnasnet_140.untrained': _cfg(), |
|
'mnasnet_small.lamb_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth', |
|
hf_hub_id='timm/'), |
|
|
|
'mobilenetv1_100.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
test_input_size=(3, 256, 256), test_crop_pct=0.95, |
|
), |
|
'mobilenetv1_100h.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
test_input_size=(3, 256, 256), test_crop_pct=0.95, |
|
), |
|
'mobilenetv1_125.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0, |
|
), |
|
|
|
'mobilenetv2_035.untrained': _cfg(), |
|
'mobilenetv2_050.lamb_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_050-3d30d450.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic', |
|
), |
|
'mobilenetv2_075.untrained': _cfg(), |
|
'mobilenetv2_100.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth', |
|
hf_hub_id='timm/'), |
|
'mobilenetv2_110d.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth', |
|
hf_hub_id='timm/'), |
|
'mobilenetv2_120d.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth', |
|
hf_hub_id='timm/'), |
|
'mobilenetv2_140.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth', |
|
hf_hub_id='timm/'), |
|
|
|
'fbnetc_100.rmsp_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bilinear'), |
|
'spnasnet_100.rmsp_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bilinear'), |
|
|
|
|
|
'efficientnet_b0.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth', |
|
hf_hub_id='timm/'), |
|
'efficientnet_b0.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0), |
|
'efficientnet_b1.ra4_e3600_r240_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 240, 240), crop_pct=0.9, pool_size=(8, 8), |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'efficientnet_b1.ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 256, 256), test_crop_pct=1.0), |
|
'efficientnet_b2.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'efficientnet_b3.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0), |
|
'efficientnet_b4.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0), |
|
'efficientnet_b5.sw_in12k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, crop_mode='squash'), |
|
'efficientnet_b5.sw_in12k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.95, num_classes=11821), |
|
'efficientnet_b6.untrained': _cfg( |
|
url='', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), |
|
'efficientnet_b7.untrained': _cfg( |
|
url='', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), |
|
'efficientnet_b8.untrained': _cfg( |
|
url='', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), |
|
'efficientnet_l2.untrained': _cfg( |
|
url='', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.961), |
|
|
|
|
|
'efficientnet_b0_gn.untrained': _cfg(), |
|
'efficientnet_b0_g8_gn.untrained': _cfg(), |
|
'efficientnet_b0_g16_evos.untrained': _cfg(), |
|
'efficientnet_b3_gn.untrained': _cfg( |
|
input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), |
|
'efficientnet_b3_g8_gn.untrained': _cfg( |
|
input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), |
|
'efficientnet_blur_b0.untrained': _cfg(), |
|
|
|
'efficientnet_es.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth', |
|
hf_hub_id='timm/'), |
|
'efficientnet_em.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'efficientnet_el.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_el-3b455510.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
|
|
'efficientnet_es_pruned.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_pruned75-1b7248cf.pth', |
|
hf_hub_id='timm/'), |
|
'efficientnet_el_pruned.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_el_pruned70-ef2a2ccf.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
|
|
'efficientnet_cc_b0_4e.untrained': _cfg(), |
|
'efficientnet_cc_b0_8e.untrained': _cfg(), |
|
'efficientnet_cc_b1_8e.untrained': _cfg(input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
|
|
'efficientnet_lite0.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth', |
|
hf_hub_id='timm/'), |
|
'efficientnet_lite1.untrained': _cfg( |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'efficientnet_lite2.untrained': _cfg( |
|
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), |
|
'efficientnet_lite3.untrained': _cfg( |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
'efficientnet_lite4.untrained': _cfg( |
|
input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), |
|
|
|
'efficientnet_b1_pruned.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb1_pruned-bea43a3a.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), pool_size=(8, 8), |
|
crop_pct=0.882, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'efficientnet_b2_pruned.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb2_pruned-08c1b27c.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 260, 260), pool_size=(9, 9), |
|
crop_pct=0.890, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'efficientnet_b3_pruned.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb3_pruned-59ecf72d.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 300, 300), pool_size=(10, 10), |
|
crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
|
|
'efficientnetv2_rw_t.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_t_agc-3620981a.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 224, 224), test_input_size=(3, 288, 288), pool_size=(7, 7), crop_pct=1.0), |
|
'gc_efficientnetv2_rw_t.agc_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gc_efficientnetv2_rw_t_agc-927a0bde.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 224, 224), test_input_size=(3, 288, 288), pool_size=(7, 7), crop_pct=1.0), |
|
'efficientnetv2_rw_s.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0), |
|
'efficientnetv2_rw_m.agc_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_rw_m_agc-3d90cb1e.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0), |
|
|
|
'efficientnetv2_s.untrained': _cfg( |
|
input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0), |
|
'efficientnetv2_m.untrained': _cfg( |
|
input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0), |
|
'efficientnetv2_l.untrained': _cfg( |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0), |
|
'efficientnetv2_xl.untrained': _cfg( |
|
input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0), |
|
|
|
'tf_efficientnet_b0.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 224, 224)), |
|
'tf_efficientnet_b1.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'tf_efficientnet_b2.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), |
|
'tf_efficientnet_b3.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
'tf_efficientnet_b4.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), |
|
'tf_efficientnet_b5.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), |
|
'tf_efficientnet_b6.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), |
|
'tf_efficientnet_b7.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), |
|
'tf_efficientnet_l2.ns_jft_in1k_475': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 475, 475), pool_size=(15, 15), crop_pct=0.936), |
|
'tf_efficientnet_l2.ns_jft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.96), |
|
|
|
'tf_efficientnet_b0.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)), |
|
'tf_efficientnet_b1.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'tf_efficientnet_b2.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), |
|
'tf_efficientnet_b3.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
'tf_efficientnet_b4.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), |
|
'tf_efficientnet_b5.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), |
|
'tf_efficientnet_b6.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), |
|
'tf_efficientnet_b7.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), |
|
'tf_efficientnet_b8.ap_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), |
|
|
|
'tf_efficientnet_b5.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), |
|
'tf_efficientnet_b7.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), |
|
'tf_efficientnet_b8.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), |
|
|
|
'tf_efficientnet_b0.aa_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 224, 224)), |
|
'tf_efficientnet_b1.aa_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'tf_efficientnet_b2.aa_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), |
|
'tf_efficientnet_b3.aa_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
'tf_efficientnet_b4.aa_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), |
|
'tf_efficientnet_b5.aa_in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_aa-99018a74.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), |
|
'tf_efficientnet_b6.aa_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), |
|
'tf_efficientnet_b7.aa_in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_aa-076e3472.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), |
|
|
|
'tf_efficientnet_b0.in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 224, 224)), |
|
'tf_efficientnet_b1.in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'tf_efficientnet_b2.in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), |
|
'tf_efficientnet_b3.in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
'tf_efficientnet_b4.in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4-74ee3bed.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), |
|
'tf_efficientnet_b5.in1k': _cfg( |
|
url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5-c6949ce9.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), |
|
|
|
'tf_efficientnet_es.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 224, 224), ), |
|
'tf_efficientnet_em.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
'tf_efficientnet_el.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), |
|
|
|
'tf_efficientnet_cc_b0_4e.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_efficientnet_cc_b0_8e.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_efficientnet_cc_b1_8e.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), |
|
|
|
'tf_efficientnet_lite0.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
interpolation='bicubic', |
|
), |
|
'tf_efficientnet_lite1.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, |
|
interpolation='bicubic', |
|
), |
|
'tf_efficientnet_lite2.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890, |
|
interpolation='bicubic', |
|
), |
|
'tf_efficientnet_lite3.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, interpolation='bilinear'), |
|
'tf_efficientnet_lite4.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.920, interpolation='bilinear'), |
|
|
|
'tf_efficientnetv2_s.in21k_ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), |
|
'tf_efficientnetv2_m.in21k_ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'tf_efficientnetv2_l.in21k_ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'tf_efficientnetv2_xl.in21k_ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'tf_efficientnetv2_s.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s-eb54923e.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), |
|
'tf_efficientnetv2_m.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m-cc09e0cd.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'tf_efficientnetv2_l.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l-d664b728.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'tf_efficientnetv2_s.in21k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, |
|
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), |
|
'tf_efficientnetv2_m.in21k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'tf_efficientnetv2_l.in21k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, |
|
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'tf_efficientnetv2_xl.in21k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth', |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, |
|
input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'tf_efficientnetv2_b0.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b0-c7cc451f.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 192, 192), test_input_size=(3, 224, 224), pool_size=(6, 6)), |
|
'tf_efficientnetv2_b1.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b1-be6e41b0.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 192, 192), test_input_size=(3, 240, 240), pool_size=(6, 6), crop_pct=0.882), |
|
'tf_efficientnetv2_b2.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b2-847de54e.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 208, 208), test_input_size=(3, 260, 260), pool_size=(7, 7), crop_pct=0.890), |
|
'tf_efficientnetv2_b3.in21k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.9, crop_mode='squash'), |
|
'tf_efficientnetv2_b3.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b3-57773f13.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.904), |
|
'tf_efficientnetv2_b3.in21k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, num_classes=21843, |
|
input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.904), |
|
|
|
'mixnet_s.ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth', |
|
hf_hub_id='timm/'), |
|
'mixnet_m.ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth', |
|
hf_hub_id='timm/'), |
|
'mixnet_l.ft_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth', |
|
hf_hub_id='timm/'), |
|
'mixnet_xl.ra_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth', |
|
hf_hub_id='timm/'), |
|
'mixnet_xxl.untrained': _cfg(), |
|
|
|
'tf_mixnet_s.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth', |
|
hf_hub_id='timm/'), |
|
'tf_mixnet_m.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth', |
|
hf_hub_id='timm/'), |
|
'tf_mixnet_l.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth', |
|
hf_hub_id='timm/'), |
|
|
|
"tinynet_a.in1k": _cfg( |
|
input_size=(3, 192, 192), pool_size=(6, 6), |
|
url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_a.pth', |
|
hf_hub_id='timm/'), |
|
"tinynet_b.in1k": _cfg( |
|
input_size=(3, 188, 188), pool_size=(6, 6), |
|
url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_b.pth', |
|
hf_hub_id='timm/'), |
|
"tinynet_c.in1k": _cfg( |
|
input_size=(3, 184, 184), pool_size=(6, 6), |
|
url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_c.pth', |
|
hf_hub_id='timm/'), |
|
"tinynet_d.in1k": _cfg( |
|
input_size=(3, 152, 152), pool_size=(5, 5), |
|
url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_d.pth', |
|
hf_hub_id='timm/'), |
|
"tinynet_e.in1k": _cfg( |
|
input_size=(3, 106, 106), pool_size=(4, 4), |
|
url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_e.pth', |
|
hf_hub_id='timm/'), |
|
|
|
'mobilenet_edgetpu_100.untrained': _cfg( |
|
|
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
'mobilenet_edgetpu_v2_xs.untrained': _cfg( |
|
|
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
'mobilenet_edgetpu_v2_s.untrained': _cfg( |
|
|
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
'mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, |
|
crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=0.95, |
|
), |
|
'mobilenet_edgetpu_v2_l.untrained': _cfg( |
|
|
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
|
|
"test_efficientnet.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
"test_efficientnet_ln.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
"test_efficientnet_gn.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
"test_efficientnet_evos.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
}) |
|
|
|
|
|
@register_model |
|
def mnasnet_050(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet B1, depth multiplier of 0.5. """ |
|
model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mnasnet_075(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet B1, depth multiplier of 0.75. """ |
|
model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mnasnet_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet B1, depth multiplier of 1.0. """ |
|
model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mnasnet_140(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet B1, depth multiplier of 1.4 """ |
|
model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def semnasnet_050(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet A1 (w/ SE), depth multiplier of 0.5 """ |
|
model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def semnasnet_075(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet A1 (w/ SE), depth multiplier of 0.75. """ |
|
model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def semnasnet_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """ |
|
model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def semnasnet_140(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet A1 (w/ SE), depth multiplier of 1.4. """ |
|
model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MNASNet Small, depth multiplier of 1.0. """ |
|
model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv1_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V1 """ |
|
model = _gen_mobilenet_v1('mobilenetv1_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv1_100h(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V1 """ |
|
model = _gen_mobilenet_v1('mobilenetv1_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv1_125(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V1 """ |
|
model = _gen_mobilenet_v1('mobilenetv1_125', 1.25, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_035(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 0.35 channel multiplier """ |
|
model = _gen_mobilenet_v2('mobilenetv2_035', 0.35, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_050(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 0.5 channel multiplier """ |
|
model = _gen_mobilenet_v2('mobilenetv2_050', 0.5, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_075(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 0.75 channel multiplier """ |
|
model = _gen_mobilenet_v2('mobilenetv2_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 1.0 channel multiplier """ |
|
model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_140(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 1.4 channel multiplier """ |
|
model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_110d(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 1.1 channel, 1.2 depth multipliers""" |
|
model = _gen_mobilenet_v2( |
|
'mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv2_120d(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet V2 w/ 1.2 channel, 1.4 depth multipliers """ |
|
model = _gen_mobilenet_v2( |
|
'mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def fbnetc_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" FBNet-C """ |
|
if pretrained: |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def spnasnet_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" Single-Path NAS Pixel1""" |
|
model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b0(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B0 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b1(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B1 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B2 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b3(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B3 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b4(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B4 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b5(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B5 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b6(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B6 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b7(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B7 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b8(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B8 """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_l2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-L2.""" |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
|
|
@register_model |
|
def efficientnet_b0_gn(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B0 + GroupNorm""" |
|
model = _gen_efficientnet( |
|
'efficientnet_b0_gn', norm_layer=partial(GroupNormAct, group_size=8), pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b0_g8_gn(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B0 w/ group conv + GroupNorm""" |
|
model = _gen_efficientnet( |
|
'efficientnet_b0_g8_gn', group_size=8, norm_layer=partial(GroupNormAct, group_size=8), |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b0_g16_evos(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B0 w/ group 16 conv + EvoNorm""" |
|
model = _gen_efficientnet( |
|
'efficientnet_b0_g16_evos', group_size=16, channel_divisor=16, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b3_gn(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B3 w/ GroupNorm """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b3_gn', channel_multiplier=1.2, depth_multiplier=1.4, channel_divisor=16, |
|
norm_layer=partial(GroupNormAct, group_size=16), pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b3_g8_gn(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B3 w/ grouped conv + BN""" |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_b3_g8_gn', channel_multiplier=1.2, depth_multiplier=1.4, group_size=8, channel_divisor=16, |
|
norm_layer=partial(GroupNormAct, group_size=16), pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_blur_b0(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B0 w/ BlurPool """ |
|
|
|
model = _gen_efficientnet( |
|
'efficientnet_blur_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, |
|
aa_layer='blurpc', **kwargs |
|
) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_es(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge Small. """ |
|
model = _gen_efficientnet_edge( |
|
'efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_es_pruned(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge Small Pruned. For more info: https://github.com/DeGirum/pruned-models/releases/tag/efficientnet_v1.0""" |
|
model = _gen_efficientnet_edge( |
|
'efficientnet_es_pruned', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
@register_model |
|
def efficientnet_em(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge-Medium. """ |
|
model = _gen_efficientnet_edge( |
|
'efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_el(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge-Large. """ |
|
model = _gen_efficientnet_edge( |
|
'efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
@register_model |
|
def efficientnet_el_pruned(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge-Large pruned. For more info: https://github.com/DeGirum/pruned-models/releases/tag/efficientnet_v1.0""" |
|
model = _gen_efficientnet_edge( |
|
'efficientnet_el_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
@register_model |
|
def efficientnet_cc_b0_4e(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-CondConv-B0 w/ 8 Experts """ |
|
|
|
model = _gen_efficientnet_condconv( |
|
'efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_cc_b0_8e(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-CondConv-B0 w/ 8 Experts """ |
|
|
|
model = _gen_efficientnet_condconv( |
|
'efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_cc_b1_8e(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-CondConv-B1 w/ 8 Experts """ |
|
|
|
model = _gen_efficientnet_condconv( |
|
'efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_lite0(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite0 """ |
|
|
|
model = _gen_efficientnet_lite( |
|
'efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_lite1(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite1 """ |
|
|
|
model = _gen_efficientnet_lite( |
|
'efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_lite2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite2 """ |
|
|
|
model = _gen_efficientnet_lite( |
|
'efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_lite3(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite3 """ |
|
|
|
model = _gen_efficientnet_lite( |
|
'efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_lite4(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite4 """ |
|
|
|
model = _gen_efficientnet_lite( |
|
'efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b1_pruned(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B1 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
variant = 'efficientnet_b1_pruned' |
|
model = _gen_efficientnet( |
|
variant, channel_multiplier=1.0, depth_multiplier=1.1, pruned=True, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b2_pruned(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B2 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'efficientnet_b2_pruned', channel_multiplier=1.1, depth_multiplier=1.2, pruned=True, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_b3_pruned(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B3 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'efficientnet_b3_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pruned=True, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_rw_t(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Tiny (Custom variant, tiny not in paper). """ |
|
model = _gen_efficientnetv2_s( |
|
'efficientnetv2_rw_t', channel_multiplier=0.8, depth_multiplier=0.9, rw=False, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def gc_efficientnetv2_rw_t(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Tiny w/ Global Context Attn (Custom variant, tiny not in paper). """ |
|
model = _gen_efficientnetv2_s( |
|
'gc_efficientnetv2_rw_t', channel_multiplier=0.8, depth_multiplier=0.9, |
|
rw=False, se_layer='gc', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_rw_s(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Small (RW variant). |
|
NOTE: This is my initial (pre official code release) w/ some differences. |
|
See efficientnetv2_s and tf_efficientnetv2_s for versions that match the official w/ PyTorch vs TF padding |
|
""" |
|
model = _gen_efficientnetv2_s('efficientnetv2_rw_s', rw=True, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_rw_m(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Medium (RW variant). |
|
""" |
|
model = _gen_efficientnetv2_s( |
|
'efficientnetv2_rw_m', channel_multiplier=1.2, depth_multiplier=(1.2,) * 4 + (1.6,) * 2, rw=True, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_s(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Small. """ |
|
model = _gen_efficientnetv2_s('efficientnetv2_s', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_m(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Medium. """ |
|
model = _gen_efficientnetv2_m('efficientnetv2_m', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_l(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Large. """ |
|
model = _gen_efficientnetv2_l('efficientnetv2_l', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnetv2_xl(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Xtra-Large. """ |
|
model = _gen_efficientnetv2_xl('efficientnetv2_xl', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b0(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B0. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b1(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B1. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B2. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b3(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B3. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b4(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B4. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b5(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B5. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b6(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B6. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b7(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B7. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_b8(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B8. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_l2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-L2 NoisyStudent. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet( |
|
'tf_efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_es(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge Small. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_edge( |
|
'tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_em(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge-Medium. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_edge( |
|
'tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_el(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Edge-Large. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_edge( |
|
'tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-CondConv-B0 w/ 4 Experts. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_condconv( |
|
'tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-CondConv-B0 w/ 8 Experts. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_condconv( |
|
'tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-CondConv-B1 w/ 8 Experts. Tensorflow compatible variant """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_condconv( |
|
'tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, |
|
pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_lite0(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite0 """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_lite( |
|
'tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_lite1(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite1 """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_lite( |
|
'tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_lite2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite2 """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_lite( |
|
'tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_lite3(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite3 """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_lite( |
|
'tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnet_lite4(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-Lite4 """ |
|
|
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnet_lite( |
|
'tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_s(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Small. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_s('tf_efficientnetv2_s', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_m(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Medium. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_m('tf_efficientnetv2_m', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_l(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Large. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_l('tf_efficientnetv2_l', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_xl(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2 Xtra-Large. Tensorflow compatible variant |
|
""" |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_xl('tf_efficientnetv2_xl', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_b0(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2-B0. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_base('tf_efficientnetv2_b0', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_b1(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2-B1. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_base( |
|
'tf_efficientnetv2_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_b2(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2-B2. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_base( |
|
'tf_efficientnetv2_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_efficientnetv2_b3(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-V2-B3. Tensorflow compatible variant """ |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_efficientnetv2_base( |
|
'tf_efficientnetv2_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_x_b3(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B3 """ |
|
|
|
model = _gen_efficientnet_x( |
|
'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_x_b5(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B5 """ |
|
model = _gen_efficientnet_x( |
|
'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def efficientnet_h_b5(pretrained=False, **kwargs) -> EfficientNet: |
|
""" EfficientNet-B5 """ |
|
model = _gen_efficientnet_x( |
|
'efficientnet_b5', channel_multiplier=1.92, depth_multiplier=2.2, version=2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mixnet_s(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Small model. |
|
""" |
|
model = _gen_mixnet_s( |
|
'mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mixnet_m(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Medium model. |
|
""" |
|
model = _gen_mixnet_m( |
|
'mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mixnet_l(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Large model. |
|
""" |
|
model = _gen_mixnet_m( |
|
'mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mixnet_xl(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Extra-Large model. |
|
Not a paper spec, experimental def by RW w/ depth scaling. |
|
""" |
|
model = _gen_mixnet_m( |
|
'mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mixnet_xxl(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Double Extra Large model. |
|
Not a paper spec, experimental def by RW w/ depth scaling. |
|
""" |
|
model = _gen_mixnet_m( |
|
'mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mixnet_s(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Small model. Tensorflow compatible variant |
|
""" |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_mixnet_s( |
|
'tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mixnet_m(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Medium model. Tensorflow compatible variant |
|
""" |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_mixnet_m( |
|
'tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mixnet_l(pretrained=False, **kwargs) -> EfficientNet: |
|
"""Creates a MixNet Large model. Tensorflow compatible variant |
|
""" |
|
kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) |
|
kwargs.setdefault('pad_type', 'same') |
|
model = _gen_mixnet_m( |
|
'tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tinynet_a(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_tinynet('tinynet_a', 1.0, 1.2, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tinynet_b(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_tinynet('tinynet_b', 0.75, 1.1, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tinynet_c(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_tinynet('tinynet_c', 0.54, 0.85, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tinynet_d(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_tinynet('tinynet_d', 0.54, 0.695, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tinynet_e(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_tinynet('tinynet_e', 0.51, 0.6, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenet_edgetpu_100(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet-EdgeTPU-v1 100. """ |
|
model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_100', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenet_edgetpu_v2_xs(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet-EdgeTPU-v2 Extra Small. """ |
|
model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_xs', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenet_edgetpu_v2_s(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet-EdgeTPU-v2 Small. """ |
|
model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_s', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenet_edgetpu_v2_m(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet-EdgeTPU-v2 Medium. """ |
|
model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_m', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenet_edgetpu_v2_l(pretrained=False, **kwargs) -> EfficientNet: |
|
""" MobileNet-EdgeTPU-v2 Large. """ |
|
model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_l', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_efficientnet(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_test_efficientnet('test_efficientnet', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_efficientnet_gn(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_test_efficientnet( |
|
'test_efficientnet_gn', pretrained=pretrained, norm_layer=partial(GroupNormAct, group_size=8), **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_efficientnet_ln(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_test_efficientnet( |
|
'test_efficientnet_ln', pretrained=pretrained, norm_layer=LayerNormAct2d, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_efficientnet_evos(pretrained=False, **kwargs) -> EfficientNet: |
|
model = _gen_test_efficientnet( |
|
'test_efficientnet_evos', pretrained=pretrained, norm_layer=partial(EvoNorm2dS0, group_size=8), **kwargs) |
|
return model |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'tf_efficientnet_b0_ap': 'tf_efficientnet_b0.ap_in1k', |
|
'tf_efficientnet_b1_ap': 'tf_efficientnet_b1.ap_in1k', |
|
'tf_efficientnet_b2_ap': 'tf_efficientnet_b2.ap_in1k', |
|
'tf_efficientnet_b3_ap': 'tf_efficientnet_b3.ap_in1k', |
|
'tf_efficientnet_b4_ap': 'tf_efficientnet_b4.ap_in1k', |
|
'tf_efficientnet_b5_ap': 'tf_efficientnet_b5.ap_in1k', |
|
'tf_efficientnet_b6_ap': 'tf_efficientnet_b6.ap_in1k', |
|
'tf_efficientnet_b7_ap': 'tf_efficientnet_b7.ap_in1k', |
|
'tf_efficientnet_b8_ap': 'tf_efficientnet_b8.ap_in1k', |
|
'tf_efficientnet_b0_ns': 'tf_efficientnet_b0.ns_jft_in1k', |
|
'tf_efficientnet_b1_ns': 'tf_efficientnet_b1.ns_jft_in1k', |
|
'tf_efficientnet_b2_ns': 'tf_efficientnet_b2.ns_jft_in1k', |
|
'tf_efficientnet_b3_ns': 'tf_efficientnet_b3.ns_jft_in1k', |
|
'tf_efficientnet_b4_ns': 'tf_efficientnet_b4.ns_jft_in1k', |
|
'tf_efficientnet_b5_ns': 'tf_efficientnet_b5.ns_jft_in1k', |
|
'tf_efficientnet_b6_ns': 'tf_efficientnet_b6.ns_jft_in1k', |
|
'tf_efficientnet_b7_ns': 'tf_efficientnet_b7.ns_jft_in1k', |
|
'tf_efficientnet_l2_ns_475': 'tf_efficientnet_l2.ns_jft_in1k_475', |
|
'tf_efficientnet_l2_ns': 'tf_efficientnet_l2.ns_jft_in1k', |
|
'tf_efficientnetv2_s_in21ft1k': 'tf_efficientnetv2_s.in21k_ft_in1k', |
|
'tf_efficientnetv2_m_in21ft1k': 'tf_efficientnetv2_m.in21k_ft_in1k', |
|
'tf_efficientnetv2_l_in21ft1k': 'tf_efficientnetv2_l.in21k_ft_in1k', |
|
'tf_efficientnetv2_xl_in21ft1k': 'tf_efficientnetv2_xl.in21k_ft_in1k', |
|
'tf_efficientnetv2_s_in21k': 'tf_efficientnetv2_s.in21k', |
|
'tf_efficientnetv2_m_in21k': 'tf_efficientnetv2_m.in21k', |
|
'tf_efficientnetv2_l_in21k': 'tf_efficientnetv2_l.in21k', |
|
'tf_efficientnetv2_xl_in21k': 'tf_efficientnetv2_xl.in21k', |
|
'efficientnet_b2a': 'efficientnet_b2', |
|
'efficientnet_b3a': 'efficientnet_b3', |
|
'mnasnet_a1': 'semnasnet_100', |
|
'mnasnet_b1': 'mnasnet_100', |
|
}) |
|
|