|
"""Run tests for all models |
|
|
|
Tests that run on CI should have a specific marker, e.g. @pytest.mark.base. This |
|
marker is used to parallelize the CI runs, with one runner for each marker. |
|
|
|
If new tests are added, ensure that they use one of the existing markers |
|
(documented in pyproject.toml > pytest > markers) or that a new marker is added |
|
for this set of tests. If using a new marker, adjust the test matrix in |
|
.github/workflows/tests.yml to run tests with this new marker, otherwise the |
|
tests will be skipped on CI. |
|
|
|
""" |
|
|
|
import pytest |
|
import torch |
|
import platform |
|
import os |
|
import fnmatch |
|
|
|
_IS_MAC = platform.system() == 'Darwin' |
|
|
|
try: |
|
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer |
|
has_fx_feature_extraction = True |
|
except ImportError: |
|
has_fx_feature_extraction = False |
|
|
|
import timm |
|
from timm import list_models, list_pretrained, create_model, set_scriptable, get_pretrained_cfg_value |
|
from timm.layers import Format, get_spatial_dim, get_channel_dim |
|
from timm.models import get_notrace_modules, get_notrace_functions |
|
|
|
import importlib |
|
import os |
|
|
|
torch_backend = os.environ.get('TORCH_BACKEND') |
|
if torch_backend is not None: |
|
importlib.import_module(torch_backend) |
|
torch_device = os.environ.get('TORCH_DEVICE', 'cpu') |
|
timeout = os.environ.get('TIMEOUT') |
|
timeout120 = int(timeout) if timeout else 120 |
|
timeout240 = int(timeout) if timeout else 240 |
|
timeout360 = int(timeout) if timeout else 360 |
|
|
|
if hasattr(torch._C, '_jit_set_profiling_executor'): |
|
|
|
|
|
torch._C._jit_set_profiling_executor(True) |
|
torch._C._jit_set_profiling_mode(False) |
|
|
|
|
|
FEAT_INTER_FILTERS = [ |
|
'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos', |
|
'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2', |
|
'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet', |
|
'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2' |
|
] |
|
|
|
|
|
NON_STD_FILTERS = [ |
|
'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*', |
|
'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*', |
|
'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*', 'sam_hiera*', |
|
'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*', 'hiera_*', 'vitamin*', 'test_vit*', |
|
] |
|
NUM_NON_STD = len(NON_STD_FILTERS) |
|
|
|
|
|
if 'GITHUB_ACTIONS' in os.environ: |
|
|
|
EXCLUDE_FILTERS = [ |
|
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm', |
|
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*', |
|
'*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', '*huge*', '*giant*', '*gigantic*', |
|
'*enormous*', 'maxvit_xlarge*', 'regnet*1280', 'regnet*2560'] |
|
NON_STD_EXCLUDE_FILTERS = ['*huge*', '*giant*', '*gigantic*', '*enormous*'] |
|
else: |
|
EXCLUDE_FILTERS = ['*enormous*'] |
|
NON_STD_EXCLUDE_FILTERS = ['*gigantic*', '*enormous*'] |
|
|
|
EXCLUDE_JIT_FILTERS = ['hiera_*'] |
|
|
|
TARGET_FWD_SIZE = MAX_FWD_SIZE = 384 |
|
TARGET_BWD_SIZE = 128 |
|
MAX_BWD_SIZE = 320 |
|
MAX_FWD_OUT_SIZE = 448 |
|
TARGET_JIT_SIZE = 128 |
|
MAX_JIT_SIZE = 320 |
|
TARGET_FFEAT_SIZE = 96 |
|
MAX_FFEAT_SIZE = 256 |
|
TARGET_FWD_FX_SIZE = 128 |
|
MAX_FWD_FX_SIZE = 256 |
|
TARGET_BWD_FX_SIZE = 128 |
|
MAX_BWD_FX_SIZE = 224 |
|
|
|
|
|
def _get_input_size(model=None, model_name='', target=None): |
|
if model is None: |
|
assert model_name, "One of model or model_name must be provided" |
|
input_size = get_pretrained_cfg_value(model_name, 'input_size') |
|
fixed_input_size = get_pretrained_cfg_value(model_name, 'fixed_input_size') |
|
min_input_size = get_pretrained_cfg_value(model_name, 'min_input_size') |
|
else: |
|
default_cfg = model.default_cfg |
|
input_size = default_cfg['input_size'] |
|
fixed_input_size = default_cfg.get('fixed_input_size', None) |
|
min_input_size = default_cfg.get('min_input_size', None) |
|
assert input_size is not None |
|
|
|
if fixed_input_size: |
|
return input_size |
|
|
|
if min_input_size: |
|
if target and max(input_size) > target: |
|
input_size = min_input_size |
|
else: |
|
if target and max(input_size) > target: |
|
input_size = tuple([min(x, target) for x in input_size]) |
|
return input_size |
|
|
|
|
|
@pytest.mark.base |
|
@pytest.mark.timeout(timeout240) |
|
@pytest.mark.parametrize('model_name', list_pretrained('test_*')) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_inference(model_name, batch_size): |
|
"""Run a single forward pass with each model""" |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download |
|
import tempfile |
|
import safetensors |
|
|
|
model = create_model(model_name, pretrained=True) |
|
model.eval() |
|
pp = timm.data.create_transform(**timm.data.resolve_data_config(model=model)) |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
snapshot_download( |
|
repo_id='timm/' + model_name, repo_type='model', local_dir=temp_dir, allow_patterns='test/*' |
|
) |
|
rand_tensors = safetensors.torch.load_file(os.path.join(temp_dir, 'test', 'rand_tensors.safetensors')) |
|
owl_tensors = safetensors.torch.load_file(os.path.join(temp_dir, 'test', 'owl_tensors.safetensors')) |
|
test_owl = Image.open(os.path.join(temp_dir, 'test', 'test_owl.jpg')) |
|
|
|
with torch.no_grad(): |
|
rand_output = model(rand_tensors['input']) |
|
rand_features = model.forward_features(rand_tensors['input']) |
|
rand_pre_logits = model.forward_head(rand_features, pre_logits=True) |
|
assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-4), 'rand output does not match' |
|
assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-4), 'rand features do not match' |
|
assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-4), 'rand pre_logits do not match' |
|
|
|
def _test_owl(owl_input, tol=(1e-3, 1e-4)): |
|
owl_output = model(owl_input) |
|
owl_features = model.forward_features(owl_input) |
|
owl_pre_logits = model.forward_head(owl_features.clone(), pre_logits=True) |
|
assert owl_output.softmax(1).argmax(1) == 24 |
|
assert torch.allclose(owl_output, owl_tensors['output'], rtol=tol[0], atol=tol[1]), 'owl output does not match' |
|
assert torch.allclose(owl_features, owl_tensors['features'], rtol=tol[0], atol=tol[1]), 'owl output does not match' |
|
assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=tol[0], atol=tol[1]), 'owl output does not match' |
|
|
|
_test_owl(owl_tensors['input']) |
|
_test_owl(pp(test_owl).unsqueeze(0), tol=(1e-1, 1e-1)) |
|
|
|
|
|
@pytest.mark.base |
|
@pytest.mark.timeout(timeout120) |
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward(model_name, batch_size): |
|
"""Run a single forward pass with each model""" |
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE) |
|
if max(input_size) > MAX_FWD_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
inputs = torch.randn((batch_size, *input_size)) |
|
inputs = inputs.to(torch_device) |
|
model.to(torch_device) |
|
outputs = model(inputs) |
|
|
|
assert outputs.shape[0] == batch_size |
|
assert not torch.isnan(outputs).any(), 'Output included NaNs' |
|
|
|
|
|
@pytest.mark.base |
|
@pytest.mark.timeout(timeout120) |
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True)) |
|
@pytest.mark.parametrize('batch_size', [2]) |
|
def test_model_backward(model_name, batch_size): |
|
"""Run a single forward pass with each model""" |
|
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE) |
|
if max(input_size) > MAX_BWD_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42) |
|
num_params = sum([x.numel() for x in model.parameters()]) |
|
model.train() |
|
|
|
inputs = torch.randn((batch_size, *input_size)) |
|
inputs = inputs.to(torch_device) |
|
model.to(torch_device) |
|
outputs = model(inputs) |
|
if isinstance(outputs, tuple): |
|
outputs = torch.cat(outputs) |
|
outputs.mean().backward() |
|
for n, x in model.named_parameters(): |
|
assert x.grad is not None, f'No gradient for {n}' |
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None]) |
|
|
|
assert outputs.shape[-1] == 42 |
|
assert num_params == num_grad, 'Some parameters are missing gradients' |
|
assert not torch.isnan(outputs).any(), 'Output included NaNs' |
|
|
|
|
|
|
|
EARLY_POOL_MODELS = ( |
|
timm.models.EfficientVit, |
|
timm.models.EfficientVitLarge, |
|
timm.models.HighPerfGpuNet, |
|
timm.models.GhostNet, |
|
timm.models.MetaNeXt, |
|
timm.models.MobileNetV3, |
|
timm.models.RepGhostNet, |
|
timm.models.VGG, |
|
) |
|
|
|
@pytest.mark.cfg |
|
@pytest.mark.timeout(timeout360) |
|
@pytest.mark.parametrize('model_name', list_models( |
|
exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_default_cfgs(model_name, batch_size): |
|
"""Run a single forward pass with each model""" |
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
model.to(torch_device) |
|
assert getattr(model, 'num_classes') >= 0 |
|
assert getattr(model, 'num_features') > 0 |
|
assert getattr(model, 'head_hidden_size') > 0 |
|
state_dict = model.state_dict() |
|
cfg = model.default_cfg |
|
|
|
pool_size = cfg['pool_size'] |
|
input_size = model.default_cfg['input_size'] |
|
output_fmt = getattr(model, 'output_fmt', 'NCHW') |
|
spatial_axis = get_spatial_dim(output_fmt) |
|
assert len(spatial_axis) == 2 |
|
feat_axis = get_channel_dim(output_fmt) |
|
|
|
if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \ |
|
not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]): |
|
|
|
input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size]) |
|
input_tensor = torch.randn((batch_size, *input_size), device=torch_device) |
|
|
|
|
|
outputs = model.forward_features(input_tensor) |
|
outputs_pre = model.forward_head(outputs, pre_logits=True) |
|
assert outputs.shape[spatial_axis[0]] == pool_size[0], f'unpooled feature shape {outputs.shape} != config' |
|
assert outputs.shape[spatial_axis[1]] == pool_size[1], f'unpooled feature shape {outputs.shape} != config' |
|
assert outputs.shape[feat_axis] == model.num_features, f'unpooled feature dim {outputs.shape[feat_axis]} != model.num_features {model.num_features}' |
|
assert outputs_pre.shape[1] == model.head_hidden_size, f'pre_logits feature dim {outputs_pre.shape[1]} != model.head_hidden_size {model.head_hidden_size}' |
|
|
|
|
|
model.reset_classifier(0) |
|
model.to(torch_device) |
|
outputs = model.forward(input_tensor) |
|
assert len(outputs.shape) == 2 |
|
assert outputs.shape[1] == model.head_hidden_size, f'feature dim w/ removed classifier {outputs.shape[1]} != model.head_hidden_size {model.head_hidden_size}' |
|
assert outputs.shape == outputs_pre.shape, f'output shape of pre_logits {outputs_pre.shape} does not match reset_head(0) {outputs.shape}' |
|
|
|
|
|
if not isinstance(model, EARLY_POOL_MODELS): |
|
model.reset_classifier(0, '') |
|
model.to(torch_device) |
|
outputs = model.forward(input_tensor) |
|
assert len(outputs.shape) == 4 |
|
assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1] |
|
|
|
|
|
if 'pruned' not in model_name and not isinstance(model, EARLY_POOL_MODELS): |
|
model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval() |
|
model.to(torch_device) |
|
outputs = model.forward(input_tensor) |
|
assert len(outputs.shape) == 4 |
|
assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1] |
|
|
|
|
|
if cfg.get('num_classes', None): |
|
classifier = cfg['classifier'] |
|
if not isinstance(classifier, (tuple, list)): |
|
classifier = classifier, |
|
for c in classifier: |
|
assert c + ".weight" in state_dict.keys(), f'{c} not in model params' |
|
|
|
|
|
first_conv = cfg['first_conv'] |
|
if isinstance(first_conv, str): |
|
first_conv = (first_conv,) |
|
assert isinstance(first_conv, (tuple, list)) |
|
for fc in first_conv: |
|
assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params' |
|
|
|
|
|
@pytest.mark.cfg |
|
@pytest.mark.timeout(timeout360) |
|
@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS, include_tags=True)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_default_cfgs_non_std(model_name, batch_size): |
|
"""Run a single forward pass with each model""" |
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
model.to(torch_device) |
|
assert getattr(model, 'num_classes') >= 0 |
|
assert getattr(model, 'num_features') > 0 |
|
assert getattr(model, 'head_hidden_size') > 0 |
|
state_dict = model.state_dict() |
|
cfg = model.default_cfg |
|
|
|
input_size = _get_input_size(model=model) |
|
if max(input_size) > 320: |
|
pytest.skip("Fixed input size model > limit.") |
|
|
|
input_tensor = torch.randn((batch_size, *input_size), device=torch_device) |
|
feat_dim = getattr(model, 'feature_dim', None) |
|
|
|
outputs = model.forward_features(input_tensor) |
|
outputs_pre = model.forward_head(outputs, pre_logits=True) |
|
if isinstance(outputs, (tuple, list)): |
|
|
|
pass |
|
else: |
|
if feat_dim is None: |
|
feat_dim = -1 if outputs.ndim == 3 else 1 |
|
assert outputs.shape[feat_dim] == model.num_features |
|
assert outputs_pre.shape[1] == model.head_hidden_size |
|
|
|
|
|
model.reset_classifier(0) |
|
model.to(torch_device) |
|
outputs = model.forward(input_tensor) |
|
if isinstance(outputs, (tuple, list)): |
|
outputs = outputs[0] |
|
if feat_dim is None: |
|
feat_dim = -1 if outputs.ndim == 3 else 1 |
|
assert outputs.shape[feat_dim] == model.head_hidden_size, 'pooled num_features != config' |
|
assert outputs.shape == outputs_pre.shape |
|
|
|
model = create_model(model_name, pretrained=False, num_classes=0).eval() |
|
model.to(torch_device) |
|
outputs = model.forward(input_tensor) |
|
if isinstance(outputs, (tuple, list)): |
|
outputs = outputs[0] |
|
if feat_dim is None: |
|
feat_dim = -1 if outputs.ndim == 3 else 1 |
|
assert outputs.shape[feat_dim] == model.num_features |
|
|
|
|
|
if cfg.get('num_classes', None): |
|
classifier = cfg['classifier'] |
|
if not isinstance(classifier, (tuple, list)): |
|
classifier = classifier, |
|
for c in classifier: |
|
assert c + ".weight" in state_dict.keys(), f'{c} not in model params' |
|
|
|
|
|
first_conv = cfg['first_conv'] |
|
if isinstance(first_conv, str): |
|
first_conv = (first_conv,) |
|
assert isinstance(first_conv, (tuple, list)) |
|
for fc in first_conv: |
|
assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params' |
|
|
|
|
|
if 'GITHUB_ACTIONS' not in os.environ: |
|
@pytest.mark.timeout(240) |
|
@pytest.mark.parametrize('model_name', list_models(pretrained=True)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_load_pretrained(model_name, batch_size): |
|
"""Create that pretrained weights load, verify support for in_chans != 3 while doing so.""" |
|
in_chans = 3 if 'pruned' in model_name else 1 |
|
create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5) |
|
create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0) |
|
|
|
@pytest.mark.timeout(240) |
|
@pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_features_pretrained(model_name, batch_size): |
|
"""Create that pretrained weights load when features_only==True.""" |
|
create_model(model_name, pretrained=True, features_only=True) |
|
|
|
|
|
@pytest.mark.torchscript |
|
@pytest.mark.timeout(timeout120) |
|
@pytest.mark.parametrize( |
|
'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_torchscript(model_name, batch_size): |
|
"""Run a single forward pass with each model""" |
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) |
|
if max(input_size) > MAX_JIT_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
|
|
with set_scriptable(True): |
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
|
|
model = torch.jit.script(model) |
|
model.to(torch_device) |
|
outputs = model(torch.randn((batch_size, *input_size))) |
|
|
|
assert outputs.shape[0] == batch_size |
|
assert not torch.isnan(outputs).any(), 'Output included NaNs' |
|
|
|
|
|
EXCLUDE_FEAT_FILTERS = [ |
|
'*pruned*', |
|
] + NON_STD_FILTERS |
|
if 'GITHUB_ACTIONS' in os.environ: |
|
|
|
EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d'] |
|
|
|
|
|
@pytest.mark.features |
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_features(model_name, batch_size): |
|
"""Run a single forward pass with each model in feature extraction mode""" |
|
model = create_model(model_name, pretrained=False, features_only=True) |
|
model.eval() |
|
expected_channels = model.feature_info.channels() |
|
expected_reduction = model.feature_info.reduction() |
|
assert len(expected_channels) >= 3 |
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) |
|
if max(input_size) > MAX_FFEAT_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
output_fmt = getattr(model, 'output_fmt', 'NCHW') |
|
feat_axis = get_channel_dim(output_fmt) |
|
spatial_axis = get_spatial_dim(output_fmt) |
|
import math |
|
|
|
outputs = model(torch.randn((batch_size, *input_size))) |
|
assert len(expected_channels) == len(outputs) |
|
spatial_size = input_size[-2:] |
|
for e, r, o in zip(expected_channels, expected_reduction, outputs): |
|
assert e == o.shape[feat_axis] |
|
assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 |
|
assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 |
|
assert o.shape[0] == batch_size |
|
assert not torch.isnan(o).any() |
|
|
|
|
|
@pytest.mark.features |
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*'])) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_intermediates_features(model_name, batch_size): |
|
"""Run a single forward pass with each model in feature extraction mode""" |
|
model = create_model(model_name, pretrained=False, features_only=True, feature_cls='getter') |
|
model.eval() |
|
expected_channels = model.feature_info.channels() |
|
expected_reduction = model.feature_info.reduction() |
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) |
|
if max(input_size) > MAX_FFEAT_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
output_fmt = getattr(model, 'output_fmt', 'NCHW') |
|
feat_axis = get_channel_dim(output_fmt) |
|
spatial_axis = get_spatial_dim(output_fmt) |
|
import math |
|
|
|
outputs = model(torch.randn((batch_size, *input_size))) |
|
assert len(expected_channels) == len(outputs) |
|
spatial_size = input_size[-2:] |
|
for e, r, o in zip(expected_channels, expected_reduction, outputs): |
|
print(o.shape) |
|
assert e == o.shape[feat_axis] |
|
assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 |
|
assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 |
|
assert o.shape[0] == batch_size |
|
assert not torch.isnan(o).any() |
|
|
|
|
|
@pytest.mark.features |
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*'])) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_intermediates(model_name, batch_size): |
|
"""Run a single forward pass with each model in feature extraction mode""" |
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
feature_info = timm.models.FeatureInfo(model.feature_info, len(model.feature_info)) |
|
expected_channels = feature_info.channels() |
|
expected_reduction = feature_info.reduction() |
|
assert len(expected_channels) >= 3 |
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) |
|
if max(input_size) > MAX_FFEAT_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
output_fmt = 'NCHW' |
|
feat_axis = get_channel_dim(output_fmt) |
|
spatial_axis = get_spatial_dim(output_fmt) |
|
import math |
|
|
|
output, intermediates = model.forward_intermediates( |
|
torch.randn((batch_size, *input_size)), |
|
output_fmt=output_fmt, |
|
) |
|
assert len(expected_channels) == len(intermediates) |
|
spatial_size = input_size[-2:] |
|
for e, r, o in zip(expected_channels, expected_reduction, intermediates): |
|
assert e == o.shape[feat_axis] |
|
assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 |
|
assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 |
|
assert o.shape[0] == batch_size |
|
assert not torch.isnan(o).any() |
|
|
|
|
|
def _create_fx_model(model, train=False): |
|
|
|
|
|
|
|
tracer_kwargs = dict( |
|
leaf_modules=get_notrace_modules(), |
|
autowrap_functions=get_notrace_functions(), |
|
|
|
param_shapes_constant=True |
|
) |
|
train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs) |
|
|
|
eval_return_nodes = [eval_nodes[-1]] |
|
train_return_nodes = [train_nodes[-1]] |
|
if train: |
|
tracer = NodePathTracer(**tracer_kwargs) |
|
graph = tracer.trace(model) |
|
graph_nodes = list(reversed(graph.nodes)) |
|
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()] |
|
graph_node_names = [n.name for n in graph_nodes] |
|
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names] |
|
train_return_nodes = [train_nodes[ix] for ix in output_node_indices] |
|
|
|
fx_model = create_feature_extractor( |
|
model, |
|
train_return_nodes=train_return_nodes, |
|
eval_return_nodes=eval_return_nodes, |
|
tracer_kwargs=tracer_kwargs, |
|
) |
|
return fx_model |
|
|
|
|
|
EXCLUDE_FX_FILTERS = ['vit_gi*', 'hiera*'] |
|
|
|
if 'GITHUB_ACTIONS' in os.environ: |
|
EXCLUDE_FX_FILTERS += [ |
|
'beit_large*', |
|
'mixer_l*', |
|
'*nfnet_f2*', |
|
'*resnext101_32x32d', |
|
'resnetv2_152x2*', |
|
'resmlp_big*', |
|
'resnetrs270', |
|
'swin_large*', |
|
'vgg*', |
|
'vit_large*', |
|
'vit_base_patch8*', |
|
'xcit_large*', |
|
] |
|
|
|
|
|
@pytest.mark.fxforward |
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_fx(model_name, batch_size): |
|
""" |
|
Symbolically trace each model and run single forward pass through the resulting GraphModule |
|
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module |
|
""" |
|
if not has_fx_feature_extraction: |
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") |
|
|
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
|
|
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE) |
|
if max(input_size) > MAX_FWD_FX_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
with torch.no_grad(): |
|
inputs = torch.randn((batch_size, *input_size)) |
|
outputs = model(inputs) |
|
if isinstance(outputs, tuple): |
|
outputs = torch.cat(outputs) |
|
|
|
model = _create_fx_model(model) |
|
fx_outputs = tuple(model(inputs).values()) |
|
if isinstance(fx_outputs, tuple): |
|
fx_outputs = torch.cat(fx_outputs) |
|
|
|
assert torch.all(fx_outputs == outputs) |
|
assert outputs.shape[0] == batch_size |
|
assert not torch.isnan(outputs).any(), 'Output included NaNs' |
|
|
|
|
|
@pytest.mark.fxbackward |
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize('model_name', list_models( |
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True)) |
|
@pytest.mark.parametrize('batch_size', [2]) |
|
def test_model_backward_fx(model_name, batch_size): |
|
"""Symbolically trace each model and run single backward pass through the resulting GraphModule""" |
|
if not has_fx_feature_extraction: |
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") |
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE) |
|
if max(input_size) > MAX_BWD_FX_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
|
|
model = create_model(model_name, pretrained=False, num_classes=42) |
|
model.train() |
|
num_params = sum([x.numel() for x in model.parameters()]) |
|
if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6: |
|
pytest.skip("Skipping FX backward test on model with more than 100M params.") |
|
|
|
model = _create_fx_model(model, train=True) |
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values()) |
|
if isinstance(outputs, tuple): |
|
outputs = torch.cat(outputs) |
|
outputs.mean().backward() |
|
for n, x in model.named_parameters(): |
|
assert x.grad is not None, f'No gradient for {n}' |
|
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None]) |
|
|
|
assert outputs.shape[-1] == 42 |
|
assert num_params == num_grad, 'Some parameters are missing gradients' |
|
assert not torch.isnan(outputs).any(), 'Output included NaNs' |
|
|
|
|
|
if 'GITHUB_ACTIONS' not in os.environ: |
|
|
|
|
|
|
|
EXCLUDE_FX_JIT_FILTERS = [ |
|
'deit_*_distilled_patch16_224', |
|
'levit*', |
|
'pit_*_distilled_224', |
|
] + EXCLUDE_FX_FILTERS |
|
|
|
|
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize( |
|
'model_name', list_models( |
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True)) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_fx_torchscript(model_name, batch_size): |
|
"""Symbolically trace each model, script it, and run single forward pass""" |
|
if not has_fx_feature_extraction: |
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") |
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) |
|
if max(input_size) > MAX_JIT_SIZE: |
|
pytest.skip("Fixed input size model > limit.") |
|
|
|
with set_scriptable(True): |
|
model = create_model(model_name, pretrained=False) |
|
model.eval() |
|
|
|
model = torch.jit.script(_create_fx_model(model)) |
|
with torch.no_grad(): |
|
outputs = tuple(model(torch.randn((batch_size, *input_size))).values()) |
|
if isinstance(outputs, tuple): |
|
outputs = torch.cat(outputs) |
|
|
|
assert outputs.shape[0] == batch_size |
|
assert not torch.isnan(outputs).any(), 'Output included NaNs' |
|
|
|
@pytest.mark.timeout(120) |
|
@pytest.mark.parametrize('model_name', ["regnetx_002"]) |
|
@pytest.mark.parametrize('batch_size', [1]) |
|
def test_model_forward_torchscript_with_features_fx(model_name, batch_size): |
|
"""Create a model with feature extraction based on fx, script it, and run |
|
a single forward pass""" |
|
if not has_fx_feature_extraction: |
|
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") |
|
|
|
allowed_models = list_models( |
|
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, |
|
name_matches_cfg=True |
|
) |
|
assert model_name in allowed_models, f"{model_name=} not supported for this test" |
|
|
|
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) |
|
assert max(input_size) <= MAX_JIT_SIZE, "Fixed input size model > limit. Pick a different model to run this test" |
|
|
|
with set_scriptable(True): |
|
model = create_model(model_name, pretrained=False, features_only=True, feature_cfg={"feature_cls": "fx"}) |
|
model.eval() |
|
|
|
model = torch.jit.script(model) |
|
with torch.no_grad(): |
|
outputs = model(torch.randn((batch_size, *input_size))) |
|
|
|
assert isinstance(outputs, list) |
|
|
|
for tensor in outputs: |
|
assert tensor.shape[0] == batch_size |
|
assert not torch.isnan(tensor).any(), 'Output included NaNs' |