|
# RegNetX |
|
|
|
**RegNetX** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): |
|
|
|
\\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\) |
|
|
|
For **RegNetX** we have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier). |
|
|
|
## How do I use this model on an image? |
|
|
|
To load a pretrained model: |
|
|
|
```py |
|
>>> import timm |
|
>>> model = timm.create_model('regnetx_002', pretrained=True) |
|
>>> model.eval() |
|
``` |
|
|
|
To load and preprocess the image: |
|
|
|
```py |
|
>>> import urllib |
|
>>> from PIL import Image |
|
>>> from timm.data import resolve_data_config |
|
>>> from timm.data.transforms_factory import create_transform |
|
|
|
>>> config = resolve_data_config({}, model=model) |
|
>>> transform = create_transform(**config) |
|
|
|
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") |
|
>>> urllib.request.urlretrieve(url, filename) |
|
>>> img = Image.open(filename).convert('RGB') |
|
>>> tensor = transform(img).unsqueeze(0) |
|
``` |
|
|
|
To get the model predictions: |
|
|
|
```py |
|
>>> import torch |
|
>>> with torch.no_grad(): |
|
... out = model(tensor) |
|
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) |
|
>>> print(probabilities.shape) |
|
>>> |
|
``` |
|
|
|
To get the top-5 predictions class names: |
|
|
|
```py |
|
>>> |
|
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") |
|
>>> urllib.request.urlretrieve(url, filename) |
|
>>> with open("imagenet_classes.txt", "r") as f: |
|
... categories = [s.strip() for s in f.readlines()] |
|
|
|
>>> |
|
>>> top5_prob, top5_catid = torch.topk(probabilities, 5) |
|
>>> for i in range(top5_prob.size(0)): |
|
... print(categories[top5_catid[i]], top5_prob[i].item()) |
|
>>> |
|
>>> |
|
``` |
|
|
|
Replace the model name with the variant you want to use, e.g. `regnetx_002`. You can find the IDs in the model summaries at the top of this page. |
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. |
|
|
|
## How do I finetune this model? |
|
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer). |
|
|
|
```py |
|
>>> model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) |
|
``` |
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training |
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. |
|
|
|
## How do I train this model? |
|
|
|
You can follow the [timm recipe scripts](../scripts) for training a new model afresh. |
|
|
|
## Citation |
|
|
|
```BibTeX |
|
@misc{radosavovic2020designing, |
|
title={Designing Network Design Spaces}, |
|
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, |
|
year={2020}, |
|
eprint={2003.13678}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
Type: model-index |
|
Collections: |
|
- Name: RegNetX |
|
Paper: |
|
Title: Designing Network Design Spaces |
|
URL: https://paperswithcode.com/paper/designing-network-design-spaces |
|
Models: |
|
- Name: regnetx_002 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 255276032 |
|
Parameters: 2680000 |
|
File Size: 10862199 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_002 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 1024 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L337 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 68.75% |
|
Top 5 Accuracy: 88.56% |
|
- Name: regnetx_004 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 510619136 |
|
Parameters: 5160000 |
|
File Size: 20841309 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_004 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 1024 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L343 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 72.39% |
|
Top 5 Accuracy: 90.82% |
|
- Name: regnetx_006 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 771659136 |
|
Parameters: 6200000 |
|
File Size: 24965172 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_006 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 1024 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L349 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 73.84% |
|
Top 5 Accuracy: 91.68% |
|
- Name: regnetx_008 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 1027038208 |
|
Parameters: 7260000 |
|
File Size: 29235944 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_008 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 1024 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L355 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 75.05% |
|
Top 5 Accuracy: 92.34% |
|
- Name: regnetx_016 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 2059337856 |
|
Parameters: 9190000 |
|
File Size: 36988158 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_016 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 1024 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L361 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 76.95% |
|
Top 5 Accuracy: 93.43% |
|
- Name: regnetx_032 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 4082555904 |
|
Parameters: 15300000 |
|
File Size: 61509573 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_032 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 512 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L367 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.15% |
|
Top 5 Accuracy: 94.09% |
|
- Name: regnetx_040 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 5095167744 |
|
Parameters: 22120000 |
|
File Size: 88844824 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_040 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 512 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L373 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.48% |
|
Top 5 Accuracy: 94.25% |
|
- Name: regnetx_064 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 8303405824 |
|
Parameters: 26210000 |
|
File Size: 105184854 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_064 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 512 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L379 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 79.06% |
|
Top 5 Accuracy: 94.47% |
|
- Name: regnetx_080 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 10276726784 |
|
Parameters: 39570000 |
|
File Size: 158720042 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_080 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 512 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L385 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 79.21% |
|
Top 5 Accuracy: 94.55% |
|
- Name: regnetx_120 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 15536378368 |
|
Parameters: 46110000 |
|
File Size: 184866342 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_120 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 512 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L391 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 79.61% |
|
Top 5 Accuracy: 94.73% |
|
- Name: regnetx_160 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 20491740672 |
|
Parameters: 54280000 |
|
File Size: 217623862 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_160 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 512 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L397 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 79.84% |
|
Top 5 Accuracy: 94.82% |
|
- Name: regnetx_320 |
|
In Collection: RegNetX |
|
Metadata: |
|
FLOPs: 40798958592 |
|
Parameters: 107810000 |
|
File Size: 431962133 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Global Average Pooling |
|
- Grouped Convolution |
|
- ReLU |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x NVIDIA V100 GPUs |
|
ID: regnetx_320 |
|
Epochs: 100 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 5.0e-05 |
|
Interpolation: bicubic |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L403 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 80.25% |
|
Top 5 Accuracy: 95.03% |
|
--> |
|
|