meg's picture
meg HF staff
Add files using upload-large-folder tool
847619e verified
raw
history blame
2.06 kB
# Installation
Before you start, you'll need to setup your environment and install the appropriate packages. `timm` is tested on **Python 3+**.
## Virtual Environment
You should install `timm` in a [virtual environment](https://docs.python.org/3/library/venv.html) to keep things tidy and avoid dependency conflicts.
1. Create and navigate to your project directory:
```bash
mkdir ~/my-project
cd ~/my-project
```
2. Start a virtual environment inside your directory:
```bash
python -m venv .env
```
3. Activate and deactivate the virtual environment with the following commands:
```bash
# Activate the virtual environment
source .env/bin/activate
# Deactivate the virtual environment
source .env/bin/deactivate
```
Once you've created your virtual environment, you can install `timm` in it.
## Using pip
The most straightforward way to install `timm` is with pip:
```bash
pip install timm
```
Alternatively, you can install `timm` from GitHub directly to get the latest, bleeding-edge version:
```bash
pip install git+https://github.com/rwightman/pytorch-image-models.git
```
Run the following command to check if `timm` has been properly installed:
```bash
python -c "from timm import list_models; print(list_models(pretrained=True)[:5])"
```
This command lists the first five pretrained models available in `timm` (which are sorted alphebetically). You should see the following output:
```python
['adv_inception_v3', 'bat_resnext26ts', 'beit_base_patch16_224', 'beit_base_patch16_224_in22k', 'beit_base_patch16_384']
```
## From Source
Building `timm` from source lets you make changes to the code base. To install from the source, clone the repository and install with the following commands:
```bash
git clone https://github.com/rwightman/pytorch-image-models.git
cd pytorch-image-models
pip install -e .
```
Again, you can check if `timm` was properly installed with the following command:
```bash
python -c "from timm import list_models; print(list_models(pretrained=True)[:5])"
```