|
""" |
|
SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py |
|
|
|
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 |
|
Code: https://github.com/clovaai/AdamP |
|
|
|
Copyright (c) 2020-present NAVER Corp. |
|
MIT license |
|
""" |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.optim.optimizer import Optimizer, required |
|
import math |
|
|
|
from .adamp import projection |
|
|
|
|
|
class SGDP(Optimizer): |
|
def __init__( |
|
self, |
|
params, |
|
lr=required, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
eps=1e-8, |
|
delta=0.1, |
|
wd_ratio=0.1 |
|
): |
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
dampening=dampening, |
|
weight_decay=weight_decay, |
|
nesterov=nesterov, |
|
eps=eps, |
|
delta=delta, |
|
wd_ratio=wd_ratio, |
|
) |
|
super(SGDP, self).__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
weight_decay = group['weight_decay'] |
|
momentum = group['momentum'] |
|
dampening = group['dampening'] |
|
nesterov = group['nesterov'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['momentum'] = torch.zeros_like(p) |
|
|
|
|
|
buf = state['momentum'] |
|
buf.mul_(momentum).add_(grad, alpha=1. - dampening) |
|
if nesterov: |
|
d_p = grad + momentum * buf |
|
else: |
|
d_p = buf |
|
|
|
|
|
wd_ratio = 1. |
|
if len(p.shape) > 1: |
|
d_p, wd_ratio = projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps']) |
|
|
|
|
|
if weight_decay != 0: |
|
p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum)) |
|
|
|
|
|
p.add_(d_p, alpha=-group['lr']) |
|
|
|
return loss |
|
|