|
""" PyTorch LARS / LARC Optimizer |
|
|
|
An implementation of LARS (SGD) + LARC in PyTorch |
|
|
|
Based on: |
|
* PyTorch SGD: https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100 |
|
* NVIDIA APEX LARC: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py |
|
|
|
Additional cleanup and modifications to properly support PyTorch XLA. |
|
|
|
Copyright 2021 Ross Wightman |
|
""" |
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class Lars(Optimizer): |
|
""" LARS for PyTorch |
|
|
|
Paper: `Large batch training of Convolutional Networks` - https://arxiv.org/pdf/1708.03888.pdf |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining parameter groups. |
|
lr (float, optional): learning rate (default: 1.0). |
|
momentum (float, optional): momentum factor (default: 0) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
dampening (float, optional): dampening for momentum (default: 0) |
|
nesterov (bool, optional): enables Nesterov momentum (default: False) |
|
trust_coeff (float): trust coefficient for computing adaptive lr / trust_ratio (default: 0.001) |
|
eps (float): eps for division denominator (default: 1e-8) |
|
trust_clip (bool): enable LARC trust ratio clipping (default: False) |
|
always_adapt (bool): always apply LARS LR adapt, otherwise only when group weight_decay != 0 (default: False) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1.0, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
trust_coeff=0.001, |
|
eps=1e-8, |
|
trust_clip=False, |
|
always_adapt=False, |
|
): |
|
if lr < 0.0: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if momentum < 0.0: |
|
raise ValueError(f"Invalid momentum value: {momentum}") |
|
if weight_decay < 0.0: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
if nesterov and (momentum <= 0 or dampening != 0): |
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
dampening=dampening, |
|
weight_decay=weight_decay, |
|
nesterov=nesterov, |
|
trust_coeff=trust_coeff, |
|
eps=eps, |
|
trust_clip=trust_clip, |
|
always_adapt=always_adapt, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("nesterov", False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
weight_decay = group['weight_decay'] |
|
momentum = group['momentum'] |
|
dampening = group['dampening'] |
|
nesterov = group['nesterov'] |
|
trust_coeff = group['trust_coeff'] |
|
eps = group['eps'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
|
|
|
|
|
|
if weight_decay != 0 or group['always_adapt']: |
|
w_norm = p.norm(2.0) |
|
g_norm = grad.norm(2.0) |
|
trust_ratio = trust_coeff * w_norm / (g_norm + w_norm * weight_decay + eps) |
|
|
|
|
|
trust_ratio = torch.where( |
|
w_norm > 0, |
|
torch.where(g_norm > 0, trust_ratio, 1.0), |
|
1.0, |
|
) |
|
if group['trust_clip']: |
|
trust_ratio = torch.clamp(trust_ratio / group['lr'], max=1.0) |
|
grad.add_(p, alpha=weight_decay) |
|
grad.mul_(trust_ratio) |
|
|
|
|
|
if momentum != 0: |
|
param_state = self.state[p] |
|
if 'momentum_buffer' not in param_state: |
|
buf = param_state['momentum_buffer'] = torch.clone(grad).detach() |
|
else: |
|
buf = param_state['momentum_buffer'] |
|
buf.mul_(momentum).add_(grad, alpha=1. - dampening) |
|
if nesterov: |
|
grad = grad.add(buf, alpha=momentum) |
|
else: |
|
grad = buf |
|
|
|
p.add_(grad, alpha=-group['lr']) |
|
|
|
return loss |