|
""" AdamW Optimizer |
|
Impl copied from PyTorch master |
|
|
|
NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference |
|
""" |
|
import math |
|
from typing import Tuple |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
from ._types import ParamsT |
|
|
|
|
|
class AdamWLegacy(Optimizer): |
|
r"""Implements AdamW algorithm. |
|
|
|
NOTE: This impl has been deprecated in favour of torch.optim.NAdam and remains as a reference |
|
|
|
References: |
|
- Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 |
|
- Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 |
|
- On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ |
|
|
|
Args: |
|
params: iterable of parameters to optimize or dicts defining parameter groups |
|
lr: learning rate |
|
betas: coefficients used for computing running averages of gradient and its square |
|
eps: term added to the denominator to improve numerical stability |
|
weight_decay: weight decay coefficient |
|
amsgrad: whether to use the AMSGrad variant of this algorithm |
|
from the paper `On the Convergence of Adam and Beyond` |
|
caution: apply caution when using AdamW |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: float = 1e-3, |
|
betas: Tuple[float, float] = (0.9, 0.999), |
|
eps: float = 1e-8, |
|
weight_decay: float = 1e-2, |
|
amsgrad: bool = False, |
|
caution: bool = False, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
amsgrad=amsgrad, |
|
caution=caution, |
|
) |
|
super(AdamWLegacy, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(AdamWLegacy, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('amsgrad', False) |
|
group.setdefault('caution', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
|
|
|
|
p.data.mul_(1 - group['lr'] * group['weight_decay']) |
|
|
|
|
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') |
|
amsgrad = group['amsgrad'] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
if amsgrad: |
|
|
|
state['max_exp_avg_sq'] = torch.zeros_like(p) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
if amsgrad: |
|
max_exp_avg_sq = state['max_exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
bias_correction1 = 1 - beta1 ** state['step'] |
|
bias_correction2 = 1 - beta2 ** state['step'] |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
if amsgrad: |
|
|
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
|
|
|
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
else: |
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
|
|
step_size = group['lr'] / bias_correction1 |
|
|
|
if group['caution']: |
|
|
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg = exp_avg * mask |
|
|
|
p.addcdiv_(exp_avg, denom, value=-step_size) |
|
|
|
return loss |
|
|