|
""" ConvNeXt |
|
|
|
Papers: |
|
* `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf |
|
@Article{liu2022convnet, |
|
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, |
|
title = {A ConvNet for the 2020s}, |
|
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year = {2022}, |
|
} |
|
|
|
* `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808 |
|
@article{Woo2023ConvNeXtV2, |
|
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders}, |
|
author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie}, |
|
year={2023}, |
|
journal={arXiv preprint arXiv:2301.00808}, |
|
} |
|
|
|
Original code and weights from: |
|
* https://github.com/facebookresearch/ConvNeXt, original copyright below |
|
* https://github.com/facebookresearch/ConvNeXt-V2, original copyright below |
|
|
|
Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals. |
|
|
|
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD |
|
from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \ |
|
LayerNorm2d, LayerNorm, RmsNorm2d, RmsNorm, create_conv2d, get_act_layer, get_norm_layer, make_divisible, to_ntuple |
|
from timm.layers import NormMlpClassifierHead, ClassifierHead |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._manipulate import named_apply, checkpoint_seq |
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
|
|
|
__all__ = ['ConvNeXt'] |
|
|
|
|
|
class Downsample(nn.Module): |
|
|
|
def __init__(self, in_chs, out_chs, stride=1, dilation=1): |
|
super().__init__() |
|
avg_stride = stride if dilation == 1 else 1 |
|
if stride > 1 or dilation > 1: |
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d |
|
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) |
|
else: |
|
self.pool = nn.Identity() |
|
|
|
if in_chs != out_chs: |
|
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) |
|
else: |
|
self.conv = nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.pool(x) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
""" ConvNeXt Block |
|
There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
|
|
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate |
|
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear |
|
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs: int, |
|
out_chs: Optional[int] = None, |
|
kernel_size: int = 7, |
|
stride: int = 1, |
|
dilation: Union[int, Tuple[int, int]] = (1, 1), |
|
mlp_ratio: float = 4, |
|
conv_mlp: bool = False, |
|
conv_bias: bool = True, |
|
use_grn: bool = False, |
|
ls_init_value: Optional[float] = 1e-6, |
|
act_layer: Union[str, Callable] = 'gelu', |
|
norm_layer: Optional[Callable] = None, |
|
drop_path: float = 0., |
|
): |
|
""" |
|
|
|
Args: |
|
in_chs: Block input channels. |
|
out_chs: Block output channels (same as in_chs if None). |
|
kernel_size: Depthwise convolution kernel size. |
|
stride: Stride of depthwise convolution. |
|
dilation: Tuple specifying input and output dilation of block. |
|
mlp_ratio: MLP expansion ratio. |
|
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. |
|
conv_bias: Apply bias for all convolution (linear) layers. |
|
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) |
|
ls_init_value: Layer-scale init values, layer-scale applied if not None. |
|
act_layer: Activation layer. |
|
norm_layer: Normalization layer (defaults to LN if not specified). |
|
drop_path: Stochastic depth probability. |
|
""" |
|
super().__init__() |
|
out_chs = out_chs or in_chs |
|
dilation = to_ntuple(2)(dilation) |
|
act_layer = get_act_layer(act_layer) |
|
if not norm_layer: |
|
norm_layer = LayerNorm2d if conv_mlp else LayerNorm |
|
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp) |
|
self.use_conv_mlp = conv_mlp |
|
self.conv_dw = create_conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation[0], |
|
depthwise=True, |
|
bias=conv_bias, |
|
) |
|
self.norm = norm_layer(out_chs) |
|
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) |
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None |
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0]) |
|
else: |
|
self.shortcut = nn.Identity() |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv_dw(x) |
|
if self.use_conv_mlp: |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
else: |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
x = x.permute(0, 3, 1, 2) |
|
if self.gamma is not None: |
|
x = x.mul(self.gamma.reshape(1, -1, 1, 1)) |
|
|
|
x = self.drop_path(x) + self.shortcut(shortcut) |
|
return x |
|
|
|
|
|
class ConvNeXtStage(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
kernel_size=7, |
|
stride=2, |
|
depth=2, |
|
dilation=(1, 1), |
|
drop_path_rates=None, |
|
ls_init_value=1.0, |
|
conv_mlp=False, |
|
conv_bias=True, |
|
use_grn=False, |
|
act_layer='gelu', |
|
norm_layer=None, |
|
norm_layer_cl=None |
|
): |
|
super().__init__() |
|
self.grad_checkpointing = False |
|
|
|
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: |
|
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 |
|
pad = 'same' if dilation[1] > 1 else 0 |
|
self.downsample = nn.Sequential( |
|
norm_layer(in_chs), |
|
create_conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=ds_ks, |
|
stride=stride, |
|
dilation=dilation[0], |
|
padding=pad, |
|
bias=conv_bias, |
|
), |
|
) |
|
in_chs = out_chs |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
drop_path_rates = drop_path_rates or [0.] * depth |
|
stage_blocks = [] |
|
for i in range(depth): |
|
stage_blocks.append(ConvNeXtBlock( |
|
in_chs=in_chs, |
|
out_chs=out_chs, |
|
kernel_size=kernel_size, |
|
dilation=dilation[1], |
|
drop_path=drop_path_rates[i], |
|
ls_init_value=ls_init_value, |
|
conv_mlp=conv_mlp, |
|
conv_bias=conv_bias, |
|
use_grn=use_grn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer if conv_mlp else norm_layer_cl, |
|
)) |
|
in_chs = out_chs |
|
self.blocks = nn.Sequential(*stage_blocks) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class ConvNeXt(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
output_stride: int = 32, |
|
depths: Tuple[int, ...] = (3, 3, 9, 3), |
|
dims: Tuple[int, ...] = (96, 192, 384, 768), |
|
kernel_sizes: Union[int, Tuple[int, ...]] = 7, |
|
ls_init_value: Optional[float] = 1e-6, |
|
stem_type: str = 'patch', |
|
patch_size: int = 4, |
|
head_init_scale: float = 1., |
|
head_norm_first: bool = False, |
|
head_hidden_size: Optional[int] = None, |
|
conv_mlp: bool = False, |
|
conv_bias: bool = True, |
|
use_grn: bool = False, |
|
act_layer: Union[str, Callable] = 'gelu', |
|
norm_layer: Optional[Union[str, Callable]] = None, |
|
norm_eps: Optional[float] = None, |
|
drop_rate: float = 0., |
|
drop_path_rate: float = 0., |
|
): |
|
""" |
|
Args: |
|
in_chans: Number of input image channels. |
|
num_classes: Number of classes for classification head. |
|
global_pool: Global pooling type. |
|
output_stride: Output stride of network, one of (8, 16, 32). |
|
depths: Number of blocks at each stage. |
|
dims: Feature dimension at each stage. |
|
kernel_sizes: Depthwise convolution kernel-sizes for each stage. |
|
ls_init_value: Init value for Layer Scale, disabled if None. |
|
stem_type: Type of stem. |
|
patch_size: Stem patch size for patch stem. |
|
head_init_scale: Init scaling value for classifier weights and biases. |
|
head_norm_first: Apply normalization before global pool + head. |
|
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. |
|
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. |
|
conv_bias: Use bias layers w/ all convolutions. |
|
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. |
|
act_layer: Activation layer type. |
|
norm_layer: Normalization layer type. |
|
drop_rate: Head pre-classifier dropout rate. |
|
drop_path_rate: Stochastic depth drop rate. |
|
""" |
|
super().__init__() |
|
assert output_stride in (8, 16, 32) |
|
kernel_sizes = to_ntuple(4)(kernel_sizes) |
|
use_rms = isinstance(norm_layer, str) and norm_layer.startswith('rmsnorm') |
|
if norm_layer is None or use_rms: |
|
norm_layer = RmsNorm2d if use_rms else LayerNorm2d |
|
norm_layer_cl = norm_layer if conv_mlp else (RmsNorm if use_rms else LayerNorm) |
|
if norm_eps is not None: |
|
norm_layer = partial(norm_layer, eps=norm_eps) |
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) |
|
else: |
|
assert conv_mlp,\ |
|
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' |
|
norm_layer = get_norm_layer(norm_layer) |
|
norm_layer_cl = norm_layer |
|
if norm_eps is not None: |
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) |
|
act_layer = get_act_layer(act_layer) |
|
|
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.feature_info = [] |
|
|
|
assert stem_type in ('patch', 'overlap', 'overlap_tiered', 'overlap_act') |
|
if stem_type == 'patch': |
|
|
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias), |
|
norm_layer(dims[0]), |
|
) |
|
stem_stride = patch_size |
|
else: |
|
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0] |
|
self.stem = nn.Sequential(*filter(None, [ |
|
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
act_layer() if 'act' in stem_type else None, |
|
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
norm_layer(dims[0]), |
|
])) |
|
stem_stride = 4 |
|
|
|
self.stages = nn.Sequential() |
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
stages = [] |
|
prev_chs = dims[0] |
|
curr_stride = stem_stride |
|
dilation = 1 |
|
|
|
for i in range(4): |
|
stride = 2 if curr_stride == 2 or i > 0 else 1 |
|
if curr_stride >= output_stride and stride > 1: |
|
dilation *= stride |
|
stride = 1 |
|
curr_stride *= stride |
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
out_chs = dims[i] |
|
stages.append(ConvNeXtStage( |
|
prev_chs, |
|
out_chs, |
|
kernel_size=kernel_sizes[i], |
|
stride=stride, |
|
dilation=(first_dilation, dilation), |
|
depth=depths[i], |
|
drop_path_rates=dp_rates[i], |
|
ls_init_value=ls_init_value, |
|
conv_mlp=conv_mlp, |
|
conv_bias=conv_bias, |
|
use_grn=use_grn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
norm_layer_cl=norm_layer_cl, |
|
)) |
|
prev_chs = out_chs |
|
|
|
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] |
|
self.stages = nn.Sequential(*stages) |
|
self.num_features = self.head_hidden_size = prev_chs |
|
|
|
|
|
|
|
if head_norm_first: |
|
assert not head_hidden_size |
|
self.norm_pre = norm_layer(self.num_features) |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
) |
|
else: |
|
self.norm_pre = nn.Identity() |
|
self.head = NormMlpClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
hidden_size=head_hidden_size, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
norm_layer=norm_layer, |
|
act_layer='gelu', |
|
) |
|
self.head_hidden_size = self.head.num_features |
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+)\.downsample', (0,)), |
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None), |
|
(r'^norm_pre', (99999,)) |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) |
|
|
|
|
|
feat_idx = 0 |
|
x = self.stem(x) |
|
if feat_idx in take_indices: |
|
intermediates.append(x) |
|
|
|
if torch.jit.is_scripting() or not stop_early: |
|
stages = self.stages |
|
else: |
|
stages = self.stages[:max_index] |
|
for stage in stages: |
|
feat_idx += 1 |
|
x = stage(x) |
|
if feat_idx in take_indices: |
|
|
|
intermediates.append(x) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
x = self.norm_pre(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) |
|
self.stages = self.stages[:max_index] |
|
if prune_norm: |
|
self.norm_pre = nn.Identity() |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
x = self.norm_pre(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=True) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0): |
|
if isinstance(module, nn.Conv2d): |
|
trunc_normal_(module.weight, std=.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Linear): |
|
trunc_normal_(module.weight, std=.02) |
|
nn.init.zeros_(module.bias) |
|
if name and 'head.' in name: |
|
module.weight.data.mul_(head_init_scale) |
|
module.bias.data.mul_(head_init_scale) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" Remap FB checkpoints -> timm """ |
|
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: |
|
return state_dict |
|
if 'model' in state_dict: |
|
state_dict = state_dict['model'] |
|
|
|
out_dict = {} |
|
if 'visual.trunk.stem.0.weight' in state_dict: |
|
out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')} |
|
if 'visual.head.proj.weight' in state_dict: |
|
out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight'] |
|
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) |
|
elif 'visual.head.mlp.fc1.weight' in state_dict: |
|
out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight'] |
|
out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias'] |
|
out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight'] |
|
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0]) |
|
return out_dict |
|
|
|
import re |
|
for k, v in state_dict.items(): |
|
k = k.replace('downsample_layers.0.', 'stem.') |
|
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) |
|
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) |
|
k = k.replace('dwconv', 'conv_dw') |
|
k = k.replace('pwconv', 'mlp.fc') |
|
if 'grn' in k: |
|
k = k.replace('grn.beta', 'mlp.grn.bias') |
|
k = k.replace('grn.gamma', 'mlp.grn.weight') |
|
v = v.reshape(v.shape[-1]) |
|
k = k.replace('head.', 'head.fc.') |
|
if k.startswith('norm.'): |
|
k = k.replace('norm', 'head.norm') |
|
if v.ndim == 2 and 'head' not in k: |
|
model_shape = model.state_dict()[k].shape |
|
v = v.reshape(model_shape) |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
def _create_convnext(variant, pretrained=False, **kwargs): |
|
if kwargs.get('pretrained_cfg', '') == 'fcmae': |
|
|
|
|
|
kwargs.setdefault('pretrained_strict', False) |
|
|
|
model = build_model_with_cfg( |
|
ConvNeXt, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), |
|
**kwargs) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.0', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
def _cfgv2(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.0', 'classifier': 'head.fc', |
|
'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808', |
|
'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders', |
|
'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
|
|
'convnext_tiny.in12k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_small.in12k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'convnext_zepto_rms.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), |
|
'convnext_zepto_rms_ols.ra4_e3600_r224_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
crop_pct=0.9), |
|
'convnext_atto.d2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnext_atto_ols.a2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnext_atto_rms.untrained': _cfg( |
|
|
|
test_input_size=(3, 256, 256), test_crop_pct=0.95), |
|
'convnext_femto.d1_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnext_femto_ols.d1_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnext_pico.d1_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnext_pico_ols.d1_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth', |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_nano.in12k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_nano.d1h_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth', |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_nano_ols.d1h_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth', |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_tiny_hnf.a2h_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth', |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'convnext_tiny.in12k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_small.in12k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'convnext_nano.in12k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, num_classes=11821), |
|
'convnext_tiny.in12k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, num_classes=11821), |
|
'convnext_small.in12k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, num_classes=11821), |
|
|
|
'convnext_tiny.fb_in22k_ft_in1k': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_small.fb_in22k_ft_in1k': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_base.fb_in22k_ft_in1k': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_large.fb_in22k_ft_in1k': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_xlarge.fb_in22k_ft_in1k': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'convnext_tiny.fb_in1k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_small.fb_in1k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_base.fb_in1k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnext_large.fb_in1k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'convnext_tiny.fb_in22k_ft_in1k_384': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_small.fb_in22k_ft_in1k_384': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_base.fb_in22k_ft_in1k_384': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_large.fb_in22k_ft_in1k_384': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'convnext_tiny.fb_in22k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", |
|
hf_hub_id='timm/', |
|
num_classes=21841), |
|
'convnext_small.fb_in22k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", |
|
hf_hub_id='timm/', |
|
num_classes=21841), |
|
'convnext_base.fb_in22k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", |
|
hf_hub_id='timm/', |
|
num_classes=21841), |
|
'convnext_large.fb_in22k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", |
|
hf_hub_id='timm/', |
|
num_classes=21841), |
|
'convnext_xlarge.fb_in22k': _cfg( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", |
|
hf_hub_id='timm/', |
|
num_classes=21841), |
|
|
|
'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt', |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt", |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt", |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt", |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt", |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt", |
|
hf_hub_id='timm/', |
|
input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'convnextv2_atto.fcmae_ft_in1k': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnextv2_femto.fcmae_ft_in1k': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnextv2_pico.fcmae_ft_in1k': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'convnextv2_nano.fcmae_ft_in1k': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_tiny.fcmae_ft_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_base.fcmae_ft_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_large.fcmae_ft_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'convnextv2_huge.fcmae_ft_in1k': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt", |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
|
|
'convnextv2_atto.fcmae': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt', |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_femto.fcmae': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt', |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_pico.fcmae': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt', |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_nano.fcmae': _cfgv2( |
|
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt', |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_tiny.fcmae': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt", |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_base.fcmae': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt", |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_large.fcmae': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt", |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
'convnextv2_huge.fcmae': _cfgv2( |
|
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt", |
|
hf_hub_id='timm/', |
|
num_classes=0), |
|
|
|
'convnextv2_small.untrained': _cfg(), |
|
|
|
|
|
'convnext_base.clip_laion2b_augreg_ft_in12k_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), |
|
'convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), |
|
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
|
|
'convnext_base.clip_laion2b_augreg_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), |
|
'convnext_base.clip_laiona_augreg_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), |
|
'convnext_large_mlp.clip_laion2b_augreg_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0 |
|
), |
|
'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash' |
|
), |
|
'convnext_xxlarge.clip_laion2b_soup_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), |
|
|
|
'convnext_base.clip_laion2b_augreg_ft_in12k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), |
|
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_320': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), |
|
'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_384': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), |
|
'convnext_xxlarge.clip_laion2b_soup_ft_in12k': _cfg( |
|
hf_hub_id='timm/', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), |
|
|
|
|
|
'convnext_base.clip_laion2b': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), |
|
'convnext_base.clip_laion2b_augreg': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), |
|
'convnext_base.clip_laiona': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), |
|
'convnext_base.clip_laiona_320': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), |
|
'convnext_base.clip_laiona_augreg_320': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), |
|
'convnext_large_mlp.clip_laion2b_augreg': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=768), |
|
'convnext_large_mlp.clip_laion2b_ft_320': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), |
|
'convnext_large_mlp.clip_laion2b_ft_soup_320': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), |
|
'convnext_xxlarge.clip_laion2b_soup': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), |
|
'convnext_xxlarge.clip_laion2b_rewind': _cfg( |
|
hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, |
|
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), |
|
|
|
"test_convnext.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
"test_convnext2.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
"test_convnext3.r160_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), |
|
|
|
}) |
|
|
|
|
|
@register_model |
|
def convnext_zepto_rms(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 4, 2), dims=(32, 64, 128, 256), conv_mlp=True, norm_layer='rmsnorm2d') |
|
model = _create_convnext('convnext_zepto_rms', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_zepto_rms_ols(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict( |
|
depths=(2, 2, 4, 2), dims=(32, 64, 128, 256), conv_mlp=True, norm_layer='rmsnorm2d', stem_type='overlap_act') |
|
model = _create_convnext('convnext_zepto_rms_ols', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True) |
|
model = _create_convnext('convnext_atto', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered') |
|
model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_atto_rms(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, norm_layer='rmsnorm2d') |
|
model = _create_convnext('convnext_atto_rms', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True) |
|
model = _create_convnext('convnext_femto', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_femto_ols(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered') |
|
model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_pico(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True) |
|
model = _create_convnext('convnext_pico', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_pico_ols(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, stem_type='overlap_tiered') |
|
model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_nano(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True) |
|
model = _create_convnext('convnext_nano', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_nano_ols(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap') |
|
model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_tiny_hnf(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True) |
|
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_tiny(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768)) |
|
model = _create_convnext('convnext_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_small(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768]) |
|
model = _create_convnext('convnext_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_base(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024]) |
|
model = _create_convnext('convnext_base', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]) |
|
model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_large_mlp(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], head_hidden_size=1536) |
|
model = _create_convnext('convnext_large_mlp', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_xlarge(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048]) |
|
model = _create_convnext('convnext_xlarge', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnext_xxlarge(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], norm_eps=kwargs.pop('norm_eps', 1e-5)) |
|
model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_atto(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict( |
|
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True) |
|
model = _create_convnext('convnextv2_atto', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_femto(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict( |
|
depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True) |
|
model = _create_convnext('convnextv2_femto', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_pico(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict( |
|
depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True) |
|
model = _create_convnext('convnextv2_pico', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_nano(pretrained=False, **kwargs) -> ConvNeXt: |
|
|
|
model_args = dict( |
|
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True) |
|
model = _create_convnext('convnextv2_nano', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_tiny(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None) |
|
model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_small(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None) |
|
model = _create_convnext('convnextv2_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_base(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None) |
|
model = _create_convnext('convnextv2_base', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_large(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None) |
|
model = _create_convnext('convnextv2_large', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None) |
|
model = _create_convnext('convnextv2_huge', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_convnext(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[1, 2, 4, 2], dims=[24, 32, 48, 64], norm_eps=kwargs.pop('norm_eps', 1e-5), act_layer='gelu_tanh') |
|
model = _create_convnext('test_convnext', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_convnext2(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[1, 1, 1, 1], dims=[32, 64, 96, 128], norm_eps=kwargs.pop('norm_eps', 1e-5), act_layer='gelu_tanh') |
|
model = _create_convnext('test_convnext2', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def test_convnext3(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict( |
|
depths=[1, 1, 1, 1], dims=[32, 64, 96, 128], norm_eps=kwargs.pop('norm_eps', 1e-5), kernel_sizes=(7, 5, 5, 3), act_layer='silu') |
|
model = _create_convnext('test_convnext3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k', |
|
'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k', |
|
'convnext_base_in22ft1k': 'convnext_base.fb_in22k_ft_in1k', |
|
'convnext_large_in22ft1k': 'convnext_large.fb_in22k_ft_in1k', |
|
'convnext_xlarge_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k', |
|
'convnext_tiny_384_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k_384', |
|
'convnext_small_384_in22ft1k': 'convnext_small.fb_in22k_ft_in1k_384', |
|
'convnext_base_384_in22ft1k': 'convnext_base.fb_in22k_ft_in1k_384', |
|
'convnext_large_384_in22ft1k': 'convnext_large.fb_in22k_ft_in1k_384', |
|
'convnext_xlarge_384_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k_384', |
|
'convnext_tiny_in22k': 'convnext_tiny.fb_in22k', |
|
'convnext_small_in22k': 'convnext_small.fb_in22k', |
|
'convnext_base_in22k': 'convnext_base.fb_in22k', |
|
'convnext_large_in22k': 'convnext_large.fb_in22k', |
|
'convnext_xlarge_in22k': 'convnext_xlarge.fb_in22k', |
|
}) |
|
|