Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/_pruned/ecaresnet101d_pruned.txt +1 -0
- pytorch-image-models/timm/models/_pruned/ecaresnet50d_pruned.txt +1 -0
- pytorch-image-models/timm/models/_pruned/efficientnet_b2_pruned.txt +1 -0
- pytorch-image-models/timm/models/_pruned/efficientnet_b3_pruned.txt +1 -0
- pytorch-image-models/timm/models/resnet.py +0 -0
- pytorch-image-models/timm/models/resnetv2.py +911 -0
- pytorch-image-models/timm/models/rexnet.py +358 -0
- pytorch-image-models/timm/models/sknet.py +240 -0
- pytorch-image-models/timm/models/swin_transformer_v2.py +1088 -0
- pytorch-image-models/timm/models/swin_transformer_v2_cr.py +1153 -0
- pytorch-image-models/timm/models/tiny_vit.py +715 -0
- pytorch-image-models/timm/models/tnt.py +374 -0
- pytorch-image-models/timm/models/tresnet.py +346 -0
- pytorch-image-models/timm/models/twins.py +581 -0
- pytorch-image-models/timm/models/vgg.py +298 -0
- pytorch-image-models/timm/models/visformer.py +549 -0
pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (548 Bytes). View file
|
|
pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (3.79 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc
ADDED
Binary file (12 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc
ADDED
Binary file (17.6 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc
ADDED
Binary file (4.31 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc
ADDED
Binary file (11.2 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc
ADDED
Binary file (67.5 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc
ADDED
Binary file (17.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc
ADDED
Binary file (12.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc
ADDED
Binary file (5.17 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc
ADDED
Binary file (37.6 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc
ADDED
Binary file (12.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc
ADDED
Binary file (15.3 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc
ADDED
Binary file (84.2 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc
ADDED
Binary file (19.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc
ADDED
Binary file (11.3 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc
ADDED
Binary file (20.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc
ADDED
Binary file (60.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc
ADDED
Binary file (35.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc
ADDED
Binary file (31.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc
ADDED
Binary file (13 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc
ADDED
Binary file (15.6 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc
ADDED
Binary file (15.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc
ADDED
Binary file (6.24 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc
ADDED
Binary file (7.35 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc
ADDED
Binary file (70.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc
ADDED
Binary file (15.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc
ADDED
Binary file (13.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc
ADDED
Binary file (7.41 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc
ADDED
Binary file (34.7 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc
ADDED
Binary file (19.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc
ADDED
Binary file (12.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc
ADDED
Binary file (101 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc
ADDED
Binary file (32.6 kB). View file
|
|
pytorch-image-models/timm/models/_pruned/ecaresnet101d_pruned.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
conv1.0.weight:[32, 3, 3, 3]***conv1.1.weight:[32]***conv1.3.weight:[32, 32, 3, 3]***conv1.4.weight:[32]***conv1.6.weight:[64, 32, 3, 3]***bn1.weight:[64]***layer1.0.conv1.weight:[45, 64, 1, 1]***layer1.0.bn1.weight:[45]***layer1.0.conv2.weight:[25, 45, 3, 3]***layer1.0.bn2.weight:[25]***layer1.0.conv3.weight:[26, 25, 1, 1]***layer1.0.bn3.weight:[26]***layer1.0.se.conv.weight:[1, 1, 5]***layer1.0.downsample.1.weight:[26, 64, 1, 1]***layer1.0.downsample.2.weight:[26]***layer1.1.conv1.weight:[53, 26, 1, 1]***layer1.1.bn1.weight:[53]***layer1.1.conv2.weight:[20, 53, 3, 3]***layer1.1.bn2.weight:[20]***layer1.1.conv3.weight:[26, 20, 1, 1]***layer1.1.bn3.weight:[26]***layer1.1.se.conv.weight:[1, 1, 5]***layer1.2.conv1.weight:[60, 26, 1, 1]***layer1.2.bn1.weight:[60]***layer1.2.conv2.weight:[27, 60, 3, 3]***layer1.2.bn2.weight:[27]***layer1.2.conv3.weight:[26, 27, 1, 1]***layer1.2.bn3.weight:[26]***layer1.2.se.conv.weight:[1, 1, 5]***layer2.0.conv1.weight:[81, 26, 1, 1]***layer2.0.bn1.weight:[81]***layer2.0.conv2.weight:[24, 81, 3, 3]***layer2.0.bn2.weight:[24]***layer2.0.conv3.weight:[142, 24, 1, 1]***layer2.0.bn3.weight:[142]***layer2.0.se.conv.weight:[1, 1, 5]***layer2.0.downsample.1.weight:[142, 26, 1, 1]***layer2.0.downsample.2.weight:[142]***layer2.1.conv1.weight:[93, 142, 1, 1]***layer2.1.bn1.weight:[93]***layer2.1.conv2.weight:[49, 93, 3, 3]***layer2.1.bn2.weight:[49]***layer2.1.conv3.weight:[142, 49, 1, 1]***layer2.1.bn3.weight:[142]***layer2.1.se.conv.weight:[1, 1, 5]***layer2.2.conv1.weight:[102, 142, 1, 1]***layer2.2.bn1.weight:[102]***layer2.2.conv2.weight:[54, 102, 3, 3]***layer2.2.bn2.weight:[54]***layer2.2.conv3.weight:[142, 54, 1, 1]***layer2.2.bn3.weight:[142]***layer2.2.se.conv.weight:[1, 1, 5]***layer2.3.conv1.weight:[122, 142, 1, 1]***layer2.3.bn1.weight:[122]***layer2.3.conv2.weight:[78, 122, 3, 3]***layer2.3.bn2.weight:[78]***layer2.3.conv3.weight:[142, 78, 1, 1]***layer2.3.bn3.weight:[142]***layer2.3.se.conv.weight:[1, 1, 5]***layer3.0.conv1.weight:[101, 142, 1, 1]***layer3.0.bn1.weight:[101]***layer3.0.conv2.weight:[25, 101, 3, 3]***layer3.0.bn2.weight:[25]***layer3.0.conv3.weight:[278, 25, 1, 1]***layer3.0.bn3.weight:[278]***layer3.0.se.conv.weight:[1, 1, 5]***layer3.0.downsample.1.weight:[278, 142, 1, 1]***layer3.0.downsample.2.weight:[278]***layer3.1.conv1.weight:[239, 278, 1, 1]***layer3.1.bn1.weight:[239]***layer3.1.conv2.weight:[160, 239, 3, 3]***layer3.1.bn2.weight:[160]***layer3.1.conv3.weight:[278, 160, 1, 1]***layer3.1.bn3.weight:[278]***layer3.1.se.conv.weight:[1, 1, 5]***layer3.2.conv1.weight:[234, 278, 1, 1]***layer3.2.bn1.weight:[234]***layer3.2.conv2.weight:[156, 234, 3, 3]***layer3.2.bn2.weight:[156]***layer3.2.conv3.weight:[278, 156, 1, 1]***layer3.2.bn3.weight:[278]***layer3.2.se.conv.weight:[1, 1, 5]***layer3.3.conv1.weight:[250, 278, 1, 1]***layer3.3.bn1.weight:[250]***layer3.3.conv2.weight:[176, 250, 3, 3]***layer3.3.bn2.weight:[176]***layer3.3.conv3.weight:[278, 176, 1, 1]***layer3.3.bn3.weight:[278]***layer3.3.se.conv.weight:[1, 1, 5]***layer3.4.conv1.weight:[253, 278, 1, 1]***layer3.4.bn1.weight:[253]***layer3.4.conv2.weight:[191, 253, 3, 3]***layer3.4.bn2.weight:[191]***layer3.4.conv3.weight:[278, 191, 1, 1]***layer3.4.bn3.weight:[278]***layer3.4.se.conv.weight:[1, 1, 5]***layer3.5.conv1.weight:[251, 278, 1, 1]***layer3.5.bn1.weight:[251]***layer3.5.conv2.weight:[175, 251, 3, 3]***layer3.5.bn2.weight:[175]***layer3.5.conv3.weight:[278, 175, 1, 1]***layer3.5.bn3.weight:[278]***layer3.5.se.conv.weight:[1, 1, 5]***layer3.6.conv1.weight:[230, 278, 1, 1]***layer3.6.bn1.weight:[230]***layer3.6.conv2.weight:[128, 230, 3, 3]***layer3.6.bn2.weight:[128]***layer3.6.conv3.weight:[278, 128, 1, 1]***layer3.6.bn3.weight:[278]***layer3.6.se.conv.weight:[1, 1, 5]***layer3.7.conv1.weight:[244, 278, 1, 1]***layer3.7.bn1.weight:[244]***layer3.7.conv2.weight:[154, 244, 3, 3]***layer3.7.bn2.weight:[154]***layer3.7.conv3.weight:[278, 154, 1, 1]***layer3.7.bn3.weight:[278]***layer3.7.se.conv.weight:[1, 1, 5]***layer3.8.conv1.weight:[244, 278, 1, 1]***layer3.8.bn1.weight:[244]***layer3.8.conv2.weight:[159, 244, 3, 3]***layer3.8.bn2.weight:[159]***layer3.8.conv3.weight:[278, 159, 1, 1]***layer3.8.bn3.weight:[278]***layer3.8.se.conv.weight:[1, 1, 5]***layer3.9.conv1.weight:[238, 278, 1, 1]***layer3.9.bn1.weight:[238]***layer3.9.conv2.weight:[97, 238, 3, 3]***layer3.9.bn2.weight:[97]***layer3.9.conv3.weight:[278, 97, 1, 1]***layer3.9.bn3.weight:[278]***layer3.9.se.conv.weight:[1, 1, 5]***layer3.10.conv1.weight:[244, 278, 1, 1]***layer3.10.bn1.weight:[244]***layer3.10.conv2.weight:[149, 244, 3, 3]***layer3.10.bn2.weight:[149]***layer3.10.conv3.weight:[278, 149, 1, 1]***layer3.10.bn3.weight:[278]***layer3.10.se.conv.weight:[1, 1, 5]***layer3.11.conv1.weight:[253, 278, 1, 1]***layer3.11.bn1.weight:[253]***layer3.11.conv2.weight:[181, 253, 3, 3]***layer3.11.bn2.weight:[181]***layer3.11.conv3.weight:[278, 181, 1, 1]***layer3.11.bn3.weight:[278]***layer3.11.se.conv.weight:[1, 1, 5]***layer3.12.conv1.weight:[245, 278, 1, 1]***layer3.12.bn1.weight:[245]***layer3.12.conv2.weight:[119, 245, 3, 3]***layer3.12.bn2.weight:[119]***layer3.12.conv3.weight:[278, 119, 1, 1]***layer3.12.bn3.weight:[278]***layer3.12.se.conv.weight:[1, 1, 5]***layer3.13.conv1.weight:[255, 278, 1, 1]***layer3.13.bn1.weight:[255]***layer3.13.conv2.weight:[216, 255, 3, 3]***layer3.13.bn2.weight:[216]***layer3.13.conv3.weight:[278, 216, 1, 1]***layer3.13.bn3.weight:[278]***layer3.13.se.conv.weight:[1, 1, 5]***layer3.14.conv1.weight:[256, 278, 1, 1]***layer3.14.bn1.weight:[256]***layer3.14.conv2.weight:[201, 256, 3, 3]***layer3.14.bn2.weight:[201]***layer3.14.conv3.weight:[278, 201, 1, 1]***layer3.14.bn3.weight:[278]***layer3.14.se.conv.weight:[1, 1, 5]***layer3.15.conv1.weight:[253, 278, 1, 1]***layer3.15.bn1.weight:[253]***layer3.15.conv2.weight:[149, 253, 3, 3]***layer3.15.bn2.weight:[149]***layer3.15.conv3.weight:[278, 149, 1, 1]***layer3.15.bn3.weight:[278]***layer3.15.se.conv.weight:[1, 1, 5]***layer3.16.conv1.weight:[254, 278, 1, 1]***layer3.16.bn1.weight:[254]***layer3.16.conv2.weight:[141, 254, 3, 3]***layer3.16.bn2.weight:[141]***layer3.16.conv3.weight:[278, 141, 1, 1]***layer3.16.bn3.weight:[278]***layer3.16.se.conv.weight:[1, 1, 5]***layer3.17.conv1.weight:[256, 278, 1, 1]***layer3.17.bn1.weight:[256]***layer3.17.conv2.weight:[190, 256, 3, 3]***layer3.17.bn2.weight:[190]***layer3.17.conv3.weight:[278, 190, 1, 1]***layer3.17.bn3.weight:[278]***layer3.17.se.conv.weight:[1, 1, 5]***layer3.18.conv1.weight:[256, 278, 1, 1]***layer3.18.bn1.weight:[256]***layer3.18.conv2.weight:[217, 256, 3, 3]***layer3.18.bn2.weight:[217]***layer3.18.conv3.weight:[278, 217, 1, 1]***layer3.18.bn3.weight:[278]***layer3.18.se.conv.weight:[1, 1, 5]***layer3.19.conv1.weight:[255, 278, 1, 1]***layer3.19.bn1.weight:[255]***layer3.19.conv2.weight:[156, 255, 3, 3]***layer3.19.bn2.weight:[156]***layer3.19.conv3.weight:[278, 156, 1, 1]***layer3.19.bn3.weight:[278]***layer3.19.se.conv.weight:[1, 1, 5]***layer3.20.conv1.weight:[256, 278, 1, 1]***layer3.20.bn1.weight:[256]***layer3.20.conv2.weight:[155, 256, 3, 3]***layer3.20.bn2.weight:[155]***layer3.20.conv3.weight:[278, 155, 1, 1]***layer3.20.bn3.weight:[278]***layer3.20.se.conv.weight:[1, 1, 5]***layer3.21.conv1.weight:[256, 278, 1, 1]***layer3.21.bn1.weight:[256]***layer3.21.conv2.weight:[232, 256, 3, 3]***layer3.21.bn2.weight:[232]***layer3.21.conv3.weight:[278, 232, 1, 1]***layer3.21.bn3.weight:[278]***layer3.21.se.conv.weight:[1, 1, 5]***layer3.22.conv1.weight:[256, 278, 1, 1]***layer3.22.bn1.weight:[256]***layer3.22.conv2.weight:[214, 256, 3, 3]***layer3.22.bn2.weight:[214]***layer3.22.conv3.weight:[278, 214, 1, 1]***layer3.22.bn3.weight:[278]***layer3.22.se.conv.weight:[1, 1, 5]***layer4.0.conv1.weight:[499, 278, 1, 1]***layer4.0.bn1.weight:[499]***layer4.0.conv2.weight:[289, 499, 3, 3]***layer4.0.bn2.weight:[289]***layer4.0.conv3.weight:[2042, 289, 1, 1]***layer4.0.bn3.weight:[2042]***layer4.0.se.conv.weight:[1, 1, 7]***layer4.0.downsample.1.weight:[2042, 278, 1, 1]***layer4.0.downsample.2.weight:[2042]***layer4.1.conv1.weight:[512, 2042, 1, 1]***layer4.1.bn1.weight:[512]***layer4.1.conv2.weight:[512, 512, 3, 3]***layer4.1.bn2.weight:[512]***layer4.1.conv3.weight:[2042, 512, 1, 1]***layer4.1.bn3.weight:[2042]***layer4.1.se.conv.weight:[1, 1, 7]***layer4.2.conv1.weight:[512, 2042, 1, 1]***layer4.2.bn1.weight:[512]***layer4.2.conv2.weight:[502, 512, 3, 3]***layer4.2.bn2.weight:[502]***layer4.2.conv3.weight:[2042, 502, 1, 1]***layer4.2.bn3.weight:[2042]***layer4.2.se.conv.weight:[1, 1, 7]***fc.weight:[1000, 2042]***layer1_2_conv3_M.weight:[256, 26]***layer2_3_conv3_M.weight:[512, 142]***layer3_22_conv3_M.weight:[1024, 278]***layer4_2_conv3_M.weight:[2048, 2042]
|
pytorch-image-models/timm/models/_pruned/ecaresnet50d_pruned.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
conv1.0.weight:[32, 3, 3, 3]***conv1.1.weight:[32]***conv1.3.weight:[32, 32, 3, 3]***conv1.4.weight:[32]***conv1.6.weight:[64, 32, 3, 3]***bn1.weight:[64]***layer1.0.conv1.weight:[47, 64, 1, 1]***layer1.0.bn1.weight:[47]***layer1.0.conv2.weight:[18, 47, 3, 3]***layer1.0.bn2.weight:[18]***layer1.0.conv3.weight:[19, 18, 1, 1]***layer1.0.bn3.weight:[19]***layer1.0.se.conv.weight:[1, 1, 5]***layer1.0.downsample.1.weight:[19, 64, 1, 1]***layer1.0.downsample.2.weight:[19]***layer1.1.conv1.weight:[52, 19, 1, 1]***layer1.1.bn1.weight:[52]***layer1.1.conv2.weight:[22, 52, 3, 3]***layer1.1.bn2.weight:[22]***layer1.1.conv3.weight:[19, 22, 1, 1]***layer1.1.bn3.weight:[19]***layer1.1.se.conv.weight:[1, 1, 5]***layer1.2.conv1.weight:[64, 19, 1, 1]***layer1.2.bn1.weight:[64]***layer1.2.conv2.weight:[35, 64, 3, 3]***layer1.2.bn2.weight:[35]***layer1.2.conv3.weight:[19, 35, 1, 1]***layer1.2.bn3.weight:[19]***layer1.2.se.conv.weight:[1, 1, 5]***layer2.0.conv1.weight:[85, 19, 1, 1]***layer2.0.bn1.weight:[85]***layer2.0.conv2.weight:[37, 85, 3, 3]***layer2.0.bn2.weight:[37]***layer2.0.conv3.weight:[171, 37, 1, 1]***layer2.0.bn3.weight:[171]***layer2.0.se.conv.weight:[1, 1, 5]***layer2.0.downsample.1.weight:[171, 19, 1, 1]***layer2.0.downsample.2.weight:[171]***layer2.1.conv1.weight:[107, 171, 1, 1]***layer2.1.bn1.weight:[107]***layer2.1.conv2.weight:[80, 107, 3, 3]***layer2.1.bn2.weight:[80]***layer2.1.conv3.weight:[171, 80, 1, 1]***layer2.1.bn3.weight:[171]***layer2.1.se.conv.weight:[1, 1, 5]***layer2.2.conv1.weight:[120, 171, 1, 1]***layer2.2.bn1.weight:[120]***layer2.2.conv2.weight:[85, 120, 3, 3]***layer2.2.bn2.weight:[85]***layer2.2.conv3.weight:[171, 85, 1, 1]***layer2.2.bn3.weight:[171]***layer2.2.se.conv.weight:[1, 1, 5]***layer2.3.conv1.weight:[125, 171, 1, 1]***layer2.3.bn1.weight:[125]***layer2.3.conv2.weight:[87, 125, 3, 3]***layer2.3.bn2.weight:[87]***layer2.3.conv3.weight:[171, 87, 1, 1]***layer2.3.bn3.weight:[171]***layer2.3.se.conv.weight:[1, 1, 5]***layer3.0.conv1.weight:[198, 171, 1, 1]***layer3.0.bn1.weight:[198]***layer3.0.conv2.weight:[126, 198, 3, 3]***layer3.0.bn2.weight:[126]***layer3.0.conv3.weight:[818, 126, 1, 1]***layer3.0.bn3.weight:[818]***layer3.0.se.conv.weight:[1, 1, 5]***layer3.0.downsample.1.weight:[818, 171, 1, 1]***layer3.0.downsample.2.weight:[818]***layer3.1.conv1.weight:[255, 818, 1, 1]***layer3.1.bn1.weight:[255]***layer3.1.conv2.weight:[232, 255, 3, 3]***layer3.1.bn2.weight:[232]***layer3.1.conv3.weight:[818, 232, 1, 1]***layer3.1.bn3.weight:[818]***layer3.1.se.conv.weight:[1, 1, 5]***layer3.2.conv1.weight:[256, 818, 1, 1]***layer3.2.bn1.weight:[256]***layer3.2.conv2.weight:[233, 256, 3, 3]***layer3.2.bn2.weight:[233]***layer3.2.conv3.weight:[818, 233, 1, 1]***layer3.2.bn3.weight:[818]***layer3.2.se.conv.weight:[1, 1, 5]***layer3.3.conv1.weight:[253, 818, 1, 1]***layer3.3.bn1.weight:[253]***layer3.3.conv2.weight:[235, 253, 3, 3]***layer3.3.bn2.weight:[235]***layer3.3.conv3.weight:[818, 235, 1, 1]***layer3.3.bn3.weight:[818]***layer3.3.se.conv.weight:[1, 1, 5]***layer3.4.conv1.weight:[256, 818, 1, 1]***layer3.4.bn1.weight:[256]***layer3.4.conv2.weight:[225, 256, 3, 3]***layer3.4.bn2.weight:[225]***layer3.4.conv3.weight:[818, 225, 1, 1]***layer3.4.bn3.weight:[818]***layer3.4.se.conv.weight:[1, 1, 5]***layer3.5.conv1.weight:[256, 818, 1, 1]***layer3.5.bn1.weight:[256]***layer3.5.conv2.weight:[239, 256, 3, 3]***layer3.5.bn2.weight:[239]***layer3.5.conv3.weight:[818, 239, 1, 1]***layer3.5.bn3.weight:[818]***layer3.5.se.conv.weight:[1, 1, 5]***layer4.0.conv1.weight:[492, 818, 1, 1]***layer4.0.bn1.weight:[492]***layer4.0.conv2.weight:[237, 492, 3, 3]***layer4.0.bn2.weight:[237]***layer4.0.conv3.weight:[2022, 237, 1, 1]***layer4.0.bn3.weight:[2022]***layer4.0.se.conv.weight:[1, 1, 7]***layer4.0.downsample.1.weight:[2022, 818, 1, 1]***layer4.0.downsample.2.weight:[2022]***layer4.1.conv1.weight:[512, 2022, 1, 1]***layer4.1.bn1.weight:[512]***layer4.1.conv2.weight:[500, 512, 3, 3]***layer4.1.bn2.weight:[500]***layer4.1.conv3.weight:[2022, 500, 1, 1]***layer4.1.bn3.weight:[2022]***layer4.1.se.conv.weight:[1, 1, 7]***layer4.2.conv1.weight:[512, 2022, 1, 1]***layer4.2.bn1.weight:[512]***layer4.2.conv2.weight:[490, 512, 3, 3]***layer4.2.bn2.weight:[490]***layer4.2.conv3.weight:[2022, 490, 1, 1]***layer4.2.bn3.weight:[2022]***layer4.2.se.conv.weight:[1, 1, 7]***fc.weight:[1000, 2022]***layer1_2_conv3_M.weight:[256, 19]***layer2_3_conv3_M.weight:[512, 171]***layer3_5_conv3_M.weight:[1024, 818]***layer4_2_conv3_M.weight:[2048, 2022]
|
pytorch-image-models/timm/models/_pruned/efficientnet_b2_pruned.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
conv_stem.weight:[32, 3, 3, 3]***bn1.weight:[32]***bn1.bias:[32]***bn1.running_mean:[32]***bn1.running_var:[32]***bn1.num_batches_tracked:[]***blocks.0.0.conv_dw.weight:[32, 1, 3, 3]***blocks.0.0.bn1.weight:[32]***blocks.0.0.bn1.bias:[32]***blocks.0.0.bn1.running_mean:[32]***blocks.0.0.bn1.running_var:[32]***blocks.0.0.bn1.num_batches_tracked:[]***blocks.0.0.se.conv_reduce.weight:[8, 32, 1, 1]***blocks.0.0.se.conv_reduce.bias:[8]***blocks.0.0.se.conv_expand.weight:[32, 8, 1, 1]***blocks.0.0.se.conv_expand.bias:[32]***blocks.0.0.conv_pw.weight:[16, 32, 1, 1]***blocks.0.0.bn2.weight:[16]***blocks.0.0.bn2.bias:[16]***blocks.0.0.bn2.running_mean:[16]***blocks.0.0.bn2.running_var:[16]***blocks.0.0.bn2.num_batches_tracked:[]***blocks.0.1.conv_dw.weight:[16, 1, 3, 3]***blocks.0.1.bn1.weight:[16]***blocks.0.1.bn1.bias:[16]***blocks.0.1.bn1.running_mean:[16]***blocks.0.1.bn1.running_var:[16]***blocks.0.1.bn1.num_batches_tracked:[]***blocks.0.1.se.conv_reduce.weight:[4, 16, 1, 1]***blocks.0.1.se.conv_reduce.bias:[4]***blocks.0.1.se.conv_expand.weight:[16, 4, 1, 1]***blocks.0.1.se.conv_expand.bias:[16]***blocks.0.1.conv_pw.weight:[16, 16, 1, 1]***blocks.0.1.bn2.weight:[16]***blocks.0.1.bn2.bias:[16]***blocks.0.1.bn2.running_mean:[16]***blocks.0.1.bn2.running_var:[16]***blocks.0.1.bn2.num_batches_tracked:[]***blocks.1.0.conv_pw.weight:[54, 16, 1, 1]***blocks.1.0.bn1.weight:[54]***blocks.1.0.bn1.bias:[54]***blocks.1.0.bn1.running_mean:[54]***blocks.1.0.bn1.running_var:[54]***blocks.1.0.bn1.num_batches_tracked:[]***blocks.1.0.conv_dw.weight:[54, 1, 3, 3]***blocks.1.0.bn2.weight:[54]***blocks.1.0.bn2.bias:[54]***blocks.1.0.bn2.running_mean:[54]***blocks.1.0.bn2.running_var:[54]***blocks.1.0.bn2.num_batches_tracked:[]***blocks.1.0.se.conv_reduce.weight:[4, 54, 1, 1]***blocks.1.0.se.conv_reduce.bias:[4]***blocks.1.0.se.conv_expand.weight:[54, 4, 1, 1]***blocks.1.0.se.conv_expand.bias:[54]***blocks.1.0.conv_pwl.weight:[17, 54, 1, 1]***blocks.1.0.bn3.weight:[17]***blocks.1.0.bn3.bias:[17]***blocks.1.0.bn3.running_mean:[17]***blocks.1.0.bn3.running_var:[17]***blocks.1.0.bn3.num_batches_tracked:[]***blocks.1.1.conv_pw.weight:[69, 17, 1, 1]***blocks.1.1.bn1.weight:[69]***blocks.1.1.bn1.bias:[69]***blocks.1.1.bn1.running_mean:[69]***blocks.1.1.bn1.running_var:[69]***blocks.1.1.bn1.num_batches_tracked:[]***blocks.1.1.conv_dw.weight:[69, 1, 3, 3]***blocks.1.1.bn2.weight:[69]***blocks.1.1.bn2.bias:[69]***blocks.1.1.bn2.running_mean:[69]***blocks.1.1.bn2.running_var:[69]***blocks.1.1.bn2.num_batches_tracked:[]***blocks.1.1.se.conv_reduce.weight:[6, 69, 1, 1]***blocks.1.1.se.conv_reduce.bias:[6]***blocks.1.1.se.conv_expand.weight:[69, 6, 1, 1]***blocks.1.1.se.conv_expand.bias:[69]***blocks.1.1.conv_pwl.weight:[17, 69, 1, 1]***blocks.1.1.bn3.weight:[17]***blocks.1.1.bn3.bias:[17]***blocks.1.1.bn3.running_mean:[17]***blocks.1.1.bn3.running_var:[17]***blocks.1.1.bn3.num_batches_tracked:[]***blocks.1.2.conv_pw.weight:[61, 17, 1, 1]***blocks.1.2.bn1.weight:[61]***blocks.1.2.bn1.bias:[61]***blocks.1.2.bn1.running_mean:[61]***blocks.1.2.bn1.running_var:[61]***blocks.1.2.bn1.num_batches_tracked:[]***blocks.1.2.conv_dw.weight:[61, 1, 3, 3]***blocks.1.2.bn2.weight:[61]***blocks.1.2.bn2.bias:[61]***blocks.1.2.bn2.running_mean:[61]***blocks.1.2.bn2.running_var:[61]***blocks.1.2.bn2.num_batches_tracked:[]***blocks.1.2.se.conv_reduce.weight:[6, 61, 1, 1]***blocks.1.2.se.conv_reduce.bias:[6]***blocks.1.2.se.conv_expand.weight:[61, 6, 1, 1]***blocks.1.2.se.conv_expand.bias:[61]***blocks.1.2.conv_pwl.weight:[17, 61, 1, 1]***blocks.1.2.bn3.weight:[17]***blocks.1.2.bn3.bias:[17]***blocks.1.2.bn3.running_mean:[17]***blocks.1.2.bn3.running_var:[17]***blocks.1.2.bn3.num_batches_tracked:[]***blocks.2.0.conv_pw.weight:[86, 17, 1, 1]***blocks.2.0.bn1.weight:[86]***blocks.2.0.bn1.bias:[86]***blocks.2.0.bn1.running_mean:[86]***blocks.2.0.bn1.running_var:[86]***blocks.2.0.bn1.num_batches_tracked:[]***blocks.2.0.conv_dw.weight:[86, 1, 5, 5]***blocks.2.0.bn2.weight:[86]***blocks.2.0.bn2.bias:[86]***blocks.2.0.bn2.running_mean:[86]***blocks.2.0.bn2.running_var:[86]***blocks.2.0.bn2.num_batches_tracked:[]***blocks.2.0.se.conv_reduce.weight:[6, 86, 1, 1]***blocks.2.0.se.conv_reduce.bias:[6]***blocks.2.0.se.conv_expand.weight:[86, 6, 1, 1]***blocks.2.0.se.conv_expand.bias:[86]***blocks.2.0.conv_pwl.weight:[42, 86, 1, 1]***blocks.2.0.bn3.weight:[42]***blocks.2.0.bn3.bias:[42]***blocks.2.0.bn3.running_mean:[42]***blocks.2.0.bn3.running_var:[42]***blocks.2.0.bn3.num_batches_tracked:[]***blocks.2.1.conv_pw.weight:[72, 42, 1, 1]***blocks.2.1.bn1.weight:[72]***blocks.2.1.bn1.bias:[72]***blocks.2.1.bn1.running_mean:[72]***blocks.2.1.bn1.running_var:[72]***blocks.2.1.bn1.num_batches_tracked:[]***blocks.2.1.conv_dw.weight:[72, 1, 5, 5]***blocks.2.1.bn2.weight:[72]***blocks.2.1.bn2.bias:[72]***blocks.2.1.bn2.running_mean:[72]***blocks.2.1.bn2.running_var:[72]***blocks.2.1.bn2.num_batches_tracked:[]***blocks.2.1.se.conv_reduce.weight:[12, 72, 1, 1]***blocks.2.1.se.conv_reduce.bias:[12]***blocks.2.1.se.conv_expand.weight:[72, 12, 1, 1]***blocks.2.1.se.conv_expand.bias:[72]***blocks.2.1.conv_pwl.weight:[42, 72, 1, 1]***blocks.2.1.bn3.weight:[42]***blocks.2.1.bn3.bias:[42]***blocks.2.1.bn3.running_mean:[42]***blocks.2.1.bn3.running_var:[42]***blocks.2.1.bn3.num_batches_tracked:[]***blocks.2.2.conv_pw.weight:[98, 42, 1, 1]***blocks.2.2.bn1.weight:[98]***blocks.2.2.bn1.bias:[98]***blocks.2.2.bn1.running_mean:[98]***blocks.2.2.bn1.running_var:[98]***blocks.2.2.bn1.num_batches_tracked:[]***blocks.2.2.conv_dw.weight:[98, 1, 5, 5]***blocks.2.2.bn2.weight:[98]***blocks.2.2.bn2.bias:[98]***blocks.2.2.bn2.running_mean:[98]***blocks.2.2.bn2.running_var:[98]***blocks.2.2.bn2.num_batches_tracked:[]***blocks.2.2.se.conv_reduce.weight:[12, 98, 1, 1]***blocks.2.2.se.conv_reduce.bias:[12]***blocks.2.2.se.conv_expand.weight:[98, 12, 1, 1]***blocks.2.2.se.conv_expand.bias:[98]***blocks.2.2.conv_pwl.weight:[42, 98, 1, 1]***blocks.2.2.bn3.weight:[42]***blocks.2.2.bn3.bias:[42]***blocks.2.2.bn3.running_mean:[42]***blocks.2.2.bn3.running_var:[42]***blocks.2.2.bn3.num_batches_tracked:[]***blocks.3.0.conv_pw.weight:[245, 42, 1, 1]***blocks.3.0.bn1.weight:[245]***blocks.3.0.bn1.bias:[245]***blocks.3.0.bn1.running_mean:[245]***blocks.3.0.bn1.running_var:[245]***blocks.3.0.bn1.num_batches_tracked:[]***blocks.3.0.conv_dw.weight:[245, 1, 3, 3]***blocks.3.0.bn2.weight:[245]***blocks.3.0.bn2.bias:[245]***blocks.3.0.bn2.running_mean:[245]***blocks.3.0.bn2.running_var:[245]***blocks.3.0.bn2.num_batches_tracked:[]***blocks.3.0.se.conv_reduce.weight:[12, 245, 1, 1]***blocks.3.0.se.conv_reduce.bias:[12]***blocks.3.0.se.conv_expand.weight:[245, 12, 1, 1]***blocks.3.0.se.conv_expand.bias:[245]***blocks.3.0.conv_pwl.weight:[85, 245, 1, 1]***blocks.3.0.bn3.weight:[85]***blocks.3.0.bn3.bias:[85]***blocks.3.0.bn3.running_mean:[85]***blocks.3.0.bn3.running_var:[85]***blocks.3.0.bn3.num_batches_tracked:[]***blocks.3.1.conv_pw.weight:[274, 85, 1, 1]***blocks.3.1.bn1.weight:[274]***blocks.3.1.bn1.bias:[274]***blocks.3.1.bn1.running_mean:[274]***blocks.3.1.bn1.running_var:[274]***blocks.3.1.bn1.num_batches_tracked:[]***blocks.3.1.conv_dw.weight:[274, 1, 3, 3]***blocks.3.1.bn2.weight:[274]***blocks.3.1.bn2.bias:[274]***blocks.3.1.bn2.running_mean:[274]***blocks.3.1.bn2.running_var:[274]***blocks.3.1.bn2.num_batches_tracked:[]***blocks.3.1.se.conv_reduce.weight:[22, 274, 1, 1]***blocks.3.1.se.conv_reduce.bias:[22]***blocks.3.1.se.conv_expand.weight:[274, 22, 1, 1]***blocks.3.1.se.conv_expand.bias:[274]***blocks.3.1.conv_pwl.weight:[85, 274, 1, 1]***blocks.3.1.bn3.weight:[85]***blocks.3.1.bn3.bias:[85]***blocks.3.1.bn3.running_mean:[85]***blocks.3.1.bn3.running_var:[85]***blocks.3.1.bn3.num_batches_tracked:[]***blocks.3.2.conv_pw.weight:[254, 85, 1, 1]***blocks.3.2.bn1.weight:[254]***blocks.3.2.bn1.bias:[254]***blocks.3.2.bn1.running_mean:[254]***blocks.3.2.bn1.running_var:[254]***blocks.3.2.bn1.num_batches_tracked:[]***blocks.3.2.conv_dw.weight:[254, 1, 3, 3]***blocks.3.2.bn2.weight:[254]***blocks.3.2.bn2.bias:[254]***blocks.3.2.bn2.running_mean:[254]***blocks.3.2.bn2.running_var:[254]***blocks.3.2.bn2.num_batches_tracked:[]***blocks.3.2.se.conv_reduce.weight:[22, 254, 1, 1]***blocks.3.2.se.conv_reduce.bias:[22]***blocks.3.2.se.conv_expand.weight:[254, 22, 1, 1]***blocks.3.2.se.conv_expand.bias:[254]***blocks.3.2.conv_pwl.weight:[85, 254, 1, 1]***blocks.3.2.bn3.weight:[85]***blocks.3.2.bn3.bias:[85]***blocks.3.2.bn3.running_mean:[85]***blocks.3.2.bn3.running_var:[85]***blocks.3.2.bn3.num_batches_tracked:[]***blocks.3.3.conv_pw.weight:[292, 85, 1, 1]***blocks.3.3.bn1.weight:[292]***blocks.3.3.bn1.bias:[292]***blocks.3.3.bn1.running_mean:[292]***blocks.3.3.bn1.running_var:[292]***blocks.3.3.bn1.num_batches_tracked:[]***blocks.3.3.conv_dw.weight:[292, 1, 3, 3]***blocks.3.3.bn2.weight:[292]***blocks.3.3.bn2.bias:[292]***blocks.3.3.bn2.running_mean:[292]***blocks.3.3.bn2.running_var:[292]***blocks.3.3.bn2.num_batches_tracked:[]***blocks.3.3.se.conv_reduce.weight:[22, 292, 1, 1]***blocks.3.3.se.conv_reduce.bias:[22]***blocks.3.3.se.conv_expand.weight:[292, 22, 1, 1]***blocks.3.3.se.conv_expand.bias:[292]***blocks.3.3.conv_pwl.weight:[85, 292, 1, 1]***blocks.3.3.bn3.weight:[85]***blocks.3.3.bn3.bias:[85]***blocks.3.3.bn3.running_mean:[85]***blocks.3.3.bn3.running_var:[85]***blocks.3.3.bn3.num_batches_tracked:[]***blocks.4.0.conv_pw.weight:[502, 85, 1, 1]***blocks.4.0.bn1.weight:[502]***blocks.4.0.bn1.bias:[502]***blocks.4.0.bn1.running_mean:[502]***blocks.4.0.bn1.running_var:[502]***blocks.4.0.bn1.num_batches_tracked:[]***blocks.4.0.conv_dw.weight:[502, 1, 5, 5]***blocks.4.0.bn2.weight:[502]***blocks.4.0.bn2.bias:[502]***blocks.4.0.bn2.running_mean:[502]***blocks.4.0.bn2.running_var:[502]***blocks.4.0.bn2.num_batches_tracked:[]***blocks.4.0.se.conv_reduce.weight:[22, 502, 1, 1]***blocks.4.0.se.conv_reduce.bias:[22]***blocks.4.0.se.conv_expand.weight:[502, 22, 1, 1]***blocks.4.0.se.conv_expand.bias:[502]***blocks.4.0.conv_pwl.weight:[116, 502, 1, 1]***blocks.4.0.bn3.weight:[116]***blocks.4.0.bn3.bias:[116]***blocks.4.0.bn3.running_mean:[116]***blocks.4.0.bn3.running_var:[116]***blocks.4.0.bn3.num_batches_tracked:[]***blocks.4.1.conv_pw.weight:[315, 116, 1, 1]***blocks.4.1.bn1.weight:[315]***blocks.4.1.bn1.bias:[315]***blocks.4.1.bn1.running_mean:[315]***blocks.4.1.bn1.running_var:[315]***blocks.4.1.bn1.num_batches_tracked:[]***blocks.4.1.conv_dw.weight:[315, 1, 5, 5]***blocks.4.1.bn2.weight:[315]***blocks.4.1.bn2.bias:[315]***blocks.4.1.bn2.running_mean:[315]***blocks.4.1.bn2.running_var:[315]***blocks.4.1.bn2.num_batches_tracked:[]***blocks.4.1.se.conv_reduce.weight:[30, 315, 1, 1]***blocks.4.1.se.conv_reduce.bias:[30]***blocks.4.1.se.conv_expand.weight:[315, 30, 1, 1]***blocks.4.1.se.conv_expand.bias:[315]***blocks.4.1.conv_pwl.weight:[116, 315, 1, 1]***blocks.4.1.bn3.weight:[116]***blocks.4.1.bn3.bias:[116]***blocks.4.1.bn3.running_mean:[116]***blocks.4.1.bn3.running_var:[116]***blocks.4.1.bn3.num_batches_tracked:[]***blocks.4.2.conv_pw.weight:[354, 116, 1, 1]***blocks.4.2.bn1.weight:[354]***blocks.4.2.bn1.bias:[354]***blocks.4.2.bn1.running_mean:[354]***blocks.4.2.bn1.running_var:[354]***blocks.4.2.bn1.num_batches_tracked:[]***blocks.4.2.conv_dw.weight:[354, 1, 5, 5]***blocks.4.2.bn2.weight:[354]***blocks.4.2.bn2.bias:[354]***blocks.4.2.bn2.running_mean:[354]***blocks.4.2.bn2.running_var:[354]***blocks.4.2.bn2.num_batches_tracked:[]***blocks.4.2.se.conv_reduce.weight:[30, 354, 1, 1]***blocks.4.2.se.conv_reduce.bias:[30]***blocks.4.2.se.conv_expand.weight:[354, 30, 1, 1]***blocks.4.2.se.conv_expand.bias:[354]***blocks.4.2.conv_pwl.weight:[116, 354, 1, 1]***blocks.4.2.bn3.weight:[116]***blocks.4.2.bn3.bias:[116]***blocks.4.2.bn3.running_mean:[116]***blocks.4.2.bn3.running_var:[116]***blocks.4.2.bn3.num_batches_tracked:[]***blocks.4.3.conv_pw.weight:[443, 116, 1, 1]***blocks.4.3.bn1.weight:[443]***blocks.4.3.bn1.bias:[443]***blocks.4.3.bn1.running_mean:[443]***blocks.4.3.bn1.running_var:[443]***blocks.4.3.bn1.num_batches_tracked:[]***blocks.4.3.conv_dw.weight:[443, 1, 5, 5]***blocks.4.3.bn2.weight:[443]***blocks.4.3.bn2.bias:[443]***blocks.4.3.bn2.running_mean:[443]***blocks.4.3.bn2.running_var:[443]***blocks.4.3.bn2.num_batches_tracked:[]***blocks.4.3.se.conv_reduce.weight:[30, 443, 1, 1]***blocks.4.3.se.conv_reduce.bias:[30]***blocks.4.3.se.conv_expand.weight:[443, 30, 1, 1]***blocks.4.3.se.conv_expand.bias:[443]***blocks.4.3.conv_pwl.weight:[116, 443, 1, 1]***blocks.4.3.bn3.weight:[116]***blocks.4.3.bn3.bias:[116]***blocks.4.3.bn3.running_mean:[116]***blocks.4.3.bn3.running_var:[116]***blocks.4.3.bn3.num_batches_tracked:[]***blocks.5.0.conv_pw.weight:[719, 116, 1, 1]***blocks.5.0.bn1.weight:[719]***blocks.5.0.bn1.bias:[719]***blocks.5.0.bn1.running_mean:[719]***blocks.5.0.bn1.running_var:[719]***blocks.5.0.bn1.num_batches_tracked:[]***blocks.5.0.conv_dw.weight:[719, 1, 5, 5]***blocks.5.0.bn2.weight:[719]***blocks.5.0.bn2.bias:[719]***blocks.5.0.bn2.running_mean:[719]***blocks.5.0.bn2.running_var:[719]***blocks.5.0.bn2.num_batches_tracked:[]***blocks.5.0.se.conv_reduce.weight:[30, 719, 1, 1]***blocks.5.0.se.conv_reduce.bias:[30]***blocks.5.0.se.conv_expand.weight:[719, 30, 1, 1]***blocks.5.0.se.conv_expand.bias:[719]***blocks.5.0.conv_pwl.weight:[208, 719, 1, 1]***blocks.5.0.bn3.weight:[208]***blocks.5.0.bn3.bias:[208]***blocks.5.0.bn3.running_mean:[208]***blocks.5.0.bn3.running_var:[208]***blocks.5.0.bn3.num_batches_tracked:[]***blocks.5.1.conv_pw.weight:[1148, 208, 1, 1]***blocks.5.1.bn1.weight:[1148]***blocks.5.1.bn1.bias:[1148]***blocks.5.1.bn1.running_mean:[1148]***blocks.5.1.bn1.running_var:[1148]***blocks.5.1.bn1.num_batches_tracked:[]***blocks.5.1.conv_dw.weight:[1148, 1, 5, 5]***blocks.5.1.bn2.weight:[1148]***blocks.5.1.bn2.bias:[1148]***blocks.5.1.bn2.running_mean:[1148]***blocks.5.1.bn2.running_var:[1148]***blocks.5.1.bn2.num_batches_tracked:[]***blocks.5.1.se.conv_reduce.weight:[52, 1148, 1, 1]***blocks.5.1.se.conv_reduce.bias:[52]***blocks.5.1.se.conv_expand.weight:[1148, 52, 1, 1]***blocks.5.1.se.conv_expand.bias:[1148]***blocks.5.1.conv_pwl.weight:[208, 1148, 1, 1]***blocks.5.1.bn3.weight:[208]***blocks.5.1.bn3.bias:[208]***blocks.5.1.bn3.running_mean:[208]***blocks.5.1.bn3.running_var:[208]***blocks.5.1.bn3.num_batches_tracked:[]***blocks.5.2.conv_pw.weight:[1160, 208, 1, 1]***blocks.5.2.bn1.weight:[1160]***blocks.5.2.bn1.bias:[1160]***blocks.5.2.bn1.running_mean:[1160]***blocks.5.2.bn1.running_var:[1160]***blocks.5.2.bn1.num_batches_tracked:[]***blocks.5.2.conv_dw.weight:[1160, 1, 5, 5]***blocks.5.2.bn2.weight:[1160]***blocks.5.2.bn2.bias:[1160]***blocks.5.2.bn2.running_mean:[1160]***blocks.5.2.bn2.running_var:[1160]***blocks.5.2.bn2.num_batches_tracked:[]***blocks.5.2.se.conv_reduce.weight:[52, 1160, 1, 1]***blocks.5.2.se.conv_reduce.bias:[52]***blocks.5.2.se.conv_expand.weight:[1160, 52, 1, 1]***blocks.5.2.se.conv_expand.bias:[1160]***blocks.5.2.conv_pwl.weight:[208, 1160, 1, 1]***blocks.5.2.bn3.weight:[208]***blocks.5.2.bn3.bias:[208]***blocks.5.2.bn3.running_mean:[208]***blocks.5.2.bn3.running_var:[208]***blocks.5.2.bn3.num_batches_tracked:[]***blocks.5.3.conv_pw.weight:[1182, 208, 1, 1]***blocks.5.3.bn1.weight:[1182]***blocks.5.3.bn1.bias:[1182]***blocks.5.3.bn1.running_mean:[1182]***blocks.5.3.bn1.running_var:[1182]***blocks.5.3.bn1.num_batches_tracked:[]***blocks.5.3.conv_dw.weight:[1182, 1, 5, 5]***blocks.5.3.bn2.weight:[1182]***blocks.5.3.bn2.bias:[1182]***blocks.5.3.bn2.running_mean:[1182]***blocks.5.3.bn2.running_var:[1182]***blocks.5.3.bn2.num_batches_tracked:[]***blocks.5.3.se.conv_reduce.weight:[52, 1182, 1, 1]***blocks.5.3.se.conv_reduce.bias:[52]***blocks.5.3.se.conv_expand.weight:[1182, 52, 1, 1]***blocks.5.3.se.conv_expand.bias:[1182]***blocks.5.3.conv_pwl.weight:[208, 1182, 1, 1]***blocks.5.3.bn3.weight:[208]***blocks.5.3.bn3.bias:[208]***blocks.5.3.bn3.running_mean:[208]***blocks.5.3.bn3.running_var:[208]***blocks.5.3.bn3.num_batches_tracked:[]***blocks.5.4.conv_pw.weight:[1228, 208, 1, 1]***blocks.5.4.bn1.weight:[1228]***blocks.5.4.bn1.bias:[1228]***blocks.5.4.bn1.running_mean:[1228]***blocks.5.4.bn1.running_var:[1228]***blocks.5.4.bn1.num_batches_tracked:[]***blocks.5.4.conv_dw.weight:[1228, 1, 5, 5]***blocks.5.4.bn2.weight:[1228]***blocks.5.4.bn2.bias:[1228]***blocks.5.4.bn2.running_mean:[1228]***blocks.5.4.bn2.running_var:[1228]***blocks.5.4.bn2.num_batches_tracked:[]***blocks.5.4.se.conv_reduce.weight:[52, 1228, 1, 1]***blocks.5.4.se.conv_reduce.bias:[52]***blocks.5.4.se.conv_expand.weight:[1228, 52, 1, 1]***blocks.5.4.se.conv_expand.bias:[1228]***blocks.5.4.conv_pwl.weight:[208, 1228, 1, 1]***blocks.5.4.bn3.weight:[208]***blocks.5.4.bn3.bias:[208]***blocks.5.4.bn3.running_mean:[208]***blocks.5.4.bn3.running_var:[208]***blocks.5.4.bn3.num_batches_tracked:[]***blocks.6.0.conv_pw.weight:[1248, 208, 1, 1]***blocks.6.0.bn1.weight:[1248]***blocks.6.0.bn1.bias:[1248]***blocks.6.0.bn1.running_mean:[1248]***blocks.6.0.bn1.running_var:[1248]***blocks.6.0.bn1.num_batches_tracked:[]***blocks.6.0.conv_dw.weight:[1248, 1, 3, 3]***blocks.6.0.bn2.weight:[1248]***blocks.6.0.bn2.bias:[1248]***blocks.6.0.bn2.running_mean:[1248]***blocks.6.0.bn2.running_var:[1248]***blocks.6.0.bn2.num_batches_tracked:[]***blocks.6.0.se.conv_reduce.weight:[52, 1248, 1, 1]***blocks.6.0.se.conv_reduce.bias:[52]***blocks.6.0.se.conv_expand.weight:[1248, 52, 1, 1]***blocks.6.0.se.conv_expand.bias:[1248]***blocks.6.0.conv_pwl.weight:[352, 1248, 1, 1]***blocks.6.0.bn3.weight:[352]***blocks.6.0.bn3.bias:[352]***blocks.6.0.bn3.running_mean:[352]***blocks.6.0.bn3.running_var:[352]***blocks.6.0.bn3.num_batches_tracked:[]***blocks.6.1.conv_pw.weight:[2112, 352, 1, 1]***blocks.6.1.bn1.weight:[2112]***blocks.6.1.bn1.bias:[2112]***blocks.6.1.bn1.running_mean:[2112]***blocks.6.1.bn1.running_var:[2112]***blocks.6.1.bn1.num_batches_tracked:[]***blocks.6.1.conv_dw.weight:[2112, 1, 3, 3]***blocks.6.1.bn2.weight:[2112]***blocks.6.1.bn2.bias:[2112]***blocks.6.1.bn2.running_mean:[2112]***blocks.6.1.bn2.running_var:[2112]***blocks.6.1.bn2.num_batches_tracked:[]***blocks.6.1.se.conv_reduce.weight:[88, 2112, 1, 1]***blocks.6.1.se.conv_reduce.bias:[88]***blocks.6.1.se.conv_expand.weight:[2112, 88, 1, 1]***blocks.6.1.se.conv_expand.bias:[2112]***blocks.6.1.conv_pwl.weight:[352, 2112, 1, 1]***blocks.6.1.bn3.weight:[352]***blocks.6.1.bn3.bias:[352]***blocks.6.1.bn3.running_mean:[352]***blocks.6.1.bn3.running_var:[352]***blocks.6.1.bn3.num_batches_tracked:[]***conv_head.weight:[1408, 352, 1, 1]***bn2.weight:[1408]***bn2.bias:[1408]***bn2.running_mean:[1408]***bn2.running_var:[1408]***bn2.num_batches_tracked:[]***classifier.weight:[1000, 1408]***classifier.bias:[1000]
|
pytorch-image-models/timm/models/_pruned/efficientnet_b3_pruned.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
conv_stem.weight:[40, 3, 3, 3]***bn1.weight:[40]***bn1.bias:[40]***bn1.running_mean:[40]***bn1.running_var:[40]***bn1.num_batches_tracked:[]***blocks.0.0.conv_dw.weight:[40, 1, 3, 3]***blocks.0.0.bn1.weight:[40]***blocks.0.0.bn1.bias:[40]***blocks.0.0.bn1.running_mean:[40]***blocks.0.0.bn1.running_var:[40]***blocks.0.0.bn1.num_batches_tracked:[]***blocks.0.0.se.conv_reduce.weight:[10, 40, 1, 1]***blocks.0.0.se.conv_reduce.bias:[10]***blocks.0.0.se.conv_expand.weight:[40, 10, 1, 1]***blocks.0.0.se.conv_expand.bias:[40]***blocks.0.0.conv_pw.weight:[24, 40, 1, 1]***blocks.0.0.bn2.weight:[24]***blocks.0.0.bn2.bias:[24]***blocks.0.0.bn2.running_mean:[24]***blocks.0.0.bn2.running_var:[24]***blocks.0.0.bn2.num_batches_tracked:[]***blocks.0.1.conv_dw.weight:[24, 1, 3, 3]***blocks.0.1.bn1.weight:[24]***blocks.0.1.bn1.bias:[24]***blocks.0.1.bn1.running_mean:[24]***blocks.0.1.bn1.running_var:[24]***blocks.0.1.bn1.num_batches_tracked:[]***blocks.0.1.se.conv_reduce.weight:[6, 24, 1, 1]***blocks.0.1.se.conv_reduce.bias:[6]***blocks.0.1.se.conv_expand.weight:[24, 6, 1, 1]***blocks.0.1.se.conv_expand.bias:[24]***blocks.0.1.conv_pw.weight:[24, 24, 1, 1]***blocks.0.1.bn2.weight:[24]***blocks.0.1.bn2.bias:[24]***blocks.0.1.bn2.running_mean:[24]***blocks.0.1.bn2.running_var:[24]***blocks.0.1.bn2.num_batches_tracked:[]***blocks.1.0.conv_pw.weight:[27, 24, 1, 1]***blocks.1.0.bn1.weight:[27]***blocks.1.0.bn1.bias:[27]***blocks.1.0.bn1.running_mean:[27]***blocks.1.0.bn1.running_var:[27]***blocks.1.0.bn1.num_batches_tracked:[]***blocks.1.0.conv_dw.weight:[27, 1, 3, 3]***blocks.1.0.bn2.weight:[27]***blocks.1.0.bn2.bias:[27]***blocks.1.0.bn2.running_mean:[27]***blocks.1.0.bn2.running_var:[27]***blocks.1.0.bn2.num_batches_tracked:[]***blocks.1.0.se.conv_reduce.weight:[6, 27, 1, 1]***blocks.1.0.se.conv_reduce.bias:[6]***blocks.1.0.se.conv_expand.weight:[27, 6, 1, 1]***blocks.1.0.se.conv_expand.bias:[27]***blocks.1.0.conv_pwl.weight:[12, 27, 1, 1]***blocks.1.0.bn3.weight:[12]***blocks.1.0.bn3.bias:[12]***blocks.1.0.bn3.running_mean:[12]***blocks.1.0.bn3.running_var:[12]***blocks.1.0.bn3.num_batches_tracked:[]***blocks.1.1.conv_pw.weight:[49, 12, 1, 1]***blocks.1.1.bn1.weight:[49]***blocks.1.1.bn1.bias:[49]***blocks.1.1.bn1.running_mean:[49]***blocks.1.1.bn1.running_var:[49]***blocks.1.1.bn1.num_batches_tracked:[]***blocks.1.1.conv_dw.weight:[49, 1, 3, 3]***blocks.1.1.bn2.weight:[49]***blocks.1.1.bn2.bias:[49]***blocks.1.1.bn2.running_mean:[49]***blocks.1.1.bn2.running_var:[49]***blocks.1.1.bn2.num_batches_tracked:[]***blocks.1.1.se.conv_reduce.weight:[8, 49, 1, 1]***blocks.1.1.se.conv_reduce.bias:[8]***blocks.1.1.se.conv_expand.weight:[49, 8, 1, 1]***blocks.1.1.se.conv_expand.bias:[49]***blocks.1.1.conv_pwl.weight:[12, 49, 1, 1]***blocks.1.1.bn3.weight:[12]***blocks.1.1.bn3.bias:[12]***blocks.1.1.bn3.running_mean:[12]***blocks.1.1.bn3.running_var:[12]***blocks.1.1.bn3.num_batches_tracked:[]***blocks.1.2.conv_pw.weight:[48, 12, 1, 1]***blocks.1.2.bn1.weight:[48]***blocks.1.2.bn1.bias:[48]***blocks.1.2.bn1.running_mean:[48]***blocks.1.2.bn1.running_var:[48]***blocks.1.2.bn1.num_batches_tracked:[]***blocks.1.2.conv_dw.weight:[48, 1, 3, 3]***blocks.1.2.bn2.weight:[48]***blocks.1.2.bn2.bias:[48]***blocks.1.2.bn2.running_mean:[48]***blocks.1.2.bn2.running_var:[48]***blocks.1.2.bn2.num_batches_tracked:[]***blocks.1.2.se.conv_reduce.weight:[8, 48, 1, 1]***blocks.1.2.se.conv_reduce.bias:[8]***blocks.1.2.se.conv_expand.weight:[48, 8, 1, 1]***blocks.1.2.se.conv_expand.bias:[48]***blocks.1.2.conv_pwl.weight:[12, 48, 1, 1]***blocks.1.2.bn3.weight:[12]***blocks.1.2.bn3.bias:[12]***blocks.1.2.bn3.running_mean:[12]***blocks.1.2.bn3.running_var:[12]***blocks.1.2.bn3.num_batches_tracked:[]***blocks.2.0.conv_pw.weight:[83, 12, 1, 1]***blocks.2.0.bn1.weight:[83]***blocks.2.0.bn1.bias:[83]***blocks.2.0.bn1.running_mean:[83]***blocks.2.0.bn1.running_var:[83]***blocks.2.0.bn1.num_batches_tracked:[]***blocks.2.0.conv_dw.weight:[83, 1, 5, 5]***blocks.2.0.bn2.weight:[83]***blocks.2.0.bn2.bias:[83]***blocks.2.0.bn2.running_mean:[83]***blocks.2.0.bn2.running_var:[83]***blocks.2.0.bn2.num_batches_tracked:[]***blocks.2.0.se.conv_reduce.weight:[8, 83, 1, 1]***blocks.2.0.se.conv_reduce.bias:[8]***blocks.2.0.se.conv_expand.weight:[83, 8, 1, 1]***blocks.2.0.se.conv_expand.bias:[83]***blocks.2.0.conv_pwl.weight:[40, 83, 1, 1]***blocks.2.0.bn3.weight:[40]***blocks.2.0.bn3.bias:[40]***blocks.2.0.bn3.running_mean:[40]***blocks.2.0.bn3.running_var:[40]***blocks.2.0.bn3.num_batches_tracked:[]***blocks.2.1.conv_pw.weight:[90, 40, 1, 1]***blocks.2.1.bn1.weight:[90]***blocks.2.1.bn1.bias:[90]***blocks.2.1.bn1.running_mean:[90]***blocks.2.1.bn1.running_var:[90]***blocks.2.1.bn1.num_batches_tracked:[]***blocks.2.1.conv_dw.weight:[90, 1, 5, 5]***blocks.2.1.bn2.weight:[90]***blocks.2.1.bn2.bias:[90]***blocks.2.1.bn2.running_mean:[90]***blocks.2.1.bn2.running_var:[90]***blocks.2.1.bn2.num_batches_tracked:[]***blocks.2.1.se.conv_reduce.weight:[12, 90, 1, 1]***blocks.2.1.se.conv_reduce.bias:[12]***blocks.2.1.se.conv_expand.weight:[90, 12, 1, 1]***blocks.2.1.se.conv_expand.bias:[90]***blocks.2.1.conv_pwl.weight:[40, 90, 1, 1]***blocks.2.1.bn3.weight:[40]***blocks.2.1.bn3.bias:[40]***blocks.2.1.bn3.running_mean:[40]***blocks.2.1.bn3.running_var:[40]***blocks.2.1.bn3.num_batches_tracked:[]***blocks.2.2.conv_pw.weight:[85, 40, 1, 1]***blocks.2.2.bn1.weight:[85]***blocks.2.2.bn1.bias:[85]***blocks.2.2.bn1.running_mean:[85]***blocks.2.2.bn1.running_var:[85]***blocks.2.2.bn1.num_batches_tracked:[]***blocks.2.2.conv_dw.weight:[85, 1, 5, 5]***blocks.2.2.bn2.weight:[85]***blocks.2.2.bn2.bias:[85]***blocks.2.2.bn2.running_mean:[85]***blocks.2.2.bn2.running_var:[85]***blocks.2.2.bn2.num_batches_tracked:[]***blocks.2.2.se.conv_reduce.weight:[12, 85, 1, 1]***blocks.2.2.se.conv_reduce.bias:[12]***blocks.2.2.se.conv_expand.weight:[85, 12, 1, 1]***blocks.2.2.se.conv_expand.bias:[85]***blocks.2.2.conv_pwl.weight:[40, 85, 1, 1]***blocks.2.2.bn3.weight:[40]***blocks.2.2.bn3.bias:[40]***blocks.2.2.bn3.running_mean:[40]***blocks.2.2.bn3.running_var:[40]***blocks.2.2.bn3.num_batches_tracked:[]***blocks.3.0.conv_pw.weight:[215, 40, 1, 1]***blocks.3.0.bn1.weight:[215]***blocks.3.0.bn1.bias:[215]***blocks.3.0.bn1.running_mean:[215]***blocks.3.0.bn1.running_var:[215]***blocks.3.0.bn1.num_batches_tracked:[]***blocks.3.0.conv_dw.weight:[215, 1, 3, 3]***blocks.3.0.bn2.weight:[215]***blocks.3.0.bn2.bias:[215]***blocks.3.0.bn2.running_mean:[215]***blocks.3.0.bn2.running_var:[215]***blocks.3.0.bn2.num_batches_tracked:[]***blocks.3.0.se.conv_reduce.weight:[12, 215, 1, 1]***blocks.3.0.se.conv_reduce.bias:[12]***blocks.3.0.se.conv_expand.weight:[215, 12, 1, 1]***blocks.3.0.se.conv_expand.bias:[215]***blocks.3.0.conv_pwl.weight:[93, 215, 1, 1]***blocks.3.0.bn3.weight:[93]***blocks.3.0.bn3.bias:[93]***blocks.3.0.bn3.running_mean:[93]***blocks.3.0.bn3.running_var:[93]***blocks.3.0.bn3.num_batches_tracked:[]***blocks.3.1.conv_pw.weight:[261, 93, 1, 1]***blocks.3.1.bn1.weight:[261]***blocks.3.1.bn1.bias:[261]***blocks.3.1.bn1.running_mean:[261]***blocks.3.1.bn1.running_var:[261]***blocks.3.1.bn1.num_batches_tracked:[]***blocks.3.1.conv_dw.weight:[261, 1, 3, 3]***blocks.3.1.bn2.weight:[261]***blocks.3.1.bn2.bias:[261]***blocks.3.1.bn2.running_mean:[261]***blocks.3.1.bn2.running_var:[261]***blocks.3.1.bn2.num_batches_tracked:[]***blocks.3.1.se.conv_reduce.weight:[24, 261, 1, 1]***blocks.3.1.se.conv_reduce.bias:[24]***blocks.3.1.se.conv_expand.weight:[261, 24, 1, 1]***blocks.3.1.se.conv_expand.bias:[261]***blocks.3.1.conv_pwl.weight:[93, 261, 1, 1]***blocks.3.1.bn3.weight:[93]***blocks.3.1.bn3.bias:[93]***blocks.3.1.bn3.running_mean:[93]***blocks.3.1.bn3.running_var:[93]***blocks.3.1.bn3.num_batches_tracked:[]***blocks.3.2.conv_pw.weight:[219, 93, 1, 1]***blocks.3.2.bn1.weight:[219]***blocks.3.2.bn1.bias:[219]***blocks.3.2.bn1.running_mean:[219]***blocks.3.2.bn1.running_var:[219]***blocks.3.2.bn1.num_batches_tracked:[]***blocks.3.2.conv_dw.weight:[219, 1, 3, 3]***blocks.3.2.bn2.weight:[219]***blocks.3.2.bn2.bias:[219]***blocks.3.2.bn2.running_mean:[219]***blocks.3.2.bn2.running_var:[219]***blocks.3.2.bn2.num_batches_tracked:[]***blocks.3.2.se.conv_reduce.weight:[24, 219, 1, 1]***blocks.3.2.se.conv_reduce.bias:[24]***blocks.3.2.se.conv_expand.weight:[219, 24, 1, 1]***blocks.3.2.se.conv_expand.bias:[219]***blocks.3.2.conv_pwl.weight:[93, 219, 1, 1]***blocks.3.2.bn3.weight:[93]***blocks.3.2.bn3.bias:[93]***blocks.3.2.bn3.running_mean:[93]***blocks.3.2.bn3.running_var:[93]***blocks.3.2.bn3.num_batches_tracked:[]***blocks.3.3.conv_pw.weight:[254, 93, 1, 1]***blocks.3.3.bn1.weight:[254]***blocks.3.3.bn1.bias:[254]***blocks.3.3.bn1.running_mean:[254]***blocks.3.3.bn1.running_var:[254]***blocks.3.3.bn1.num_batches_tracked:[]***blocks.3.3.conv_dw.weight:[254, 1, 3, 3]***blocks.3.3.bn2.weight:[254]***blocks.3.3.bn2.bias:[254]***blocks.3.3.bn2.running_mean:[254]***blocks.3.3.bn2.running_var:[254]***blocks.3.3.bn2.num_batches_tracked:[]***blocks.3.3.se.conv_reduce.weight:[24, 254, 1, 1]***blocks.3.3.se.conv_reduce.bias:[24]***blocks.3.3.se.conv_expand.weight:[254, 24, 1, 1]***blocks.3.3.se.conv_expand.bias:[254]***blocks.3.3.conv_pwl.weight:[93, 254, 1, 1]***blocks.3.3.bn3.weight:[93]***blocks.3.3.bn3.bias:[93]***blocks.3.3.bn3.running_mean:[93]***blocks.3.3.bn3.running_var:[93]***blocks.3.3.bn3.num_batches_tracked:[]***blocks.3.4.conv_pw.weight:[236, 93, 1, 1]***blocks.3.4.bn1.weight:[236]***blocks.3.4.bn1.bias:[236]***blocks.3.4.bn1.running_mean:[236]***blocks.3.4.bn1.running_var:[236]***blocks.3.4.bn1.num_batches_tracked:[]***blocks.3.4.conv_dw.weight:[236, 1, 3, 3]***blocks.3.4.bn2.weight:[236]***blocks.3.4.bn2.bias:[236]***blocks.3.4.bn2.running_mean:[236]***blocks.3.4.bn2.running_var:[236]***blocks.3.4.bn2.num_batches_tracked:[]***blocks.3.4.se.conv_reduce.weight:[24, 236, 1, 1]***blocks.3.4.se.conv_reduce.bias:[24]***blocks.3.4.se.conv_expand.weight:[236, 24, 1, 1]***blocks.3.4.se.conv_expand.bias:[236]***blocks.3.4.conv_pwl.weight:[93, 236, 1, 1]***blocks.3.4.bn3.weight:[93]***blocks.3.4.bn3.bias:[93]***blocks.3.4.bn3.running_mean:[93]***blocks.3.4.bn3.running_var:[93]***blocks.3.4.bn3.num_batches_tracked:[]***blocks.4.0.conv_pw.weight:[480, 93, 1, 1]***blocks.4.0.bn1.weight:[480]***blocks.4.0.bn1.bias:[480]***blocks.4.0.bn1.running_mean:[480]***blocks.4.0.bn1.running_var:[480]***blocks.4.0.bn1.num_batches_tracked:[]***blocks.4.0.conv_dw.weight:[480, 1, 5, 5]***blocks.4.0.bn2.weight:[480]***blocks.4.0.bn2.bias:[480]***blocks.4.0.bn2.running_mean:[480]***blocks.4.0.bn2.running_var:[480]***blocks.4.0.bn2.num_batches_tracked:[]***blocks.4.0.se.conv_reduce.weight:[24, 480, 1, 1]***blocks.4.0.se.conv_reduce.bias:[24]***blocks.4.0.se.conv_expand.weight:[480, 24, 1, 1]***blocks.4.0.se.conv_expand.bias:[480]***blocks.4.0.conv_pwl.weight:[120, 480, 1, 1]***blocks.4.0.bn3.weight:[120]***blocks.4.0.bn3.bias:[120]***blocks.4.0.bn3.running_mean:[120]***blocks.4.0.bn3.running_var:[120]***blocks.4.0.bn3.num_batches_tracked:[]***blocks.4.1.conv_pw.weight:[235, 120, 1, 1]***blocks.4.1.bn1.weight:[235]***blocks.4.1.bn1.bias:[235]***blocks.4.1.bn1.running_mean:[235]***blocks.4.1.bn1.running_var:[235]***blocks.4.1.bn1.num_batches_tracked:[]***blocks.4.1.conv_dw.weight:[235, 1, 5, 5]***blocks.4.1.bn2.weight:[235]***blocks.4.1.bn2.bias:[235]***blocks.4.1.bn2.running_mean:[235]***blocks.4.1.bn2.running_var:[235]***blocks.4.1.bn2.num_batches_tracked:[]***blocks.4.1.se.conv_reduce.weight:[34, 235, 1, 1]***blocks.4.1.se.conv_reduce.bias:[34]***blocks.4.1.se.conv_expand.weight:[235, 34, 1, 1]***blocks.4.1.se.conv_expand.bias:[235]***blocks.4.1.conv_pwl.weight:[120, 235, 1, 1]***blocks.4.1.bn3.weight:[120]***blocks.4.1.bn3.bias:[120]***blocks.4.1.bn3.running_mean:[120]***blocks.4.1.bn3.running_var:[120]***blocks.4.1.bn3.num_batches_tracked:[]***blocks.4.2.conv_pw.weight:[217, 120, 1, 1]***blocks.4.2.bn1.weight:[217]***blocks.4.2.bn1.bias:[217]***blocks.4.2.bn1.running_mean:[217]***blocks.4.2.bn1.running_var:[217]***blocks.4.2.bn1.num_batches_tracked:[]***blocks.4.2.conv_dw.weight:[217, 1, 5, 5]***blocks.4.2.bn2.weight:[217]***blocks.4.2.bn2.bias:[217]***blocks.4.2.bn2.running_mean:[217]***blocks.4.2.bn2.running_var:[217]***blocks.4.2.bn2.num_batches_tracked:[]***blocks.4.2.se.conv_reduce.weight:[34, 217, 1, 1]***blocks.4.2.se.conv_reduce.bias:[34]***blocks.4.2.se.conv_expand.weight:[217, 34, 1, 1]***blocks.4.2.se.conv_expand.bias:[217]***blocks.4.2.conv_pwl.weight:[120, 217, 1, 1]***blocks.4.2.bn3.weight:[120]***blocks.4.2.bn3.bias:[120]***blocks.4.2.bn3.running_mean:[120]***blocks.4.2.bn3.running_var:[120]***blocks.4.2.bn3.num_batches_tracked:[]***blocks.4.3.conv_pw.weight:[226, 120, 1, 1]***blocks.4.3.bn1.weight:[226]***blocks.4.3.bn1.bias:[226]***blocks.4.3.bn1.running_mean:[226]***blocks.4.3.bn1.running_var:[226]***blocks.4.3.bn1.num_batches_tracked:[]***blocks.4.3.conv_dw.weight:[226, 1, 5, 5]***blocks.4.3.bn2.weight:[226]***blocks.4.3.bn2.bias:[226]***blocks.4.3.bn2.running_mean:[226]***blocks.4.3.bn2.running_var:[226]***blocks.4.3.bn2.num_batches_tracked:[]***blocks.4.3.se.conv_reduce.weight:[33, 226, 1, 1]***blocks.4.3.se.conv_reduce.bias:[33]***blocks.4.3.se.conv_expand.weight:[226, 33, 1, 1]***blocks.4.3.se.conv_expand.bias:[226]***blocks.4.3.conv_pwl.weight:[120, 226, 1, 1]***blocks.4.3.bn3.weight:[120]***blocks.4.3.bn3.bias:[120]***blocks.4.3.bn3.running_mean:[120]***blocks.4.3.bn3.running_var:[120]***blocks.4.3.bn3.num_batches_tracked:[]***blocks.4.4.conv_pw.weight:[340, 120, 1, 1]***blocks.4.4.bn1.weight:[340]***blocks.4.4.bn1.bias:[340]***blocks.4.4.bn1.running_mean:[340]***blocks.4.4.bn1.running_var:[340]***blocks.4.4.bn1.num_batches_tracked:[]***blocks.4.4.conv_dw.weight:[340, 1, 5, 5]***blocks.4.4.bn2.weight:[340]***blocks.4.4.bn2.bias:[340]***blocks.4.4.bn2.running_mean:[340]***blocks.4.4.bn2.running_var:[340]***blocks.4.4.bn2.num_batches_tracked:[]***blocks.4.4.se.conv_reduce.weight:[34, 340, 1, 1]***blocks.4.4.se.conv_reduce.bias:[34]***blocks.4.4.se.conv_expand.weight:[340, 34, 1, 1]***blocks.4.4.se.conv_expand.bias:[340]***blocks.4.4.conv_pwl.weight:[120, 340, 1, 1]***blocks.4.4.bn3.weight:[120]***blocks.4.4.bn3.bias:[120]***blocks.4.4.bn3.running_mean:[120]***blocks.4.4.bn3.running_var:[120]***blocks.4.4.bn3.num_batches_tracked:[]***blocks.5.0.conv_pw.weight:[802, 120, 1, 1]***blocks.5.0.bn1.weight:[802]***blocks.5.0.bn1.bias:[802]***blocks.5.0.bn1.running_mean:[802]***blocks.5.0.bn1.running_var:[802]***blocks.5.0.bn1.num_batches_tracked:[]***blocks.5.0.conv_dw.weight:[802, 1, 5, 5]***blocks.5.0.bn2.weight:[802]***blocks.5.0.bn2.bias:[802]***blocks.5.0.bn2.running_mean:[802]***blocks.5.0.bn2.running_var:[802]***blocks.5.0.bn2.num_batches_tracked:[]***blocks.5.0.se.conv_reduce.weight:[34, 802, 1, 1]***blocks.5.0.se.conv_reduce.bias:[34]***blocks.5.0.se.conv_expand.weight:[802, 34, 1, 1]***blocks.5.0.se.conv_expand.bias:[802]***blocks.5.0.conv_pwl.weight:[232, 802, 1, 1]***blocks.5.0.bn3.weight:[232]***blocks.5.0.bn3.bias:[232]***blocks.5.0.bn3.running_mean:[232]***blocks.5.0.bn3.running_var:[232]***blocks.5.0.bn3.num_batches_tracked:[]***blocks.5.1.conv_pw.weight:[1030, 232, 1, 1]***blocks.5.1.bn1.weight:[1030]***blocks.5.1.bn1.bias:[1030]***blocks.5.1.bn1.running_mean:[1030]***blocks.5.1.bn1.running_var:[1030]***blocks.5.1.bn1.num_batches_tracked:[]***blocks.5.1.conv_dw.weight:[1030, 1, 5, 5]***blocks.5.1.bn2.weight:[1030]***blocks.5.1.bn2.bias:[1030]***blocks.5.1.bn2.running_mean:[1030]***blocks.5.1.bn2.running_var:[1030]***blocks.5.1.bn2.num_batches_tracked:[]***blocks.5.1.se.conv_reduce.weight:[58, 1030, 1, 1]***blocks.5.1.se.conv_reduce.bias:[58]***blocks.5.1.se.conv_expand.weight:[1030, 58, 1, 1]***blocks.5.1.se.conv_expand.bias:[1030]***blocks.5.1.conv_pwl.weight:[232, 1030, 1, 1]***blocks.5.1.bn3.weight:[232]***blocks.5.1.bn3.bias:[232]***blocks.5.1.bn3.running_mean:[232]***blocks.5.1.bn3.running_var:[232]***blocks.5.1.bn3.num_batches_tracked:[]***blocks.5.2.conv_pw.weight:[924, 232, 1, 1]***blocks.5.2.bn1.weight:[924]***blocks.5.2.bn1.bias:[924]***blocks.5.2.bn1.running_mean:[924]***blocks.5.2.bn1.running_var:[924]***blocks.5.2.bn1.num_batches_tracked:[]***blocks.5.2.conv_dw.weight:[924, 1, 5, 5]***blocks.5.2.bn2.weight:[924]***blocks.5.2.bn2.bias:[924]***blocks.5.2.bn2.running_mean:[924]***blocks.5.2.bn2.running_var:[924]***blocks.5.2.bn2.num_batches_tracked:[]***blocks.5.2.se.conv_reduce.weight:[58, 924, 1, 1]***blocks.5.2.se.conv_reduce.bias:[58]***blocks.5.2.se.conv_expand.weight:[924, 58, 1, 1]***blocks.5.2.se.conv_expand.bias:[924]***blocks.5.2.conv_pwl.weight:[232, 924, 1, 1]***blocks.5.2.bn3.weight:[232]***blocks.5.2.bn3.bias:[232]***blocks.5.2.bn3.running_mean:[232]***blocks.5.2.bn3.running_var:[232]***blocks.5.2.bn3.num_batches_tracked:[]***blocks.5.3.conv_pw.weight:[1016, 232, 1, 1]***blocks.5.3.bn1.weight:[1016]***blocks.5.3.bn1.bias:[1016]***blocks.5.3.bn1.running_mean:[1016]***blocks.5.3.bn1.running_var:[1016]***blocks.5.3.bn1.num_batches_tracked:[]***blocks.5.3.conv_dw.weight:[1016, 1, 5, 5]***blocks.5.3.bn2.weight:[1016]***blocks.5.3.bn2.bias:[1016]***blocks.5.3.bn2.running_mean:[1016]***blocks.5.3.bn2.running_var:[1016]***blocks.5.3.bn2.num_batches_tracked:[]***blocks.5.3.se.conv_reduce.weight:[58, 1016, 1, 1]***blocks.5.3.se.conv_reduce.bias:[58]***blocks.5.3.se.conv_expand.weight:[1016, 58, 1, 1]***blocks.5.3.se.conv_expand.bias:[1016]***blocks.5.3.conv_pwl.weight:[232, 1016, 1, 1]***blocks.5.3.bn3.weight:[232]***blocks.5.3.bn3.bias:[232]***blocks.5.3.bn3.running_mean:[232]***blocks.5.3.bn3.running_var:[232]***blocks.5.3.bn3.num_batches_tracked:[]***blocks.5.4.conv_pw.weight:[1130, 232, 1, 1]***blocks.5.4.bn1.weight:[1130]***blocks.5.4.bn1.bias:[1130]***blocks.5.4.bn1.running_mean:[1130]***blocks.5.4.bn1.running_var:[1130]***blocks.5.4.bn1.num_batches_tracked:[]***blocks.5.4.conv_dw.weight:[1130, 1, 5, 5]***blocks.5.4.bn2.weight:[1130]***blocks.5.4.bn2.bias:[1130]***blocks.5.4.bn2.running_mean:[1130]***blocks.5.4.bn2.running_var:[1130]***blocks.5.4.bn2.num_batches_tracked:[]***blocks.5.4.se.conv_reduce.weight:[58, 1130, 1, 1]***blocks.5.4.se.conv_reduce.bias:[58]***blocks.5.4.se.conv_expand.weight:[1130, 58, 1, 1]***blocks.5.4.se.conv_expand.bias:[1130]***blocks.5.4.conv_pwl.weight:[232, 1130, 1, 1]***blocks.5.4.bn3.weight:[232]***blocks.5.4.bn3.bias:[232]***blocks.5.4.bn3.running_mean:[232]***blocks.5.4.bn3.running_var:[232]***blocks.5.4.bn3.num_batches_tracked:[]***blocks.5.5.conv_pw.weight:[1266, 232, 1, 1]***blocks.5.5.bn1.weight:[1266]***blocks.5.5.bn1.bias:[1266]***blocks.5.5.bn1.running_mean:[1266]***blocks.5.5.bn1.running_var:[1266]***blocks.5.5.bn1.num_batches_tracked:[]***blocks.5.5.conv_dw.weight:[1266, 1, 5, 5]***blocks.5.5.bn2.weight:[1266]***blocks.5.5.bn2.bias:[1266]***blocks.5.5.bn2.running_mean:[1266]***blocks.5.5.bn2.running_var:[1266]***blocks.5.5.bn2.num_batches_tracked:[]***blocks.5.5.se.conv_reduce.weight:[58, 1266, 1, 1]***blocks.5.5.se.conv_reduce.bias:[58]***blocks.5.5.se.conv_expand.weight:[1266, 58, 1, 1]***blocks.5.5.se.conv_expand.bias:[1266]***blocks.5.5.conv_pwl.weight:[232, 1266, 1, 1]***blocks.5.5.bn3.weight:[232]***blocks.5.5.bn3.bias:[232]***blocks.5.5.bn3.running_mean:[232]***blocks.5.5.bn3.running_var:[232]***blocks.5.5.bn3.num_batches_tracked:[]***blocks.6.0.conv_pw.weight:[1392, 232, 1, 1]***blocks.6.0.bn1.weight:[1392]***blocks.6.0.bn1.bias:[1392]***blocks.6.0.bn1.running_mean:[1392]***blocks.6.0.bn1.running_var:[1392]***blocks.6.0.bn1.num_batches_tracked:[]***blocks.6.0.conv_dw.weight:[1392, 1, 3, 3]***blocks.6.0.bn2.weight:[1392]***blocks.6.0.bn2.bias:[1392]***blocks.6.0.bn2.running_mean:[1392]***blocks.6.0.bn2.running_var:[1392]***blocks.6.0.bn2.num_batches_tracked:[]***blocks.6.0.se.conv_reduce.weight:[58, 1392, 1, 1]***blocks.6.0.se.conv_reduce.bias:[58]***blocks.6.0.se.conv_expand.weight:[1392, 58, 1, 1]***blocks.6.0.se.conv_expand.bias:[1392]***blocks.6.0.conv_pwl.weight:[384, 1392, 1, 1]***blocks.6.0.bn3.weight:[384]***blocks.6.0.bn3.bias:[384]***blocks.6.0.bn3.running_mean:[384]***blocks.6.0.bn3.running_var:[384]***blocks.6.0.bn3.num_batches_tracked:[]***blocks.6.1.conv_pw.weight:[2301, 384, 1, 1]***blocks.6.1.bn1.weight:[2301]***blocks.6.1.bn1.bias:[2301]***blocks.6.1.bn1.running_mean:[2301]***blocks.6.1.bn1.running_var:[2301]***blocks.6.1.bn1.num_batches_tracked:[]***blocks.6.1.conv_dw.weight:[2301, 1, 3, 3]***blocks.6.1.bn2.weight:[2301]***blocks.6.1.bn2.bias:[2301]***blocks.6.1.bn2.running_mean:[2301]***blocks.6.1.bn2.running_var:[2301]***blocks.6.1.bn2.num_batches_tracked:[]***blocks.6.1.se.conv_reduce.weight:[96, 2301, 1, 1]***blocks.6.1.se.conv_reduce.bias:[96]***blocks.6.1.se.conv_expand.weight:[2301, 96, 1, 1]***blocks.6.1.se.conv_expand.bias:[2301]***blocks.6.1.conv_pwl.weight:[384, 2301, 1, 1]***blocks.6.1.bn3.weight:[384]***blocks.6.1.bn3.bias:[384]***blocks.6.1.bn3.running_mean:[384]***blocks.6.1.bn3.running_var:[384]***blocks.6.1.bn3.num_batches_tracked:[]***conv_head.weight:[1536, 384, 1, 1]***bn2.weight:[1536]***bn2.bias:[1536]***bn2.running_mean:[1536]***bn2.running_var:[1536]***bn2.num_batches_tracked:[]***classifier.weight:[1000, 1536]***classifier.bias:[1000]
|
pytorch-image-models/timm/models/resnet.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch-image-models/timm/models/resnetv2.py
ADDED
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization.
|
2 |
+
|
3 |
+
A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfer (BiT) source code
|
4 |
+
at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have
|
5 |
+
been included here as pretrained models from their original .NPZ checkpoints.
|
6 |
+
|
7 |
+
Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transfomers (ViT) and
|
8 |
+
extra padding support to allow porting of official Hybrid ResNet pretrained weights from
|
9 |
+
https://github.com/google-research/vision_transformer
|
10 |
+
|
11 |
+
Thanks to the Google team for the above two repositories and associated papers:
|
12 |
+
* Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370
|
13 |
+
* An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929
|
14 |
+
* Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
|
15 |
+
|
16 |
+
Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020.
|
17 |
+
"""
|
18 |
+
# Copyright 2020 Google LLC
|
19 |
+
#
|
20 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
21 |
+
# you may not use this file except in compliance with the License.
|
22 |
+
# You may obtain a copy of the License at
|
23 |
+
#
|
24 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
25 |
+
#
|
26 |
+
# Unless required by applicable law or agreed to in writing, software
|
27 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
28 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
29 |
+
# See the License for the specific language governing permissions and
|
30 |
+
# limitations under the License.
|
31 |
+
|
32 |
+
from collections import OrderedDict # pylint: disable=g-importing-member
|
33 |
+
from functools import partial
|
34 |
+
from typing import Optional
|
35 |
+
|
36 |
+
import torch
|
37 |
+
import torch.nn as nn
|
38 |
+
|
39 |
+
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
40 |
+
from timm.layers import GroupNormAct, BatchNormAct2d, EvoNorm2dS0, FilterResponseNormTlu2d, ClassifierHead, \
|
41 |
+
DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d, get_act_layer, get_norm_act_layer, make_divisible
|
42 |
+
from ._builder import build_model_with_cfg
|
43 |
+
from ._manipulate import checkpoint_seq, named_apply, adapt_input_conv
|
44 |
+
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
45 |
+
|
46 |
+
__all__ = ['ResNetV2'] # model_registry will add each entrypoint fn to this
|
47 |
+
|
48 |
+
|
49 |
+
class PreActBasic(nn.Module):
|
50 |
+
""" Pre-activation basic block (not in typical 'v2' implementations)
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
in_chs,
|
56 |
+
out_chs=None,
|
57 |
+
bottle_ratio=1.0,
|
58 |
+
stride=1,
|
59 |
+
dilation=1,
|
60 |
+
first_dilation=None,
|
61 |
+
groups=1,
|
62 |
+
act_layer=None,
|
63 |
+
conv_layer=None,
|
64 |
+
norm_layer=None,
|
65 |
+
proj_layer=None,
|
66 |
+
drop_path_rate=0.,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
first_dilation = first_dilation or dilation
|
70 |
+
conv_layer = conv_layer or StdConv2d
|
71 |
+
norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
|
72 |
+
out_chs = out_chs or in_chs
|
73 |
+
mid_chs = make_divisible(out_chs * bottle_ratio)
|
74 |
+
|
75 |
+
if proj_layer is not None and (stride != 1 or first_dilation != dilation or in_chs != out_chs):
|
76 |
+
self.downsample = proj_layer(
|
77 |
+
in_chs,
|
78 |
+
out_chs,
|
79 |
+
stride=stride,
|
80 |
+
dilation=dilation,
|
81 |
+
first_dilation=first_dilation,
|
82 |
+
preact=True,
|
83 |
+
conv_layer=conv_layer,
|
84 |
+
norm_layer=norm_layer,
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
self.downsample = None
|
88 |
+
|
89 |
+
self.norm1 = norm_layer(in_chs)
|
90 |
+
self.conv1 = conv_layer(in_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
|
91 |
+
self.norm2 = norm_layer(mid_chs)
|
92 |
+
self.conv2 = conv_layer(mid_chs, out_chs, 3, dilation=dilation, groups=groups)
|
93 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
94 |
+
|
95 |
+
def zero_init_last(self):
|
96 |
+
nn.init.zeros_(self.conv3.weight)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
x_preact = self.norm1(x)
|
100 |
+
|
101 |
+
# shortcut branch
|
102 |
+
shortcut = x
|
103 |
+
if self.downsample is not None:
|
104 |
+
shortcut = self.downsample(x_preact)
|
105 |
+
|
106 |
+
# residual branch
|
107 |
+
x = self.conv1(x_preact)
|
108 |
+
x = self.conv2(self.norm2(x))
|
109 |
+
x = self.drop_path(x)
|
110 |
+
return x + shortcut
|
111 |
+
|
112 |
+
|
113 |
+
class PreActBottleneck(nn.Module):
|
114 |
+
"""Pre-activation (v2) bottleneck block.
|
115 |
+
|
116 |
+
Follows the implementation of "Identity Mappings in Deep Residual Networks":
|
117 |
+
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
|
118 |
+
|
119 |
+
Except it puts the stride on 3x3 conv when available.
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
in_chs,
|
125 |
+
out_chs=None,
|
126 |
+
bottle_ratio=0.25,
|
127 |
+
stride=1,
|
128 |
+
dilation=1,
|
129 |
+
first_dilation=None,
|
130 |
+
groups=1,
|
131 |
+
act_layer=None,
|
132 |
+
conv_layer=None,
|
133 |
+
norm_layer=None,
|
134 |
+
proj_layer=None,
|
135 |
+
drop_path_rate=0.,
|
136 |
+
):
|
137 |
+
super().__init__()
|
138 |
+
first_dilation = first_dilation or dilation
|
139 |
+
conv_layer = conv_layer or StdConv2d
|
140 |
+
norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
|
141 |
+
out_chs = out_chs or in_chs
|
142 |
+
mid_chs = make_divisible(out_chs * bottle_ratio)
|
143 |
+
|
144 |
+
if proj_layer is not None:
|
145 |
+
self.downsample = proj_layer(
|
146 |
+
in_chs,
|
147 |
+
out_chs,
|
148 |
+
stride=stride,
|
149 |
+
dilation=dilation,
|
150 |
+
first_dilation=first_dilation,
|
151 |
+
preact=True,
|
152 |
+
conv_layer=conv_layer,
|
153 |
+
norm_layer=norm_layer,
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
self.downsample = None
|
157 |
+
|
158 |
+
self.norm1 = norm_layer(in_chs)
|
159 |
+
self.conv1 = conv_layer(in_chs, mid_chs, 1)
|
160 |
+
self.norm2 = norm_layer(mid_chs)
|
161 |
+
self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
|
162 |
+
self.norm3 = norm_layer(mid_chs)
|
163 |
+
self.conv3 = conv_layer(mid_chs, out_chs, 1)
|
164 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
165 |
+
|
166 |
+
def zero_init_last(self):
|
167 |
+
nn.init.zeros_(self.conv3.weight)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
x_preact = self.norm1(x)
|
171 |
+
|
172 |
+
# shortcut branch
|
173 |
+
shortcut = x
|
174 |
+
if self.downsample is not None:
|
175 |
+
shortcut = self.downsample(x_preact)
|
176 |
+
|
177 |
+
# residual branch
|
178 |
+
x = self.conv1(x_preact)
|
179 |
+
x = self.conv2(self.norm2(x))
|
180 |
+
x = self.conv3(self.norm3(x))
|
181 |
+
x = self.drop_path(x)
|
182 |
+
return x + shortcut
|
183 |
+
|
184 |
+
|
185 |
+
class Bottleneck(nn.Module):
|
186 |
+
"""Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT.
|
187 |
+
"""
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
in_chs,
|
191 |
+
out_chs=None,
|
192 |
+
bottle_ratio=0.25,
|
193 |
+
stride=1,
|
194 |
+
dilation=1,
|
195 |
+
first_dilation=None,
|
196 |
+
groups=1,
|
197 |
+
act_layer=None,
|
198 |
+
conv_layer=None,
|
199 |
+
norm_layer=None,
|
200 |
+
proj_layer=None,
|
201 |
+
drop_path_rate=0.,
|
202 |
+
):
|
203 |
+
super().__init__()
|
204 |
+
first_dilation = first_dilation or dilation
|
205 |
+
act_layer = act_layer or nn.ReLU
|
206 |
+
conv_layer = conv_layer or StdConv2d
|
207 |
+
norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
|
208 |
+
out_chs = out_chs or in_chs
|
209 |
+
mid_chs = make_divisible(out_chs * bottle_ratio)
|
210 |
+
|
211 |
+
if proj_layer is not None:
|
212 |
+
self.downsample = proj_layer(
|
213 |
+
in_chs,
|
214 |
+
out_chs,
|
215 |
+
stride=stride,
|
216 |
+
dilation=dilation,
|
217 |
+
preact=False,
|
218 |
+
conv_layer=conv_layer,
|
219 |
+
norm_layer=norm_layer,
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
self.downsample = None
|
223 |
+
|
224 |
+
self.conv1 = conv_layer(in_chs, mid_chs, 1)
|
225 |
+
self.norm1 = norm_layer(mid_chs)
|
226 |
+
self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
|
227 |
+
self.norm2 = norm_layer(mid_chs)
|
228 |
+
self.conv3 = conv_layer(mid_chs, out_chs, 1)
|
229 |
+
self.norm3 = norm_layer(out_chs, apply_act=False)
|
230 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
231 |
+
self.act3 = act_layer(inplace=True)
|
232 |
+
|
233 |
+
def zero_init_last(self):
|
234 |
+
if getattr(self.norm3, 'weight', None) is not None:
|
235 |
+
nn.init.zeros_(self.norm3.weight)
|
236 |
+
|
237 |
+
def forward(self, x):
|
238 |
+
# shortcut branch
|
239 |
+
shortcut = x
|
240 |
+
if self.downsample is not None:
|
241 |
+
shortcut = self.downsample(x)
|
242 |
+
|
243 |
+
# residual
|
244 |
+
x = self.conv1(x)
|
245 |
+
x = self.norm1(x)
|
246 |
+
x = self.conv2(x)
|
247 |
+
x = self.norm2(x)
|
248 |
+
x = self.conv3(x)
|
249 |
+
x = self.norm3(x)
|
250 |
+
x = self.drop_path(x)
|
251 |
+
x = self.act3(x + shortcut)
|
252 |
+
return x
|
253 |
+
|
254 |
+
|
255 |
+
class DownsampleConv(nn.Module):
|
256 |
+
def __init__(
|
257 |
+
self,
|
258 |
+
in_chs,
|
259 |
+
out_chs,
|
260 |
+
stride=1,
|
261 |
+
dilation=1,
|
262 |
+
first_dilation=None,
|
263 |
+
preact=True,
|
264 |
+
conv_layer=None,
|
265 |
+
norm_layer=None,
|
266 |
+
):
|
267 |
+
super(DownsampleConv, self).__init__()
|
268 |
+
self.conv = conv_layer(in_chs, out_chs, 1, stride=stride)
|
269 |
+
self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False)
|
270 |
+
|
271 |
+
def forward(self, x):
|
272 |
+
return self.norm(self.conv(x))
|
273 |
+
|
274 |
+
|
275 |
+
class DownsampleAvg(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
in_chs,
|
279 |
+
out_chs,
|
280 |
+
stride=1,
|
281 |
+
dilation=1,
|
282 |
+
first_dilation=None,
|
283 |
+
preact=True,
|
284 |
+
conv_layer=None,
|
285 |
+
norm_layer=None,
|
286 |
+
):
|
287 |
+
""" AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment."""
|
288 |
+
super(DownsampleAvg, self).__init__()
|
289 |
+
avg_stride = stride if dilation == 1 else 1
|
290 |
+
if stride > 1 or dilation > 1:
|
291 |
+
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
292 |
+
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
|
293 |
+
else:
|
294 |
+
self.pool = nn.Identity()
|
295 |
+
self.conv = conv_layer(in_chs, out_chs, 1, stride=1)
|
296 |
+
self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False)
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
return self.norm(self.conv(self.pool(x)))
|
300 |
+
|
301 |
+
|
302 |
+
class ResNetStage(nn.Module):
|
303 |
+
"""ResNet Stage."""
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
in_chs,
|
307 |
+
out_chs,
|
308 |
+
stride,
|
309 |
+
dilation,
|
310 |
+
depth,
|
311 |
+
bottle_ratio=0.25,
|
312 |
+
groups=1,
|
313 |
+
avg_down=False,
|
314 |
+
block_dpr=None,
|
315 |
+
block_fn=PreActBottleneck,
|
316 |
+
act_layer=None,
|
317 |
+
conv_layer=None,
|
318 |
+
norm_layer=None,
|
319 |
+
**block_kwargs,
|
320 |
+
):
|
321 |
+
super(ResNetStage, self).__init__()
|
322 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
323 |
+
layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer)
|
324 |
+
proj_layer = DownsampleAvg if avg_down else DownsampleConv
|
325 |
+
prev_chs = in_chs
|
326 |
+
self.blocks = nn.Sequential()
|
327 |
+
for block_idx in range(depth):
|
328 |
+
drop_path_rate = block_dpr[block_idx] if block_dpr else 0.
|
329 |
+
stride = stride if block_idx == 0 else 1
|
330 |
+
self.blocks.add_module(str(block_idx), block_fn(
|
331 |
+
prev_chs,
|
332 |
+
out_chs,
|
333 |
+
stride=stride,
|
334 |
+
dilation=dilation,
|
335 |
+
bottle_ratio=bottle_ratio,
|
336 |
+
groups=groups,
|
337 |
+
first_dilation=first_dilation,
|
338 |
+
proj_layer=proj_layer,
|
339 |
+
drop_path_rate=drop_path_rate,
|
340 |
+
**layer_kwargs,
|
341 |
+
**block_kwargs,
|
342 |
+
))
|
343 |
+
prev_chs = out_chs
|
344 |
+
first_dilation = dilation
|
345 |
+
proj_layer = None
|
346 |
+
|
347 |
+
def forward(self, x):
|
348 |
+
x = self.blocks(x)
|
349 |
+
return x
|
350 |
+
|
351 |
+
|
352 |
+
def is_stem_deep(stem_type):
|
353 |
+
return any([s in stem_type for s in ('deep', 'tiered')])
|
354 |
+
|
355 |
+
|
356 |
+
def create_resnetv2_stem(
|
357 |
+
in_chs,
|
358 |
+
out_chs=64,
|
359 |
+
stem_type='',
|
360 |
+
preact=True,
|
361 |
+
conv_layer=StdConv2d,
|
362 |
+
norm_layer=partial(GroupNormAct, num_groups=32),
|
363 |
+
):
|
364 |
+
stem = OrderedDict()
|
365 |
+
assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same', 'tiered')
|
366 |
+
|
367 |
+
# NOTE conv padding mode can be changed by overriding the conv_layer def
|
368 |
+
if is_stem_deep(stem_type):
|
369 |
+
# A 3 deep 3x3 conv stack as in ResNet V1D models
|
370 |
+
if 'tiered' in stem_type:
|
371 |
+
stem_chs = (3 * out_chs // 8, out_chs // 2) # 'T' resnets in resnet.py
|
372 |
+
else:
|
373 |
+
stem_chs = (out_chs // 2, out_chs // 2) # 'D' ResNets
|
374 |
+
stem['conv1'] = conv_layer(in_chs, stem_chs[0], kernel_size=3, stride=2)
|
375 |
+
stem['norm1'] = norm_layer(stem_chs[0])
|
376 |
+
stem['conv2'] = conv_layer(stem_chs[0], stem_chs[1], kernel_size=3, stride=1)
|
377 |
+
stem['norm2'] = norm_layer(stem_chs[1])
|
378 |
+
stem['conv3'] = conv_layer(stem_chs[1], out_chs, kernel_size=3, stride=1)
|
379 |
+
if not preact:
|
380 |
+
stem['norm3'] = norm_layer(out_chs)
|
381 |
+
else:
|
382 |
+
# The usual 7x7 stem conv
|
383 |
+
stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2)
|
384 |
+
if not preact:
|
385 |
+
stem['norm'] = norm_layer(out_chs)
|
386 |
+
|
387 |
+
if 'fixed' in stem_type:
|
388 |
+
# 'fixed' SAME padding approximation that is used in BiT models
|
389 |
+
stem['pad'] = nn.ConstantPad2d(1, 0.)
|
390 |
+
stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
|
391 |
+
elif 'same' in stem_type:
|
392 |
+
# full, input size based 'SAME' padding, used in ViT Hybrid model
|
393 |
+
stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same')
|
394 |
+
else:
|
395 |
+
# the usual PyTorch symmetric padding
|
396 |
+
stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
397 |
+
|
398 |
+
return nn.Sequential(stem)
|
399 |
+
|
400 |
+
|
401 |
+
class ResNetV2(nn.Module):
|
402 |
+
"""Implementation of Pre-activation (v2) ResNet mode.
|
403 |
+
"""
|
404 |
+
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
layers,
|
408 |
+
channels=(256, 512, 1024, 2048),
|
409 |
+
num_classes=1000,
|
410 |
+
in_chans=3,
|
411 |
+
global_pool='avg',
|
412 |
+
output_stride=32,
|
413 |
+
width_factor=1,
|
414 |
+
stem_chs=64,
|
415 |
+
stem_type='',
|
416 |
+
avg_down=False,
|
417 |
+
preact=True,
|
418 |
+
basic=False,
|
419 |
+
bottle_ratio=0.25,
|
420 |
+
act_layer=nn.ReLU,
|
421 |
+
norm_layer=partial(GroupNormAct, num_groups=32),
|
422 |
+
conv_layer=StdConv2d,
|
423 |
+
drop_rate=0.,
|
424 |
+
drop_path_rate=0.,
|
425 |
+
zero_init_last=False,
|
426 |
+
):
|
427 |
+
"""
|
428 |
+
Args:
|
429 |
+
layers (List[int]) : number of layers in each block
|
430 |
+
channels (List[int]) : number of channels in each block:
|
431 |
+
num_classes (int): number of classification classes (default 1000)
|
432 |
+
in_chans (int): number of input (color) channels. (default 3)
|
433 |
+
global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg')
|
434 |
+
output_stride (int): output stride of the network, 32, 16, or 8. (default 32)
|
435 |
+
width_factor (int): channel (width) multiplication factor
|
436 |
+
stem_chs (int): stem width (default: 64)
|
437 |
+
stem_type (str): stem type (default: '' == 7x7)
|
438 |
+
avg_down (bool): average pooling in residual downsampling (default: False)
|
439 |
+
preact (bool): pre-activiation (default: True)
|
440 |
+
act_layer (Union[str, nn.Module]): activation layer
|
441 |
+
norm_layer (Union[str, nn.Module]): normalization layer
|
442 |
+
conv_layer (nn.Module): convolution module
|
443 |
+
drop_rate: classifier dropout rate (default: 0.)
|
444 |
+
drop_path_rate: stochastic depth rate (default: 0.)
|
445 |
+
zero_init_last: zero-init last weight in residual path (default: False)
|
446 |
+
"""
|
447 |
+
super().__init__()
|
448 |
+
self.num_classes = num_classes
|
449 |
+
self.drop_rate = drop_rate
|
450 |
+
wf = width_factor
|
451 |
+
norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer)
|
452 |
+
act_layer = get_act_layer(act_layer)
|
453 |
+
|
454 |
+
self.feature_info = []
|
455 |
+
stem_chs = make_divisible(stem_chs * wf)
|
456 |
+
self.stem = create_resnetv2_stem(
|
457 |
+
in_chans,
|
458 |
+
stem_chs,
|
459 |
+
stem_type,
|
460 |
+
preact,
|
461 |
+
conv_layer=conv_layer,
|
462 |
+
norm_layer=norm_layer,
|
463 |
+
)
|
464 |
+
stem_feat = ('stem.conv3' if is_stem_deep(stem_type) else 'stem.conv') if preact else 'stem.norm'
|
465 |
+
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat))
|
466 |
+
|
467 |
+
prev_chs = stem_chs
|
468 |
+
curr_stride = 4
|
469 |
+
dilation = 1
|
470 |
+
block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
|
471 |
+
if preact:
|
472 |
+
block_fn = PreActBasic if basic else PreActBottleneck
|
473 |
+
else:
|
474 |
+
assert not basic
|
475 |
+
block_fn = Bottleneck
|
476 |
+
self.stages = nn.Sequential()
|
477 |
+
for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)):
|
478 |
+
out_chs = make_divisible(c * wf)
|
479 |
+
stride = 1 if stage_idx == 0 else 2
|
480 |
+
if curr_stride >= output_stride:
|
481 |
+
dilation *= stride
|
482 |
+
stride = 1
|
483 |
+
stage = ResNetStage(
|
484 |
+
prev_chs,
|
485 |
+
out_chs,
|
486 |
+
stride=stride,
|
487 |
+
dilation=dilation,
|
488 |
+
depth=d,
|
489 |
+
bottle_ratio=bottle_ratio,
|
490 |
+
avg_down=avg_down,
|
491 |
+
act_layer=act_layer,
|
492 |
+
conv_layer=conv_layer,
|
493 |
+
norm_layer=norm_layer,
|
494 |
+
block_dpr=bdpr,
|
495 |
+
block_fn=block_fn,
|
496 |
+
)
|
497 |
+
prev_chs = out_chs
|
498 |
+
curr_stride *= stride
|
499 |
+
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')]
|
500 |
+
self.stages.add_module(str(stage_idx), stage)
|
501 |
+
|
502 |
+
self.num_features = self.head_hidden_size = prev_chs
|
503 |
+
self.norm = norm_layer(self.num_features) if preact else nn.Identity()
|
504 |
+
self.head = ClassifierHead(
|
505 |
+
self.num_features,
|
506 |
+
num_classes,
|
507 |
+
pool_type=global_pool,
|
508 |
+
drop_rate=self.drop_rate,
|
509 |
+
use_conv=True,
|
510 |
+
)
|
511 |
+
|
512 |
+
self.init_weights(zero_init_last=zero_init_last)
|
513 |
+
self.grad_checkpointing = False
|
514 |
+
|
515 |
+
@torch.jit.ignore
|
516 |
+
def init_weights(self, zero_init_last=True):
|
517 |
+
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
|
518 |
+
|
519 |
+
@torch.jit.ignore()
|
520 |
+
def load_pretrained(self, checkpoint_path, prefix='resnet/'):
|
521 |
+
_load_weights(self, checkpoint_path, prefix)
|
522 |
+
|
523 |
+
@torch.jit.ignore
|
524 |
+
def group_matcher(self, coarse=False):
|
525 |
+
matcher = dict(
|
526 |
+
stem=r'^stem',
|
527 |
+
blocks=r'^stages\.(\d+)' if coarse else [
|
528 |
+
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
|
529 |
+
(r'^norm', (99999,))
|
530 |
+
]
|
531 |
+
)
|
532 |
+
return matcher
|
533 |
+
|
534 |
+
@torch.jit.ignore
|
535 |
+
def set_grad_checkpointing(self, enable=True):
|
536 |
+
self.grad_checkpointing = enable
|
537 |
+
|
538 |
+
@torch.jit.ignore
|
539 |
+
def get_classifier(self) -> nn.Module:
|
540 |
+
return self.head.fc
|
541 |
+
|
542 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
543 |
+
self.num_classes = num_classes
|
544 |
+
self.head.reset(num_classes, global_pool)
|
545 |
+
|
546 |
+
def forward_features(self, x):
|
547 |
+
x = self.stem(x)
|
548 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
549 |
+
x = checkpoint_seq(self.stages, x, flatten=True)
|
550 |
+
else:
|
551 |
+
x = self.stages(x)
|
552 |
+
x = self.norm(x)
|
553 |
+
return x
|
554 |
+
|
555 |
+
def forward_head(self, x, pre_logits: bool = False):
|
556 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
557 |
+
|
558 |
+
def forward(self, x):
|
559 |
+
x = self.forward_features(x)
|
560 |
+
x = self.forward_head(x)
|
561 |
+
return x
|
562 |
+
|
563 |
+
|
564 |
+
def _init_weights(module: nn.Module, name: str = '', zero_init_last=True):
|
565 |
+
if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)):
|
566 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.01)
|
567 |
+
nn.init.zeros_(module.bias)
|
568 |
+
elif isinstance(module, nn.Conv2d):
|
569 |
+
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
570 |
+
if module.bias is not None:
|
571 |
+
nn.init.zeros_(module.bias)
|
572 |
+
elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)):
|
573 |
+
nn.init.ones_(module.weight)
|
574 |
+
nn.init.zeros_(module.bias)
|
575 |
+
elif zero_init_last and hasattr(module, 'zero_init_last'):
|
576 |
+
module.zero_init_last()
|
577 |
+
|
578 |
+
|
579 |
+
@torch.no_grad()
|
580 |
+
def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'):
|
581 |
+
import numpy as np
|
582 |
+
|
583 |
+
def t2p(conv_weights):
|
584 |
+
"""Possibly convert HWIO to OIHW."""
|
585 |
+
if conv_weights.ndim == 4:
|
586 |
+
conv_weights = conv_weights.transpose([3, 2, 0, 1])
|
587 |
+
return torch.from_numpy(conv_weights)
|
588 |
+
|
589 |
+
weights = np.load(checkpoint_path)
|
590 |
+
stem_conv_w = adapt_input_conv(
|
591 |
+
model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel']))
|
592 |
+
model.stem.conv.weight.copy_(stem_conv_w)
|
593 |
+
model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma']))
|
594 |
+
model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta']))
|
595 |
+
if isinstance(getattr(model.head, 'fc', None), nn.Conv2d) and \
|
596 |
+
model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]:
|
597 |
+
model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel']))
|
598 |
+
model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias']))
|
599 |
+
for i, (sname, stage) in enumerate(model.stages.named_children()):
|
600 |
+
for j, (bname, block) in enumerate(stage.blocks.named_children()):
|
601 |
+
cname = 'standardized_conv2d'
|
602 |
+
block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/'
|
603 |
+
block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel']))
|
604 |
+
block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel']))
|
605 |
+
block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel']))
|
606 |
+
block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma']))
|
607 |
+
block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma']))
|
608 |
+
block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma']))
|
609 |
+
block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta']))
|
610 |
+
block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta']))
|
611 |
+
block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta']))
|
612 |
+
if block.downsample is not None:
|
613 |
+
w = weights[f'{block_prefix}a/proj/{cname}/kernel']
|
614 |
+
block.downsample.conv.weight.copy_(t2p(w))
|
615 |
+
|
616 |
+
|
617 |
+
def _create_resnetv2(variant, pretrained=False, **kwargs):
|
618 |
+
feature_cfg = dict(flatten_sequential=True)
|
619 |
+
return build_model_with_cfg(
|
620 |
+
ResNetV2, variant, pretrained,
|
621 |
+
feature_cfg=feature_cfg,
|
622 |
+
**kwargs,
|
623 |
+
)
|
624 |
+
|
625 |
+
|
626 |
+
def _create_resnetv2_bit(variant, pretrained=False, **kwargs):
|
627 |
+
return _create_resnetv2(
|
628 |
+
variant,
|
629 |
+
pretrained=pretrained,
|
630 |
+
stem_type='fixed',
|
631 |
+
conv_layer=partial(StdConv2d, eps=1e-8),
|
632 |
+
**kwargs,
|
633 |
+
)
|
634 |
+
|
635 |
+
|
636 |
+
def _cfg(url='', **kwargs):
|
637 |
+
return {
|
638 |
+
'url': url,
|
639 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
640 |
+
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
641 |
+
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
642 |
+
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
643 |
+
**kwargs
|
644 |
+
}
|
645 |
+
|
646 |
+
|
647 |
+
default_cfgs = generate_default_cfgs({
|
648 |
+
# Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
|
649 |
+
'resnetv2_50x1_bit.goog_distilled_in1k': _cfg(
|
650 |
+
hf_hub_id='timm/',
|
651 |
+
interpolation='bicubic', custom_load=True),
|
652 |
+
'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k': _cfg(
|
653 |
+
hf_hub_id='timm/',
|
654 |
+
interpolation='bicubic', custom_load=True),
|
655 |
+
'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384': _cfg(
|
656 |
+
hf_hub_id='timm/',
|
657 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic', custom_load=True),
|
658 |
+
|
659 |
+
# pretrained on imagenet21k, finetuned on imagenet1k
|
660 |
+
'resnetv2_50x1_bit.goog_in21k_ft_in1k': _cfg(
|
661 |
+
hf_hub_id='timm/',
|
662 |
+
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True),
|
663 |
+
'resnetv2_50x3_bit.goog_in21k_ft_in1k': _cfg(
|
664 |
+
hf_hub_id='timm/',
|
665 |
+
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True),
|
666 |
+
'resnetv2_101x1_bit.goog_in21k_ft_in1k': _cfg(
|
667 |
+
hf_hub_id='timm/',
|
668 |
+
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True),
|
669 |
+
'resnetv2_101x3_bit.goog_in21k_ft_in1k': _cfg(
|
670 |
+
hf_hub_id='timm/',
|
671 |
+
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True),
|
672 |
+
'resnetv2_152x2_bit.goog_in21k_ft_in1k': _cfg(
|
673 |
+
hf_hub_id='timm/',
|
674 |
+
input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True),
|
675 |
+
'resnetv2_152x4_bit.goog_in21k_ft_in1k': _cfg(
|
676 |
+
hf_hub_id='timm/',
|
677 |
+
input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0, custom_load=True), # only one at 480x480?
|
678 |
+
|
679 |
+
# trained on imagenet-21k
|
680 |
+
'resnetv2_50x1_bit.goog_in21k': _cfg(
|
681 |
+
hf_hub_id='timm/',
|
682 |
+
num_classes=21843, custom_load=True),
|
683 |
+
'resnetv2_50x3_bit.goog_in21k': _cfg(
|
684 |
+
hf_hub_id='timm/',
|
685 |
+
num_classes=21843, custom_load=True),
|
686 |
+
'resnetv2_101x1_bit.goog_in21k': _cfg(
|
687 |
+
hf_hub_id='timm/',
|
688 |
+
num_classes=21843, custom_load=True),
|
689 |
+
'resnetv2_101x3_bit.goog_in21k': _cfg(
|
690 |
+
hf_hub_id='timm/',
|
691 |
+
num_classes=21843, custom_load=True),
|
692 |
+
'resnetv2_152x2_bit.goog_in21k': _cfg(
|
693 |
+
hf_hub_id='timm/',
|
694 |
+
num_classes=21843, custom_load=True),
|
695 |
+
'resnetv2_152x4_bit.goog_in21k': _cfg(
|
696 |
+
hf_hub_id='timm/',
|
697 |
+
num_classes=21843, custom_load=True),
|
698 |
+
|
699 |
+
'resnetv2_18.ra4_e3600_r224_in1k': _cfg(
|
700 |
+
hf_hub_id='timm/',
|
701 |
+
interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
702 |
+
'resnetv2_18d.ra4_e3600_r224_in1k': _cfg(
|
703 |
+
hf_hub_id='timm/',
|
704 |
+
interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0,
|
705 |
+
first_conv='stem.conv1'),
|
706 |
+
'resnetv2_34.ra4_e3600_r224_in1k': _cfg(
|
707 |
+
hf_hub_id='timm/',
|
708 |
+
interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
709 |
+
'resnetv2_34d.ra4_e3600_r224_in1k': _cfg(
|
710 |
+
hf_hub_id='timm/',
|
711 |
+
interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0,
|
712 |
+
first_conv='stem.conv1'),
|
713 |
+
'resnetv2_34d.ra4_e3600_r384_in1k': _cfg(
|
714 |
+
hf_hub_id='timm/',
|
715 |
+
crop_pct=1.0, input_size=(3, 384, 384), pool_size=(12, 12), test_input_size=(3, 448, 448),
|
716 |
+
interpolation='bicubic', first_conv='stem.conv1'),
|
717 |
+
'resnetv2_50.a1h_in1k': _cfg(
|
718 |
+
hf_hub_id='timm/',
|
719 |
+
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
720 |
+
'resnetv2_50d.untrained': _cfg(
|
721 |
+
interpolation='bicubic', first_conv='stem.conv1'),
|
722 |
+
'resnetv2_50t.untrained': _cfg(
|
723 |
+
interpolation='bicubic', first_conv='stem.conv1'),
|
724 |
+
'resnetv2_101.a1h_in1k': _cfg(
|
725 |
+
hf_hub_id='timm/',
|
726 |
+
interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
727 |
+
'resnetv2_101d.untrained': _cfg(
|
728 |
+
interpolation='bicubic', first_conv='stem.conv1'),
|
729 |
+
'resnetv2_152.untrained': _cfg(
|
730 |
+
interpolation='bicubic'),
|
731 |
+
'resnetv2_152d.untrained': _cfg(
|
732 |
+
interpolation='bicubic', first_conv='stem.conv1'),
|
733 |
+
|
734 |
+
'resnetv2_50d_gn.ah_in1k': _cfg(
|
735 |
+
hf_hub_id='timm/',
|
736 |
+
interpolation='bicubic', first_conv='stem.conv1',
|
737 |
+
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
738 |
+
'resnetv2_50d_evos.ah_in1k': _cfg(
|
739 |
+
hf_hub_id='timm/',
|
740 |
+
interpolation='bicubic', first_conv='stem.conv1',
|
741 |
+
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
|
742 |
+
'resnetv2_50d_frn.untrained': _cfg(
|
743 |
+
interpolation='bicubic', first_conv='stem.conv1'),
|
744 |
+
})
|
745 |
+
|
746 |
+
|
747 |
+
@register_model
|
748 |
+
def resnetv2_50x1_bit(pretrained=False, **kwargs) -> ResNetV2:
|
749 |
+
return _create_resnetv2_bit(
|
750 |
+
'resnetv2_50x1_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs)
|
751 |
+
|
752 |
+
|
753 |
+
@register_model
|
754 |
+
def resnetv2_50x3_bit(pretrained=False, **kwargs) -> ResNetV2:
|
755 |
+
return _create_resnetv2_bit(
|
756 |
+
'resnetv2_50x3_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs)
|
757 |
+
|
758 |
+
|
759 |
+
@register_model
|
760 |
+
def resnetv2_101x1_bit(pretrained=False, **kwargs) -> ResNetV2:
|
761 |
+
return _create_resnetv2_bit(
|
762 |
+
'resnetv2_101x1_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs)
|
763 |
+
|
764 |
+
|
765 |
+
@register_model
|
766 |
+
def resnetv2_101x3_bit(pretrained=False, **kwargs) -> ResNetV2:
|
767 |
+
return _create_resnetv2_bit(
|
768 |
+
'resnetv2_101x3_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs)
|
769 |
+
|
770 |
+
|
771 |
+
@register_model
|
772 |
+
def resnetv2_152x2_bit(pretrained=False, **kwargs) -> ResNetV2:
|
773 |
+
return _create_resnetv2_bit(
|
774 |
+
'resnetv2_152x2_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)
|
775 |
+
|
776 |
+
|
777 |
+
@register_model
|
778 |
+
def resnetv2_152x4_bit(pretrained=False, **kwargs) -> ResNetV2:
|
779 |
+
return _create_resnetv2_bit(
|
780 |
+
'resnetv2_152x4_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs)
|
781 |
+
|
782 |
+
|
783 |
+
@register_model
|
784 |
+
def resnetv2_18(pretrained=False, **kwargs) -> ResNetV2:
|
785 |
+
model_args = dict(
|
786 |
+
layers=[2, 2, 2, 2], channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0,
|
787 |
+
conv_layer=create_conv2d, norm_layer=BatchNormAct2d
|
788 |
+
)
|
789 |
+
return _create_resnetv2('resnetv2_18', pretrained=pretrained, **dict(model_args, **kwargs))
|
790 |
+
|
791 |
+
|
792 |
+
@register_model
|
793 |
+
def resnetv2_18d(pretrained=False, **kwargs) -> ResNetV2:
|
794 |
+
model_args = dict(
|
795 |
+
layers=[2, 2, 2, 2], channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0,
|
796 |
+
conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True
|
797 |
+
)
|
798 |
+
return _create_resnetv2('resnetv2_18d', pretrained=pretrained, **dict(model_args, **kwargs))
|
799 |
+
|
800 |
+
|
801 |
+
@register_model
|
802 |
+
def resnetv2_34(pretrained=False, **kwargs) -> ResNetV2:
|
803 |
+
model_args = dict(
|
804 |
+
layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0,
|
805 |
+
conv_layer=create_conv2d, norm_layer=BatchNormAct2d
|
806 |
+
)
|
807 |
+
return _create_resnetv2('resnetv2_34', pretrained=pretrained, **dict(model_args, **kwargs))
|
808 |
+
|
809 |
+
|
810 |
+
@register_model
|
811 |
+
def resnetv2_34d(pretrained=False, **kwargs) -> ResNetV2:
|
812 |
+
model_args = dict(
|
813 |
+
layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0,
|
814 |
+
conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True
|
815 |
+
)
|
816 |
+
return _create_resnetv2('resnetv2_34d', pretrained=pretrained, **dict(model_args, **kwargs))
|
817 |
+
|
818 |
+
|
819 |
+
@register_model
|
820 |
+
def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2:
|
821 |
+
model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d)
|
822 |
+
return _create_resnetv2('resnetv2_50', pretrained=pretrained, **dict(model_args, **kwargs))
|
823 |
+
|
824 |
+
|
825 |
+
@register_model
|
826 |
+
def resnetv2_50d(pretrained=False, **kwargs) -> ResNetV2:
|
827 |
+
model_args = dict(
|
828 |
+
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
|
829 |
+
stem_type='deep', avg_down=True)
|
830 |
+
return _create_resnetv2('resnetv2_50d', pretrained=pretrained, **dict(model_args, **kwargs))
|
831 |
+
|
832 |
+
|
833 |
+
@register_model
|
834 |
+
def resnetv2_50t(pretrained=False, **kwargs) -> ResNetV2:
|
835 |
+
model_args = dict(
|
836 |
+
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
|
837 |
+
stem_type='tiered', avg_down=True)
|
838 |
+
return _create_resnetv2('resnetv2_50t', pretrained=pretrained, **dict(model_args, **kwargs))
|
839 |
+
|
840 |
+
|
841 |
+
@register_model
|
842 |
+
def resnetv2_101(pretrained=False, **kwargs) -> ResNetV2:
|
843 |
+
model_args = dict(layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d)
|
844 |
+
return _create_resnetv2('resnetv2_101', pretrained=pretrained, **dict(model_args, **kwargs))
|
845 |
+
|
846 |
+
|
847 |
+
@register_model
|
848 |
+
def resnetv2_101d(pretrained=False, **kwargs) -> ResNetV2:
|
849 |
+
model_args = dict(
|
850 |
+
layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
|
851 |
+
stem_type='deep', avg_down=True)
|
852 |
+
return _create_resnetv2('resnetv2_101d', pretrained=pretrained, **dict(model_args, **kwargs))
|
853 |
+
|
854 |
+
|
855 |
+
@register_model
|
856 |
+
def resnetv2_152(pretrained=False, **kwargs) -> ResNetV2:
|
857 |
+
model_args = dict(layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d)
|
858 |
+
return _create_resnetv2('resnetv2_152', pretrained=pretrained, **dict(model_args, **kwargs))
|
859 |
+
|
860 |
+
|
861 |
+
@register_model
|
862 |
+
def resnetv2_152d(pretrained=False, **kwargs) -> ResNetV2:
|
863 |
+
model_args = dict(
|
864 |
+
layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
|
865 |
+
stem_type='deep', avg_down=True)
|
866 |
+
return _create_resnetv2('resnetv2_152d', pretrained=pretrained, **dict(model_args, **kwargs))
|
867 |
+
|
868 |
+
|
869 |
+
# Experimental configs (may change / be removed)
|
870 |
+
|
871 |
+
@register_model
|
872 |
+
def resnetv2_50d_gn(pretrained=False, **kwargs) -> ResNetV2:
|
873 |
+
model_args = dict(
|
874 |
+
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=GroupNormAct,
|
875 |
+
stem_type='deep', avg_down=True)
|
876 |
+
return _create_resnetv2('resnetv2_50d_gn', pretrained=pretrained, **dict(model_args, **kwargs))
|
877 |
+
|
878 |
+
|
879 |
+
@register_model
|
880 |
+
def resnetv2_50d_evos(pretrained=False, **kwargs) -> ResNetV2:
|
881 |
+
model_args = dict(
|
882 |
+
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNorm2dS0,
|
883 |
+
stem_type='deep', avg_down=True)
|
884 |
+
return _create_resnetv2('resnetv2_50d_evos', pretrained=pretrained, **dict(model_args, **kwargs))
|
885 |
+
|
886 |
+
|
887 |
+
@register_model
|
888 |
+
def resnetv2_50d_frn(pretrained=False, **kwargs) -> ResNetV2:
|
889 |
+
model_args = dict(
|
890 |
+
layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=FilterResponseNormTlu2d,
|
891 |
+
stem_type='deep', avg_down=True)
|
892 |
+
return _create_resnetv2('resnetv2_50d_frn', pretrained=pretrained, **dict(model_args, **kwargs))
|
893 |
+
|
894 |
+
|
895 |
+
register_model_deprecations(__name__, {
|
896 |
+
'resnetv2_50x1_bitm': 'resnetv2_50x1_bit.goog_in21k_ft_in1k',
|
897 |
+
'resnetv2_50x3_bitm': 'resnetv2_50x3_bit.goog_in21k_ft_in1k',
|
898 |
+
'resnetv2_101x1_bitm': 'resnetv2_101x1_bit.goog_in21k_ft_in1k',
|
899 |
+
'resnetv2_101x3_bitm': 'resnetv2_101x3_bit.goog_in21k_ft_in1k',
|
900 |
+
'resnetv2_152x2_bitm': 'resnetv2_152x2_bit.goog_in21k_ft_in1k',
|
901 |
+
'resnetv2_152x4_bitm': 'resnetv2_152x4_bit.goog_in21k_ft_in1k',
|
902 |
+
'resnetv2_50x1_bitm_in21k': 'resnetv2_50x1_bit.goog_in21k',
|
903 |
+
'resnetv2_50x3_bitm_in21k': 'resnetv2_50x3_bit.goog_in21k',
|
904 |
+
'resnetv2_101x1_bitm_in21k': 'resnetv2_101x1_bit.goog_in21k',
|
905 |
+
'resnetv2_101x3_bitm_in21k': 'resnetv2_101x3_bit.goog_in21k',
|
906 |
+
'resnetv2_152x2_bitm_in21k': 'resnetv2_152x2_bit.goog_in21k',
|
907 |
+
'resnetv2_152x4_bitm_in21k': 'resnetv2_152x4_bit.goog_in21k',
|
908 |
+
'resnetv2_50x1_bit_distilled': 'resnetv2_50x1_bit.goog_distilled_in1k',
|
909 |
+
'resnetv2_152x2_bit_teacher': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k',
|
910 |
+
'resnetv2_152x2_bit_teacher_384': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384',
|
911 |
+
})
|
pytorch-image-models/timm/models/rexnet.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ReXNet
|
2 |
+
|
3 |
+
A PyTorch impl of `ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network` -
|
4 |
+
https://arxiv.org/abs/2007.00992
|
5 |
+
|
6 |
+
Adapted from original impl at https://github.com/clovaai/rexnet
|
7 |
+
Copyright (c) 2020-present NAVER Corp. MIT license
|
8 |
+
|
9 |
+
Changes for timm, feature extraction, and rounded channel variant hacked together by Ross Wightman
|
10 |
+
Copyright 2020 Ross Wightman
|
11 |
+
"""
|
12 |
+
|
13 |
+
from functools import partial
|
14 |
+
from math import ceil
|
15 |
+
from typing import Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
21 |
+
from timm.layers import ClassifierHead, create_act_layer, ConvNormAct, DropPath, make_divisible, SEModule
|
22 |
+
from ._builder import build_model_with_cfg
|
23 |
+
from ._efficientnet_builder import efficientnet_init_weights
|
24 |
+
from ._manipulate import checkpoint_seq
|
25 |
+
from ._registry import generate_default_cfgs, register_model
|
26 |
+
|
27 |
+
__all__ = ['RexNet'] # model_registry will add each entrypoint fn to this
|
28 |
+
|
29 |
+
|
30 |
+
SEWithNorm = partial(SEModule, norm_layer=nn.BatchNorm2d)
|
31 |
+
|
32 |
+
|
33 |
+
class LinearBottleneck(nn.Module):
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
in_chs,
|
37 |
+
out_chs,
|
38 |
+
stride,
|
39 |
+
dilation=(1, 1),
|
40 |
+
exp_ratio=1.0,
|
41 |
+
se_ratio=0.,
|
42 |
+
ch_div=1,
|
43 |
+
act_layer='swish',
|
44 |
+
dw_act_layer='relu6',
|
45 |
+
drop_path=None,
|
46 |
+
):
|
47 |
+
super(LinearBottleneck, self).__init__()
|
48 |
+
self.use_shortcut = stride == 1 and dilation[0] == dilation[1] and in_chs <= out_chs
|
49 |
+
self.in_channels = in_chs
|
50 |
+
self.out_channels = out_chs
|
51 |
+
|
52 |
+
if exp_ratio != 1.:
|
53 |
+
dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div)
|
54 |
+
self.conv_exp = ConvNormAct(in_chs, dw_chs, act_layer=act_layer)
|
55 |
+
else:
|
56 |
+
dw_chs = in_chs
|
57 |
+
self.conv_exp = None
|
58 |
+
|
59 |
+
self.conv_dw = ConvNormAct(
|
60 |
+
dw_chs,
|
61 |
+
dw_chs,
|
62 |
+
kernel_size=3,
|
63 |
+
stride=stride,
|
64 |
+
dilation=dilation[0],
|
65 |
+
groups=dw_chs,
|
66 |
+
apply_act=False,
|
67 |
+
)
|
68 |
+
if se_ratio > 0:
|
69 |
+
self.se = SEWithNorm(dw_chs, rd_channels=make_divisible(int(dw_chs * se_ratio), ch_div))
|
70 |
+
else:
|
71 |
+
self.se = None
|
72 |
+
self.act_dw = create_act_layer(dw_act_layer)
|
73 |
+
|
74 |
+
self.conv_pwl = ConvNormAct(dw_chs, out_chs, 1, apply_act=False)
|
75 |
+
self.drop_path = drop_path
|
76 |
+
|
77 |
+
def feat_channels(self, exp=False):
|
78 |
+
return self.conv_dw.out_channels if exp else self.out_channels
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
shortcut = x
|
82 |
+
if self.conv_exp is not None:
|
83 |
+
x = self.conv_exp(x)
|
84 |
+
x = self.conv_dw(x)
|
85 |
+
if self.se is not None:
|
86 |
+
x = self.se(x)
|
87 |
+
x = self.act_dw(x)
|
88 |
+
x = self.conv_pwl(x)
|
89 |
+
if self.use_shortcut:
|
90 |
+
if self.drop_path is not None:
|
91 |
+
x = self.drop_path(x)
|
92 |
+
x = torch.cat([x[:, 0:self.in_channels] + shortcut, x[:, self.in_channels:]], dim=1)
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
def _block_cfg(
|
97 |
+
width_mult=1.0,
|
98 |
+
depth_mult=1.0,
|
99 |
+
initial_chs=16,
|
100 |
+
final_chs=180,
|
101 |
+
se_ratio=0.,
|
102 |
+
ch_div=1,
|
103 |
+
):
|
104 |
+
layers = [1, 2, 2, 3, 3, 5]
|
105 |
+
strides = [1, 2, 2, 2, 1, 2]
|
106 |
+
layers = [ceil(element * depth_mult) for element in layers]
|
107 |
+
strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
|
108 |
+
exp_ratios = [1] * layers[0] + [6] * sum(layers[1:])
|
109 |
+
depth = sum(layers[:]) * 3
|
110 |
+
base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs
|
111 |
+
|
112 |
+
# The following channel configuration is a simple instance to make each layer become an expand layer.
|
113 |
+
out_chs_list = []
|
114 |
+
for i in range(depth // 3):
|
115 |
+
out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div))
|
116 |
+
base_chs += final_chs / (depth // 3 * 1.0)
|
117 |
+
|
118 |
+
se_ratios = [0.] * (layers[0] + layers[1]) + [se_ratio] * sum(layers[2:])
|
119 |
+
|
120 |
+
return list(zip(out_chs_list, exp_ratios, strides, se_ratios))
|
121 |
+
|
122 |
+
|
123 |
+
def _build_blocks(
|
124 |
+
block_cfg,
|
125 |
+
prev_chs,
|
126 |
+
width_mult,
|
127 |
+
ch_div=1,
|
128 |
+
output_stride=32,
|
129 |
+
act_layer='swish',
|
130 |
+
dw_act_layer='relu6',
|
131 |
+
drop_path_rate=0.,
|
132 |
+
):
|
133 |
+
feat_chs = [prev_chs]
|
134 |
+
feature_info = []
|
135 |
+
curr_stride = 2
|
136 |
+
dilation = 1
|
137 |
+
features = []
|
138 |
+
num_blocks = len(block_cfg)
|
139 |
+
for block_idx, (chs, exp_ratio, stride, se_ratio) in enumerate(block_cfg):
|
140 |
+
next_dilation = dilation
|
141 |
+
if stride > 1:
|
142 |
+
fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}'
|
143 |
+
feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)]
|
144 |
+
if curr_stride >= output_stride:
|
145 |
+
next_dilation = dilation * stride
|
146 |
+
stride = 1
|
147 |
+
block_dpr = drop_path_rate * block_idx / (num_blocks - 1) # stochastic depth linear decay rule
|
148 |
+
drop_path = DropPath(block_dpr) if block_dpr > 0. else None
|
149 |
+
features.append(LinearBottleneck(
|
150 |
+
in_chs=prev_chs,
|
151 |
+
out_chs=chs,
|
152 |
+
exp_ratio=exp_ratio,
|
153 |
+
stride=stride,
|
154 |
+
dilation=(dilation, next_dilation),
|
155 |
+
se_ratio=se_ratio,
|
156 |
+
ch_div=ch_div,
|
157 |
+
act_layer=act_layer,
|
158 |
+
dw_act_layer=dw_act_layer,
|
159 |
+
drop_path=drop_path,
|
160 |
+
))
|
161 |
+
curr_stride *= stride
|
162 |
+
dilation = next_dilation
|
163 |
+
prev_chs = chs
|
164 |
+
feat_chs += [features[-1].feat_channels()]
|
165 |
+
pen_chs = make_divisible(1280 * width_mult, divisor=ch_div)
|
166 |
+
feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=f'features.{len(features) - 1}')]
|
167 |
+
features.append(ConvNormAct(prev_chs, pen_chs, act_layer=act_layer))
|
168 |
+
return features, feature_info
|
169 |
+
|
170 |
+
|
171 |
+
class RexNet(nn.Module):
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
in_chans=3,
|
175 |
+
num_classes=1000,
|
176 |
+
global_pool='avg',
|
177 |
+
output_stride=32,
|
178 |
+
initial_chs=16,
|
179 |
+
final_chs=180,
|
180 |
+
width_mult=1.0,
|
181 |
+
depth_mult=1.0,
|
182 |
+
se_ratio=1/12.,
|
183 |
+
ch_div=1,
|
184 |
+
act_layer='swish',
|
185 |
+
dw_act_layer='relu6',
|
186 |
+
drop_rate=0.2,
|
187 |
+
drop_path_rate=0.,
|
188 |
+
):
|
189 |
+
super(RexNet, self).__init__()
|
190 |
+
self.num_classes = num_classes
|
191 |
+
self.drop_rate = drop_rate
|
192 |
+
self.grad_checkpointing = False
|
193 |
+
|
194 |
+
assert output_stride in (32, 16, 8)
|
195 |
+
stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32
|
196 |
+
stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div)
|
197 |
+
self.stem = ConvNormAct(in_chans, stem_chs, 3, stride=2, act_layer=act_layer)
|
198 |
+
|
199 |
+
block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, se_ratio, ch_div)
|
200 |
+
features, self.feature_info = _build_blocks(
|
201 |
+
block_cfg,
|
202 |
+
stem_chs,
|
203 |
+
width_mult,
|
204 |
+
ch_div,
|
205 |
+
output_stride,
|
206 |
+
act_layer,
|
207 |
+
dw_act_layer,
|
208 |
+
drop_path_rate,
|
209 |
+
)
|
210 |
+
self.num_features = self.head_hidden_size = features[-1].out_channels
|
211 |
+
self.features = nn.Sequential(*features)
|
212 |
+
|
213 |
+
self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate)
|
214 |
+
|
215 |
+
efficientnet_init_weights(self)
|
216 |
+
|
217 |
+
@torch.jit.ignore
|
218 |
+
def group_matcher(self, coarse=False):
|
219 |
+
matcher = dict(
|
220 |
+
stem=r'^stem',
|
221 |
+
blocks=r'^features\.(\d+)',
|
222 |
+
)
|
223 |
+
return matcher
|
224 |
+
|
225 |
+
@torch.jit.ignore
|
226 |
+
def set_grad_checkpointing(self, enable=True):
|
227 |
+
self.grad_checkpointing = enable
|
228 |
+
|
229 |
+
@torch.jit.ignore
|
230 |
+
def get_classifier(self) -> nn.Module:
|
231 |
+
return self.head.fc
|
232 |
+
|
233 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
234 |
+
self.num_classes = num_classes
|
235 |
+
self.head.reset(num_classes, global_pool)
|
236 |
+
|
237 |
+
def forward_features(self, x):
|
238 |
+
x = self.stem(x)
|
239 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
240 |
+
x = checkpoint_seq(self.features, x, flatten=True)
|
241 |
+
else:
|
242 |
+
x = self.features(x)
|
243 |
+
return x
|
244 |
+
|
245 |
+
def forward_head(self, x, pre_logits: bool = False):
|
246 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
247 |
+
|
248 |
+
def forward(self, x):
|
249 |
+
x = self.forward_features(x)
|
250 |
+
x = self.forward_head(x)
|
251 |
+
return x
|
252 |
+
|
253 |
+
|
254 |
+
def _create_rexnet(variant, pretrained, **kwargs):
|
255 |
+
feature_cfg = dict(flatten_sequential=True)
|
256 |
+
return build_model_with_cfg(
|
257 |
+
RexNet,
|
258 |
+
variant,
|
259 |
+
pretrained,
|
260 |
+
feature_cfg=feature_cfg,
|
261 |
+
**kwargs,
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
def _cfg(url='', **kwargs):
|
266 |
+
return {
|
267 |
+
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
268 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
269 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
270 |
+
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
271 |
+
'license': 'mit', **kwargs
|
272 |
+
}
|
273 |
+
|
274 |
+
|
275 |
+
default_cfgs = generate_default_cfgs({
|
276 |
+
'rexnet_100.nav_in1k': _cfg(hf_hub_id='timm/'),
|
277 |
+
'rexnet_130.nav_in1k': _cfg(hf_hub_id='timm/'),
|
278 |
+
'rexnet_150.nav_in1k': _cfg(hf_hub_id='timm/'),
|
279 |
+
'rexnet_200.nav_in1k': _cfg(hf_hub_id='timm/'),
|
280 |
+
'rexnet_300.nav_in1k': _cfg(hf_hub_id='timm/'),
|
281 |
+
'rexnetr_100.untrained': _cfg(),
|
282 |
+
'rexnetr_130.untrained': _cfg(),
|
283 |
+
'rexnetr_150.untrained': _cfg(),
|
284 |
+
'rexnetr_200.sw_in12k_ft_in1k': _cfg(
|
285 |
+
hf_hub_id='timm/',
|
286 |
+
crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
|
287 |
+
'rexnetr_300.sw_in12k_ft_in1k': _cfg(
|
288 |
+
hf_hub_id='timm/',
|
289 |
+
crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
|
290 |
+
'rexnetr_200.sw_in12k': _cfg(
|
291 |
+
hf_hub_id='timm/',
|
292 |
+
num_classes=11821,
|
293 |
+
crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
|
294 |
+
'rexnetr_300.sw_in12k': _cfg(
|
295 |
+
hf_hub_id='timm/',
|
296 |
+
num_classes=11821,
|
297 |
+
crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'),
|
298 |
+
})
|
299 |
+
|
300 |
+
|
301 |
+
@register_model
|
302 |
+
def rexnet_100(pretrained=False, **kwargs) -> RexNet:
|
303 |
+
"""ReXNet V1 1.0x"""
|
304 |
+
return _create_rexnet('rexnet_100', pretrained, **kwargs)
|
305 |
+
|
306 |
+
|
307 |
+
@register_model
|
308 |
+
def rexnet_130(pretrained=False, **kwargs) -> RexNet:
|
309 |
+
"""ReXNet V1 1.3x"""
|
310 |
+
return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs)
|
311 |
+
|
312 |
+
|
313 |
+
@register_model
|
314 |
+
def rexnet_150(pretrained=False, **kwargs) -> RexNet:
|
315 |
+
"""ReXNet V1 1.5x"""
|
316 |
+
return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs)
|
317 |
+
|
318 |
+
|
319 |
+
@register_model
|
320 |
+
def rexnet_200(pretrained=False, **kwargs) -> RexNet:
|
321 |
+
"""ReXNet V1 2.0x"""
|
322 |
+
return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs)
|
323 |
+
|
324 |
+
|
325 |
+
@register_model
|
326 |
+
def rexnet_300(pretrained=False, **kwargs) -> RexNet:
|
327 |
+
"""ReXNet V1 3.0x"""
|
328 |
+
return _create_rexnet('rexnet_300', pretrained, width_mult=3.0, **kwargs)
|
329 |
+
|
330 |
+
|
331 |
+
@register_model
|
332 |
+
def rexnetr_100(pretrained=False, **kwargs) -> RexNet:
|
333 |
+
"""ReXNet V1 1.0x w/ rounded (mod 8) channels"""
|
334 |
+
return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs)
|
335 |
+
|
336 |
+
|
337 |
+
@register_model
|
338 |
+
def rexnetr_130(pretrained=False, **kwargs) -> RexNet:
|
339 |
+
"""ReXNet V1 1.3x w/ rounded (mod 8) channels"""
|
340 |
+
return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs)
|
341 |
+
|
342 |
+
|
343 |
+
@register_model
|
344 |
+
def rexnetr_150(pretrained=False, **kwargs) -> RexNet:
|
345 |
+
"""ReXNet V1 1.5x w/ rounded (mod 8) channels"""
|
346 |
+
return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs)
|
347 |
+
|
348 |
+
|
349 |
+
@register_model
|
350 |
+
def rexnetr_200(pretrained=False, **kwargs) -> RexNet:
|
351 |
+
"""ReXNet V1 2.0x w/ rounded (mod 8) channels"""
|
352 |
+
return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs)
|
353 |
+
|
354 |
+
|
355 |
+
@register_model
|
356 |
+
def rexnetr_300(pretrained=False, **kwargs) -> RexNet:
|
357 |
+
"""ReXNet V1 3.0x w/ rounded (mod 16) channels"""
|
358 |
+
return _create_rexnet('rexnetr_300', pretrained, width_mult=3.0, ch_div=16, **kwargs)
|
pytorch-image-models/timm/models/sknet.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Selective Kernel Networks (ResNet base)
|
2 |
+
|
3 |
+
Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586)
|
4 |
+
|
5 |
+
This was inspired by reading 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268)
|
6 |
+
and a streamlined impl at https://github.com/clovaai/assembled-cnn but I ended up building something closer
|
7 |
+
to the original paper with some modifications of my own to better balance param count vs accuracy.
|
8 |
+
|
9 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
10 |
+
"""
|
11 |
+
import math
|
12 |
+
|
13 |
+
from torch import nn as nn
|
14 |
+
|
15 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
16 |
+
from timm.layers import SelectiveKernel, ConvNormAct, create_attn
|
17 |
+
from ._builder import build_model_with_cfg
|
18 |
+
from ._registry import register_model, generate_default_cfgs
|
19 |
+
from .resnet import ResNet
|
20 |
+
|
21 |
+
|
22 |
+
class SelectiveKernelBasic(nn.Module):
|
23 |
+
expansion = 1
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
inplanes,
|
28 |
+
planes,
|
29 |
+
stride=1,
|
30 |
+
downsample=None,
|
31 |
+
cardinality=1,
|
32 |
+
base_width=64,
|
33 |
+
sk_kwargs=None,
|
34 |
+
reduce_first=1,
|
35 |
+
dilation=1,
|
36 |
+
first_dilation=None,
|
37 |
+
act_layer=nn.ReLU,
|
38 |
+
norm_layer=nn.BatchNorm2d,
|
39 |
+
attn_layer=None,
|
40 |
+
aa_layer=None,
|
41 |
+
drop_block=None,
|
42 |
+
drop_path=None,
|
43 |
+
):
|
44 |
+
super(SelectiveKernelBasic, self).__init__()
|
45 |
+
|
46 |
+
sk_kwargs = sk_kwargs or {}
|
47 |
+
conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
|
48 |
+
assert cardinality == 1, 'BasicBlock only supports cardinality of 1'
|
49 |
+
assert base_width == 64, 'BasicBlock doest not support changing base width'
|
50 |
+
first_planes = planes // reduce_first
|
51 |
+
outplanes = planes * self.expansion
|
52 |
+
first_dilation = first_dilation or dilation
|
53 |
+
|
54 |
+
self.conv1 = SelectiveKernel(
|
55 |
+
inplanes, first_planes, stride=stride, dilation=first_dilation,
|
56 |
+
aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs)
|
57 |
+
self.conv2 = ConvNormAct(
|
58 |
+
first_planes, outplanes, kernel_size=3, dilation=dilation, apply_act=False, **conv_kwargs)
|
59 |
+
self.se = create_attn(attn_layer, outplanes)
|
60 |
+
self.act = act_layer(inplace=True)
|
61 |
+
self.downsample = downsample
|
62 |
+
self.drop_path = drop_path
|
63 |
+
|
64 |
+
def zero_init_last(self):
|
65 |
+
if getattr(self.conv2.bn, 'weight', None) is not None:
|
66 |
+
nn.init.zeros_(self.conv2.bn.weight)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
shortcut = x
|
70 |
+
x = self.conv1(x)
|
71 |
+
x = self.conv2(x)
|
72 |
+
if self.se is not None:
|
73 |
+
x = self.se(x)
|
74 |
+
if self.drop_path is not None:
|
75 |
+
x = self.drop_path(x)
|
76 |
+
if self.downsample is not None:
|
77 |
+
shortcut = self.downsample(shortcut)
|
78 |
+
x += shortcut
|
79 |
+
x = self.act(x)
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class SelectiveKernelBottleneck(nn.Module):
|
84 |
+
expansion = 4
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
inplanes,
|
89 |
+
planes,
|
90 |
+
stride=1,
|
91 |
+
downsample=None,
|
92 |
+
cardinality=1,
|
93 |
+
base_width=64,
|
94 |
+
sk_kwargs=None,
|
95 |
+
reduce_first=1,
|
96 |
+
dilation=1,
|
97 |
+
first_dilation=None,
|
98 |
+
act_layer=nn.ReLU,
|
99 |
+
norm_layer=nn.BatchNorm2d,
|
100 |
+
attn_layer=None,
|
101 |
+
aa_layer=None,
|
102 |
+
drop_block=None,
|
103 |
+
drop_path=None,
|
104 |
+
):
|
105 |
+
super(SelectiveKernelBottleneck, self).__init__()
|
106 |
+
|
107 |
+
sk_kwargs = sk_kwargs or {}
|
108 |
+
conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer)
|
109 |
+
width = int(math.floor(planes * (base_width / 64)) * cardinality)
|
110 |
+
first_planes = width // reduce_first
|
111 |
+
outplanes = planes * self.expansion
|
112 |
+
first_dilation = first_dilation or dilation
|
113 |
+
|
114 |
+
self.conv1 = ConvNormAct(inplanes, first_planes, kernel_size=1, **conv_kwargs)
|
115 |
+
self.conv2 = SelectiveKernel(
|
116 |
+
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality,
|
117 |
+
aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs)
|
118 |
+
self.conv3 = ConvNormAct(width, outplanes, kernel_size=1, apply_act=False, **conv_kwargs)
|
119 |
+
self.se = create_attn(attn_layer, outplanes)
|
120 |
+
self.act = act_layer(inplace=True)
|
121 |
+
self.downsample = downsample
|
122 |
+
self.drop_path = drop_path
|
123 |
+
|
124 |
+
def zero_init_last(self):
|
125 |
+
if getattr(self.conv3.bn, 'weight', None) is not None:
|
126 |
+
nn.init.zeros_(self.conv3.bn.weight)
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
shortcut = x
|
130 |
+
x = self.conv1(x)
|
131 |
+
x = self.conv2(x)
|
132 |
+
x = self.conv3(x)
|
133 |
+
if self.se is not None:
|
134 |
+
x = self.se(x)
|
135 |
+
if self.drop_path is not None:
|
136 |
+
x = self.drop_path(x)
|
137 |
+
if self.downsample is not None:
|
138 |
+
shortcut = self.downsample(shortcut)
|
139 |
+
x += shortcut
|
140 |
+
x = self.act(x)
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
def _create_skresnet(variant, pretrained=False, **kwargs):
|
145 |
+
return build_model_with_cfg(
|
146 |
+
ResNet,
|
147 |
+
variant,
|
148 |
+
pretrained,
|
149 |
+
**kwargs,
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
def _cfg(url='', **kwargs):
|
154 |
+
return {
|
155 |
+
'url': url,
|
156 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
157 |
+
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
158 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
159 |
+
'first_conv': 'conv1', 'classifier': 'fc',
|
160 |
+
**kwargs
|
161 |
+
}
|
162 |
+
|
163 |
+
|
164 |
+
default_cfgs = generate_default_cfgs({
|
165 |
+
'skresnet18.ra_in1k': _cfg(hf_hub_id='timm/'),
|
166 |
+
'skresnet34.ra_in1k': _cfg(hf_hub_id='timm/'),
|
167 |
+
'skresnet50.untrained': _cfg(),
|
168 |
+
'skresnet50d.untrained': _cfg(
|
169 |
+
first_conv='conv1.0'),
|
170 |
+
'skresnext50_32x4d.ra_in1k': _cfg(hf_hub_id='timm/'),
|
171 |
+
})
|
172 |
+
|
173 |
+
|
174 |
+
@register_model
|
175 |
+
def skresnet18(pretrained=False, **kwargs) -> ResNet:
|
176 |
+
"""Constructs a Selective Kernel ResNet-18 model.
|
177 |
+
|
178 |
+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
179 |
+
variation splits the input channels to the selective convolutions to keep param count down.
|
180 |
+
"""
|
181 |
+
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
|
182 |
+
model_args = dict(
|
183 |
+
block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs),
|
184 |
+
zero_init_last=False, **kwargs)
|
185 |
+
return _create_skresnet('skresnet18', pretrained, **model_args)
|
186 |
+
|
187 |
+
|
188 |
+
@register_model
|
189 |
+
def skresnet34(pretrained=False, **kwargs) -> ResNet:
|
190 |
+
"""Constructs a Selective Kernel ResNet-34 model.
|
191 |
+
|
192 |
+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
193 |
+
variation splits the input channels to the selective convolutions to keep param count down.
|
194 |
+
"""
|
195 |
+
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True)
|
196 |
+
model_args = dict(
|
197 |
+
block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
|
198 |
+
zero_init_last=False, **kwargs)
|
199 |
+
return _create_skresnet('skresnet34', pretrained, **model_args)
|
200 |
+
|
201 |
+
|
202 |
+
@register_model
|
203 |
+
def skresnet50(pretrained=False, **kwargs) -> ResNet:
|
204 |
+
"""Constructs a Select Kernel ResNet-50 model.
|
205 |
+
|
206 |
+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
207 |
+
variation splits the input channels to the selective convolutions to keep param count down.
|
208 |
+
"""
|
209 |
+
sk_kwargs = dict(split_input=True)
|
210 |
+
model_args = dict(
|
211 |
+
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs),
|
212 |
+
zero_init_last=False, **kwargs)
|
213 |
+
return _create_skresnet('skresnet50', pretrained, **model_args)
|
214 |
+
|
215 |
+
|
216 |
+
@register_model
|
217 |
+
def skresnet50d(pretrained=False, **kwargs) -> ResNet:
|
218 |
+
"""Constructs a Select Kernel ResNet-50-D model.
|
219 |
+
|
220 |
+
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this
|
221 |
+
variation splits the input channels to the selective convolutions to keep param count down.
|
222 |
+
"""
|
223 |
+
sk_kwargs = dict(split_input=True)
|
224 |
+
model_args = dict(
|
225 |
+
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True,
|
226 |
+
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
|
227 |
+
return _create_skresnet('skresnet50d', pretrained, **model_args)
|
228 |
+
|
229 |
+
|
230 |
+
@register_model
|
231 |
+
def skresnext50_32x4d(pretrained=False, **kwargs) -> ResNet:
|
232 |
+
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to
|
233 |
+
the SKNet-50 model in the Select Kernel Paper
|
234 |
+
"""
|
235 |
+
sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False)
|
236 |
+
model_args = dict(
|
237 |
+
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4,
|
238 |
+
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs)
|
239 |
+
return _create_skresnet('skresnext50_32x4d', pretrained, **model_args)
|
240 |
+
|
pytorch-image-models/timm/models/swin_transformer_v2.py
ADDED
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Swin Transformer V2
|
2 |
+
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
|
3 |
+
- https://arxiv.org/abs/2111.09883
|
4 |
+
|
5 |
+
Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below
|
6 |
+
|
7 |
+
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
|
8 |
+
"""
|
9 |
+
# --------------------------------------------------------
|
10 |
+
# Swin Transformer V2
|
11 |
+
# Copyright (c) 2022 Microsoft
|
12 |
+
# Licensed under The MIT License [see LICENSE for details]
|
13 |
+
# Written by Ze Liu
|
14 |
+
# --------------------------------------------------------
|
15 |
+
import math
|
16 |
+
from typing import Callable, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.utils.checkpoint as checkpoint
|
22 |
+
|
23 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
24 |
+
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, ClassifierHead,\
|
25 |
+
resample_patch_embed, ndgrid, get_act_layer, LayerType
|
26 |
+
from ._builder import build_model_with_cfg
|
27 |
+
from ._features import feature_take_indices
|
28 |
+
from ._features_fx import register_notrace_function
|
29 |
+
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
|
30 |
+
|
31 |
+
__all__ = ['SwinTransformerV2'] # model_registry will add each entrypoint fn to this
|
32 |
+
|
33 |
+
_int_or_tuple_2_t = Union[int, Tuple[int, int]]
|
34 |
+
|
35 |
+
|
36 |
+
def window_partition(x: torch.Tensor, window_size: Tuple[int, int]) -> torch.Tensor:
|
37 |
+
"""
|
38 |
+
Args:
|
39 |
+
x: (B, H, W, C)
|
40 |
+
window_size (int): window size
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
windows: (num_windows*B, window_size, window_size, C)
|
44 |
+
"""
|
45 |
+
B, H, W, C = x.shape
|
46 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
47 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
48 |
+
return windows
|
49 |
+
|
50 |
+
|
51 |
+
@register_notrace_function # reason: int argument is a Proxy
|
52 |
+
def window_reverse(windows: torch.Tensor, window_size: Tuple[int, int], img_size: Tuple[int, int]) -> torch.Tensor:
|
53 |
+
"""
|
54 |
+
Args:
|
55 |
+
windows: (num_windows * B, window_size[0], window_size[1], C)
|
56 |
+
window_size (Tuple[int, int]): Window size
|
57 |
+
img_size (Tuple[int, int]): Image size
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
x: (B, H, W, C)
|
61 |
+
"""
|
62 |
+
H, W = img_size
|
63 |
+
C = windows.shape[-1]
|
64 |
+
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
|
65 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
class WindowAttention(nn.Module):
|
70 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
71 |
+
It supports both of shifted and non-shifted window.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
dim (int): Number of input channels.
|
75 |
+
window_size (tuple[int]): The height and width of the window.
|
76 |
+
num_heads (int): Number of attention heads.
|
77 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
78 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
79 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
80 |
+
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
dim: int,
|
86 |
+
window_size: Tuple[int, int],
|
87 |
+
num_heads: int,
|
88 |
+
qkv_bias: bool = True,
|
89 |
+
qkv_bias_separate: bool = False,
|
90 |
+
attn_drop: float = 0.,
|
91 |
+
proj_drop: float = 0.,
|
92 |
+
pretrained_window_size: Tuple[int, int] = (0, 0),
|
93 |
+
) -> None:
|
94 |
+
super().__init__()
|
95 |
+
self.dim = dim
|
96 |
+
self.window_size = window_size # Wh, Ww
|
97 |
+
self.pretrained_window_size = to_2tuple(pretrained_window_size)
|
98 |
+
self.num_heads = num_heads
|
99 |
+
self.qkv_bias_separate = qkv_bias_separate
|
100 |
+
|
101 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
102 |
+
|
103 |
+
# mlp to generate continuous relative position bias
|
104 |
+
self.cpb_mlp = nn.Sequential(
|
105 |
+
nn.Linear(2, 512, bias=True),
|
106 |
+
nn.ReLU(inplace=True),
|
107 |
+
nn.Linear(512, num_heads, bias=False)
|
108 |
+
)
|
109 |
+
|
110 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
111 |
+
if qkv_bias:
|
112 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
113 |
+
self.register_buffer('k_bias', torch.zeros(dim), persistent=False)
|
114 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
115 |
+
else:
|
116 |
+
self.q_bias = None
|
117 |
+
self.k_bias = None
|
118 |
+
self.v_bias = None
|
119 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
120 |
+
self.proj = nn.Linear(dim, dim)
|
121 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
122 |
+
self.softmax = nn.Softmax(dim=-1)
|
123 |
+
|
124 |
+
self._make_pair_wise_relative_positions()
|
125 |
+
|
126 |
+
def _make_pair_wise_relative_positions(self):
|
127 |
+
# get relative_coords_table
|
128 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0]).to(torch.float32)
|
129 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1]).to(torch.float32)
|
130 |
+
relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w))
|
131 |
+
relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
132 |
+
if self.pretrained_window_size[0] > 0:
|
133 |
+
relative_coords_table[:, :, :, 0] /= (self.pretrained_window_size[0] - 1)
|
134 |
+
relative_coords_table[:, :, :, 1] /= (self.pretrained_window_size[1] - 1)
|
135 |
+
else:
|
136 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
137 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
138 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
139 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
140 |
+
torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
141 |
+
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)
|
142 |
+
|
143 |
+
# get pair-wise relative position index for each token inside the window
|
144 |
+
coords_h = torch.arange(self.window_size[0])
|
145 |
+
coords_w = torch.arange(self.window_size[1])
|
146 |
+
coords = torch.stack(ndgrid(coords_h, coords_w)) # 2, Wh, Ww
|
147 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
148 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
149 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
150 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
151 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
152 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
153 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
154 |
+
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
155 |
+
|
156 |
+
def set_window_size(self, window_size: Tuple[int, int]) -> None:
|
157 |
+
"""Update window size & interpolate position embeddings
|
158 |
+
Args:
|
159 |
+
window_size (int): New window size
|
160 |
+
"""
|
161 |
+
window_size = to_2tuple(window_size)
|
162 |
+
if window_size != self.window_size:
|
163 |
+
self.window_size = window_size
|
164 |
+
self._make_pair_wise_relative_positions()
|
165 |
+
|
166 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
167 |
+
"""
|
168 |
+
Args:
|
169 |
+
x: input features with shape of (num_windows*B, N, C)
|
170 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
171 |
+
"""
|
172 |
+
B_, N, C = x.shape
|
173 |
+
|
174 |
+
if self.q_bias is None:
|
175 |
+
qkv = self.qkv(x)
|
176 |
+
else:
|
177 |
+
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
|
178 |
+
if self.qkv_bias_separate:
|
179 |
+
qkv = self.qkv(x)
|
180 |
+
qkv += qkv_bias
|
181 |
+
else:
|
182 |
+
qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
|
183 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
184 |
+
q, k, v = qkv.unbind(0)
|
185 |
+
|
186 |
+
# cosine attention
|
187 |
+
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
188 |
+
logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
|
189 |
+
attn = attn * logit_scale
|
190 |
+
|
191 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
192 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
193 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
194 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
195 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
196 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
197 |
+
|
198 |
+
if mask is not None:
|
199 |
+
num_win = mask.shape[0]
|
200 |
+
attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
201 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
202 |
+
attn = self.softmax(attn)
|
203 |
+
else:
|
204 |
+
attn = self.softmax(attn)
|
205 |
+
|
206 |
+
attn = self.attn_drop(attn)
|
207 |
+
|
208 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
209 |
+
x = self.proj(x)
|
210 |
+
x = self.proj_drop(x)
|
211 |
+
return x
|
212 |
+
|
213 |
+
|
214 |
+
class SwinTransformerV2Block(nn.Module):
|
215 |
+
""" Swin Transformer Block.
|
216 |
+
"""
|
217 |
+
|
218 |
+
def __init__(
|
219 |
+
self,
|
220 |
+
dim: int,
|
221 |
+
input_resolution: _int_or_tuple_2_t,
|
222 |
+
num_heads: int,
|
223 |
+
window_size: _int_or_tuple_2_t = 7,
|
224 |
+
shift_size: _int_or_tuple_2_t = 0,
|
225 |
+
always_partition: bool = False,
|
226 |
+
dynamic_mask: bool = False,
|
227 |
+
mlp_ratio: float = 4.,
|
228 |
+
qkv_bias: bool = True,
|
229 |
+
proj_drop: float = 0.,
|
230 |
+
attn_drop: float = 0.,
|
231 |
+
drop_path: float = 0.,
|
232 |
+
act_layer: LayerType = "gelu",
|
233 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
234 |
+
pretrained_window_size: _int_or_tuple_2_t = 0,
|
235 |
+
):
|
236 |
+
"""
|
237 |
+
Args:
|
238 |
+
dim: Number of input channels.
|
239 |
+
input_resolution: Input resolution.
|
240 |
+
num_heads: Number of attention heads.
|
241 |
+
window_size: Window size.
|
242 |
+
shift_size: Shift size for SW-MSA.
|
243 |
+
always_partition: Always partition into full windows and shift
|
244 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
245 |
+
qkv_bias: If True, add a learnable bias to query, key, value.
|
246 |
+
proj_drop: Dropout rate.
|
247 |
+
attn_drop: Attention dropout rate.
|
248 |
+
drop_path: Stochastic depth rate.
|
249 |
+
act_layer: Activation layer.
|
250 |
+
norm_layer: Normalization layer.
|
251 |
+
pretrained_window_size: Window size in pretraining.
|
252 |
+
"""
|
253 |
+
super().__init__()
|
254 |
+
self.dim = dim
|
255 |
+
self.input_resolution = to_2tuple(input_resolution)
|
256 |
+
self.num_heads = num_heads
|
257 |
+
self.target_shift_size = to_2tuple(shift_size) # store for later resize
|
258 |
+
self.always_partition = always_partition
|
259 |
+
self.dynamic_mask = dynamic_mask
|
260 |
+
self.window_size, self.shift_size = self._calc_window_shift(window_size, shift_size)
|
261 |
+
self.window_area = self.window_size[0] * self.window_size[1]
|
262 |
+
self.mlp_ratio = mlp_ratio
|
263 |
+
act_layer = get_act_layer(act_layer)
|
264 |
+
|
265 |
+
self.attn = WindowAttention(
|
266 |
+
dim,
|
267 |
+
window_size=to_2tuple(self.window_size),
|
268 |
+
num_heads=num_heads,
|
269 |
+
qkv_bias=qkv_bias,
|
270 |
+
attn_drop=attn_drop,
|
271 |
+
proj_drop=proj_drop,
|
272 |
+
pretrained_window_size=to_2tuple(pretrained_window_size),
|
273 |
+
)
|
274 |
+
self.norm1 = norm_layer(dim)
|
275 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
276 |
+
|
277 |
+
self.mlp = Mlp(
|
278 |
+
in_features=dim,
|
279 |
+
hidden_features=int(dim * mlp_ratio),
|
280 |
+
act_layer=act_layer,
|
281 |
+
drop=proj_drop,
|
282 |
+
)
|
283 |
+
self.norm2 = norm_layer(dim)
|
284 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
285 |
+
|
286 |
+
self.register_buffer(
|
287 |
+
"attn_mask",
|
288 |
+
None if self.dynamic_mask else self.get_attn_mask(),
|
289 |
+
persistent=False,
|
290 |
+
)
|
291 |
+
|
292 |
+
def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]:
|
293 |
+
if any(self.shift_size):
|
294 |
+
# calculate attention mask for SW-MSA
|
295 |
+
if x is None:
|
296 |
+
img_mask = torch.zeros((1, *self.input_resolution, 1)) # 1 H W 1
|
297 |
+
else:
|
298 |
+
img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) # 1 H W 1
|
299 |
+
cnt = 0
|
300 |
+
for h in (
|
301 |
+
(0, -self.window_size[0]),
|
302 |
+
(-self.window_size[0], -self.shift_size[0]),
|
303 |
+
(-self.shift_size[0], None),
|
304 |
+
):
|
305 |
+
for w in (
|
306 |
+
(0, -self.window_size[1]),
|
307 |
+
(-self.window_size[1], -self.shift_size[1]),
|
308 |
+
(-self.shift_size[1], None),
|
309 |
+
):
|
310 |
+
img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt
|
311 |
+
cnt += 1
|
312 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
313 |
+
mask_windows = mask_windows.view(-1, self.window_area)
|
314 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
315 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
316 |
+
else:
|
317 |
+
attn_mask = None
|
318 |
+
return attn_mask
|
319 |
+
|
320 |
+
def _calc_window_shift(
|
321 |
+
self,
|
322 |
+
target_window_size: _int_or_tuple_2_t,
|
323 |
+
target_shift_size: Optional[_int_or_tuple_2_t] = None,
|
324 |
+
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
|
325 |
+
target_window_size = to_2tuple(target_window_size)
|
326 |
+
if target_shift_size is None:
|
327 |
+
# if passed value is None, recalculate from default window_size // 2 if it was active
|
328 |
+
target_shift_size = self.target_shift_size
|
329 |
+
if any(target_shift_size):
|
330 |
+
# if there was previously a non-zero shift, recalculate based on current window_size
|
331 |
+
target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2)
|
332 |
+
else:
|
333 |
+
target_shift_size = to_2tuple(target_shift_size)
|
334 |
+
|
335 |
+
if self.always_partition:
|
336 |
+
return target_window_size, target_shift_size
|
337 |
+
|
338 |
+
target_window_size = to_2tuple(target_window_size)
|
339 |
+
target_shift_size = to_2tuple(target_shift_size)
|
340 |
+
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
|
341 |
+
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
|
342 |
+
return tuple(window_size), tuple(shift_size)
|
343 |
+
|
344 |
+
def set_input_size(
|
345 |
+
self,
|
346 |
+
feat_size: Tuple[int, int],
|
347 |
+
window_size: Tuple[int, int],
|
348 |
+
always_partition: Optional[bool] = None,
|
349 |
+
):
|
350 |
+
""" Updates the input resolution, window size.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
feat_size (Tuple[int, int]): New input resolution
|
354 |
+
window_size (int): New window size
|
355 |
+
always_partition: Change always_partition attribute if not None
|
356 |
+
"""
|
357 |
+
# Update input resolution
|
358 |
+
self.input_resolution = feat_size
|
359 |
+
if always_partition is not None:
|
360 |
+
self.always_partition = always_partition
|
361 |
+
self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size))
|
362 |
+
self.window_area = self.window_size[0] * self.window_size[1]
|
363 |
+
self.attn.set_window_size(self.window_size)
|
364 |
+
self.register_buffer(
|
365 |
+
"attn_mask",
|
366 |
+
None if self.dynamic_mask else self.get_attn_mask(),
|
367 |
+
persistent=False,
|
368 |
+
)
|
369 |
+
|
370 |
+
def _attn(self, x: torch.Tensor) -> torch.Tensor:
|
371 |
+
B, H, W, C = x.shape
|
372 |
+
|
373 |
+
# cyclic shift
|
374 |
+
has_shift = any(self.shift_size)
|
375 |
+
if has_shift:
|
376 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2))
|
377 |
+
else:
|
378 |
+
shifted_x = x
|
379 |
+
|
380 |
+
pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
|
381 |
+
pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
|
382 |
+
shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h))
|
383 |
+
_, Hp, Wp, _ = shifted_x.shape
|
384 |
+
|
385 |
+
# partition windows
|
386 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
387 |
+
x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C
|
388 |
+
|
389 |
+
# W-MSA/SW-MSA
|
390 |
+
if getattr(self, 'dynamic_mask', False):
|
391 |
+
attn_mask = self.get_attn_mask(shifted_x)
|
392 |
+
else:
|
393 |
+
attn_mask = self.attn_mask
|
394 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
395 |
+
|
396 |
+
# merge windows
|
397 |
+
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
|
398 |
+
shifted_x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) # B H' W' C
|
399 |
+
shifted_x = shifted_x[:, :H, :W, :].contiguous()
|
400 |
+
|
401 |
+
# reverse cyclic shift
|
402 |
+
if has_shift:
|
403 |
+
x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2))
|
404 |
+
else:
|
405 |
+
x = shifted_x
|
406 |
+
return x
|
407 |
+
|
408 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
409 |
+
B, H, W, C = x.shape
|
410 |
+
x = x + self.drop_path1(self.norm1(self._attn(x)))
|
411 |
+
x = x.reshape(B, -1, C)
|
412 |
+
x = x + self.drop_path2(self.norm2(self.mlp(x)))
|
413 |
+
x = x.reshape(B, H, W, C)
|
414 |
+
return x
|
415 |
+
|
416 |
+
|
417 |
+
class PatchMerging(nn.Module):
|
418 |
+
""" Patch Merging Layer.
|
419 |
+
"""
|
420 |
+
|
421 |
+
def __init__(
|
422 |
+
self,
|
423 |
+
dim: int,
|
424 |
+
out_dim: Optional[int] = None,
|
425 |
+
norm_layer: nn.Module = nn.LayerNorm
|
426 |
+
):
|
427 |
+
"""
|
428 |
+
Args:
|
429 |
+
dim (int): Number of input channels.
|
430 |
+
out_dim (int): Number of output channels (or 2 * dim if None)
|
431 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
432 |
+
"""
|
433 |
+
super().__init__()
|
434 |
+
self.dim = dim
|
435 |
+
self.out_dim = out_dim or 2 * dim
|
436 |
+
self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False)
|
437 |
+
self.norm = norm_layer(self.out_dim)
|
438 |
+
|
439 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
440 |
+
B, H, W, C = x.shape
|
441 |
+
|
442 |
+
pad_values = (0, 0, 0, W % 2, 0, H % 2)
|
443 |
+
x = nn.functional.pad(x, pad_values)
|
444 |
+
_, H, W, _ = x.shape
|
445 |
+
|
446 |
+
x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3)
|
447 |
+
x = self.reduction(x)
|
448 |
+
x = self.norm(x)
|
449 |
+
return x
|
450 |
+
|
451 |
+
|
452 |
+
class SwinTransformerV2Stage(nn.Module):
|
453 |
+
""" A Swin Transformer V2 Stage.
|
454 |
+
"""
|
455 |
+
|
456 |
+
def __init__(
|
457 |
+
self,
|
458 |
+
dim: int,
|
459 |
+
out_dim: int,
|
460 |
+
input_resolution: _int_or_tuple_2_t,
|
461 |
+
depth: int,
|
462 |
+
num_heads: int,
|
463 |
+
window_size: _int_or_tuple_2_t,
|
464 |
+
always_partition: bool = False,
|
465 |
+
dynamic_mask: bool = False,
|
466 |
+
downsample: bool = False,
|
467 |
+
mlp_ratio: float = 4.,
|
468 |
+
qkv_bias: bool = True,
|
469 |
+
proj_drop: float = 0.,
|
470 |
+
attn_drop: float = 0.,
|
471 |
+
drop_path: float = 0.,
|
472 |
+
act_layer: Union[str, Callable] = 'gelu',
|
473 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
474 |
+
pretrained_window_size: _int_or_tuple_2_t = 0,
|
475 |
+
output_nchw: bool = False,
|
476 |
+
) -> None:
|
477 |
+
"""
|
478 |
+
Args:
|
479 |
+
dim: Number of input channels.
|
480 |
+
out_dim: Number of output channels.
|
481 |
+
input_resolution: Input resolution.
|
482 |
+
depth: Number of blocks.
|
483 |
+
num_heads: Number of attention heads.
|
484 |
+
window_size: Local window size.
|
485 |
+
always_partition: Always partition into full windows and shift
|
486 |
+
dynamic_mask: Create attention mask in forward based on current input size
|
487 |
+
downsample: Use downsample layer at start of the block.
|
488 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
489 |
+
qkv_bias: If True, add a learnable bias to query, key, value.
|
490 |
+
proj_drop: Projection dropout rate
|
491 |
+
attn_drop: Attention dropout rate.
|
492 |
+
drop_path: Stochastic depth rate.
|
493 |
+
act_layer: Activation layer type.
|
494 |
+
norm_layer: Normalization layer.
|
495 |
+
pretrained_window_size: Local window size in pretraining.
|
496 |
+
output_nchw: Output tensors on NCHW format instead of NHWC.
|
497 |
+
"""
|
498 |
+
super().__init__()
|
499 |
+
self.dim = dim
|
500 |
+
self.input_resolution = input_resolution
|
501 |
+
self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution
|
502 |
+
self.depth = depth
|
503 |
+
self.output_nchw = output_nchw
|
504 |
+
self.grad_checkpointing = False
|
505 |
+
window_size = to_2tuple(window_size)
|
506 |
+
shift_size = tuple([w // 2 for w in window_size])
|
507 |
+
|
508 |
+
# patch merging / downsample layer
|
509 |
+
if downsample:
|
510 |
+
self.downsample = PatchMerging(dim=dim, out_dim=out_dim, norm_layer=norm_layer)
|
511 |
+
else:
|
512 |
+
assert dim == out_dim
|
513 |
+
self.downsample = nn.Identity()
|
514 |
+
|
515 |
+
# build blocks
|
516 |
+
self.blocks = nn.ModuleList([
|
517 |
+
SwinTransformerV2Block(
|
518 |
+
dim=out_dim,
|
519 |
+
input_resolution=self.output_resolution,
|
520 |
+
num_heads=num_heads,
|
521 |
+
window_size=window_size,
|
522 |
+
shift_size=0 if (i % 2 == 0) else shift_size,
|
523 |
+
always_partition=always_partition,
|
524 |
+
dynamic_mask=dynamic_mask,
|
525 |
+
mlp_ratio=mlp_ratio,
|
526 |
+
qkv_bias=qkv_bias,
|
527 |
+
proj_drop=proj_drop,
|
528 |
+
attn_drop=attn_drop,
|
529 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
530 |
+
act_layer=act_layer,
|
531 |
+
norm_layer=norm_layer,
|
532 |
+
pretrained_window_size=pretrained_window_size,
|
533 |
+
)
|
534 |
+
for i in range(depth)])
|
535 |
+
|
536 |
+
def set_input_size(
|
537 |
+
self,
|
538 |
+
feat_size: Tuple[int, int],
|
539 |
+
window_size: int,
|
540 |
+
always_partition: Optional[bool] = None,
|
541 |
+
):
|
542 |
+
""" Updates the resolution, window size and so the pair-wise relative positions.
|
543 |
+
|
544 |
+
Args:
|
545 |
+
feat_size: New input (feature) resolution
|
546 |
+
window_size: New window size
|
547 |
+
always_partition: Always partition / shift the window
|
548 |
+
"""
|
549 |
+
self.input_resolution = feat_size
|
550 |
+
if isinstance(self.downsample, nn.Identity):
|
551 |
+
self.output_resolution = feat_size
|
552 |
+
else:
|
553 |
+
assert isinstance(self.downsample, PatchMerging)
|
554 |
+
self.output_resolution = tuple(i // 2 for i in feat_size)
|
555 |
+
for block in self.blocks:
|
556 |
+
block.set_input_size(
|
557 |
+
feat_size=self.output_resolution,
|
558 |
+
window_size=window_size,
|
559 |
+
always_partition=always_partition,
|
560 |
+
)
|
561 |
+
|
562 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
563 |
+
x = self.downsample(x)
|
564 |
+
|
565 |
+
for blk in self.blocks:
|
566 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
567 |
+
x = checkpoint.checkpoint(blk, x)
|
568 |
+
else:
|
569 |
+
x = blk(x)
|
570 |
+
return x
|
571 |
+
|
572 |
+
def _init_respostnorm(self) -> None:
|
573 |
+
for blk in self.blocks:
|
574 |
+
nn.init.constant_(blk.norm1.bias, 0)
|
575 |
+
nn.init.constant_(blk.norm1.weight, 0)
|
576 |
+
nn.init.constant_(blk.norm2.bias, 0)
|
577 |
+
nn.init.constant_(blk.norm2.weight, 0)
|
578 |
+
|
579 |
+
|
580 |
+
class SwinTransformerV2(nn.Module):
|
581 |
+
""" Swin Transformer V2
|
582 |
+
|
583 |
+
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
|
584 |
+
- https://arxiv.org/abs/2111.09883
|
585 |
+
"""
|
586 |
+
|
587 |
+
def __init__(
|
588 |
+
self,
|
589 |
+
img_size: _int_or_tuple_2_t = 224,
|
590 |
+
patch_size: int = 4,
|
591 |
+
in_chans: int = 3,
|
592 |
+
num_classes: int = 1000,
|
593 |
+
global_pool: str = 'avg',
|
594 |
+
embed_dim: int = 96,
|
595 |
+
depths: Tuple[int, ...] = (2, 2, 6, 2),
|
596 |
+
num_heads: Tuple[int, ...] = (3, 6, 12, 24),
|
597 |
+
window_size: _int_or_tuple_2_t = 7,
|
598 |
+
always_partition: bool = False,
|
599 |
+
strict_img_size: bool = True,
|
600 |
+
mlp_ratio: float = 4.,
|
601 |
+
qkv_bias: bool = True,
|
602 |
+
drop_rate: float = 0.,
|
603 |
+
proj_drop_rate: float = 0.,
|
604 |
+
attn_drop_rate: float = 0.,
|
605 |
+
drop_path_rate: float = 0.1,
|
606 |
+
act_layer: Union[str, Callable] = 'gelu',
|
607 |
+
norm_layer: Callable = nn.LayerNorm,
|
608 |
+
pretrained_window_sizes: Tuple[int, ...] = (0, 0, 0, 0),
|
609 |
+
**kwargs,
|
610 |
+
):
|
611 |
+
"""
|
612 |
+
Args:
|
613 |
+
img_size: Input image size.
|
614 |
+
patch_size: Patch size.
|
615 |
+
in_chans: Number of input image channels.
|
616 |
+
num_classes: Number of classes for classification head.
|
617 |
+
embed_dim: Patch embedding dimension.
|
618 |
+
depths: Depth of each Swin Transformer stage (layer).
|
619 |
+
num_heads: Number of attention heads in different layers.
|
620 |
+
window_size: Window size.
|
621 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
622 |
+
qkv_bias: If True, add a learnable bias to query, key, value.
|
623 |
+
drop_rate: Head dropout rate.
|
624 |
+
proj_drop_rate: Projection dropout rate.
|
625 |
+
attn_drop_rate: Attention dropout rate.
|
626 |
+
drop_path_rate: Stochastic depth rate.
|
627 |
+
norm_layer: Normalization layer.
|
628 |
+
act_layer: Activation layer type.
|
629 |
+
patch_norm: If True, add normalization after patch embedding.
|
630 |
+
pretrained_window_sizes: Pretrained window sizes of each layer.
|
631 |
+
output_fmt: Output tensor format if not None, otherwise output 'NHWC' by default.
|
632 |
+
"""
|
633 |
+
super().__init__()
|
634 |
+
|
635 |
+
self.num_classes = num_classes
|
636 |
+
assert global_pool in ('', 'avg')
|
637 |
+
self.global_pool = global_pool
|
638 |
+
self.output_fmt = 'NHWC'
|
639 |
+
self.num_layers = len(depths)
|
640 |
+
self.embed_dim = embed_dim
|
641 |
+
self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1))
|
642 |
+
self.feature_info = []
|
643 |
+
|
644 |
+
if not isinstance(embed_dim, (tuple, list)):
|
645 |
+
embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
646 |
+
|
647 |
+
# split image into non-overlapping patches
|
648 |
+
self.patch_embed = PatchEmbed(
|
649 |
+
img_size=img_size,
|
650 |
+
patch_size=patch_size,
|
651 |
+
in_chans=in_chans,
|
652 |
+
embed_dim=embed_dim[0],
|
653 |
+
norm_layer=norm_layer,
|
654 |
+
strict_img_size=strict_img_size,
|
655 |
+
output_fmt='NHWC',
|
656 |
+
)
|
657 |
+
grid_size = self.patch_embed.grid_size
|
658 |
+
|
659 |
+
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
660 |
+
layers = []
|
661 |
+
in_dim = embed_dim[0]
|
662 |
+
scale = 1
|
663 |
+
for i in range(self.num_layers):
|
664 |
+
out_dim = embed_dim[i]
|
665 |
+
layers += [SwinTransformerV2Stage(
|
666 |
+
dim=in_dim,
|
667 |
+
out_dim=out_dim,
|
668 |
+
input_resolution=(grid_size[0] // scale, grid_size[1] // scale),
|
669 |
+
depth=depths[i],
|
670 |
+
downsample=i > 0,
|
671 |
+
num_heads=num_heads[i],
|
672 |
+
window_size=window_size,
|
673 |
+
always_partition=always_partition,
|
674 |
+
dynamic_mask=not strict_img_size,
|
675 |
+
mlp_ratio=mlp_ratio,
|
676 |
+
qkv_bias=qkv_bias,
|
677 |
+
proj_drop=proj_drop_rate,
|
678 |
+
attn_drop=attn_drop_rate,
|
679 |
+
drop_path=dpr[i],
|
680 |
+
act_layer=act_layer,
|
681 |
+
norm_layer=norm_layer,
|
682 |
+
pretrained_window_size=pretrained_window_sizes[i],
|
683 |
+
)]
|
684 |
+
in_dim = out_dim
|
685 |
+
if i > 0:
|
686 |
+
scale *= 2
|
687 |
+
self.feature_info += [dict(num_chs=out_dim, reduction=4 * scale, module=f'layers.{i}')]
|
688 |
+
|
689 |
+
self.layers = nn.Sequential(*layers)
|
690 |
+
self.norm = norm_layer(self.num_features)
|
691 |
+
self.head = ClassifierHead(
|
692 |
+
self.num_features,
|
693 |
+
num_classes,
|
694 |
+
pool_type=global_pool,
|
695 |
+
drop_rate=drop_rate,
|
696 |
+
input_fmt=self.output_fmt,
|
697 |
+
)
|
698 |
+
|
699 |
+
self.apply(self._init_weights)
|
700 |
+
for bly in self.layers:
|
701 |
+
bly._init_respostnorm()
|
702 |
+
|
703 |
+
def _init_weights(self, m):
|
704 |
+
if isinstance(m, nn.Linear):
|
705 |
+
trunc_normal_(m.weight, std=.02)
|
706 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
707 |
+
nn.init.constant_(m.bias, 0)
|
708 |
+
|
709 |
+
def set_input_size(
|
710 |
+
self,
|
711 |
+
img_size: Optional[Tuple[int, int]] = None,
|
712 |
+
patch_size: Optional[Tuple[int, int]] = None,
|
713 |
+
window_size: Optional[Tuple[int, int]] = None,
|
714 |
+
window_ratio: Optional[int] = 8,
|
715 |
+
always_partition: Optional[bool] = None,
|
716 |
+
):
|
717 |
+
"""Updates the image resolution, window size, and so the pair-wise relative positions.
|
718 |
+
|
719 |
+
Args:
|
720 |
+
img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used
|
721 |
+
patch_size (Optional[Tuple[int, int]): New patch size, if None use current patch size
|
722 |
+
window_size (Optional[int]): New window size, if None based on new_img_size // window_div
|
723 |
+
window_ratio (int): divisor for calculating window size from patch grid size
|
724 |
+
always_partition: always partition / shift windows even if feat size is < window
|
725 |
+
"""
|
726 |
+
if img_size is not None or patch_size is not None:
|
727 |
+
self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size)
|
728 |
+
grid_size = self.patch_embed.grid_size
|
729 |
+
|
730 |
+
if window_size is None and window_ratio is not None:
|
731 |
+
window_size = tuple([s // window_ratio for s in grid_size])
|
732 |
+
|
733 |
+
for index, stage in enumerate(self.layers):
|
734 |
+
stage_scale = 2 ** max(index - 1, 0)
|
735 |
+
stage.set_input_size(
|
736 |
+
feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale),
|
737 |
+
window_size=window_size,
|
738 |
+
always_partition=always_partition,
|
739 |
+
)
|
740 |
+
|
741 |
+
@torch.jit.ignore
|
742 |
+
def no_weight_decay(self):
|
743 |
+
nod = set()
|
744 |
+
for n, m in self.named_modules():
|
745 |
+
if any([kw in n for kw in ("cpb_mlp", "logit_scale")]):
|
746 |
+
nod.add(n)
|
747 |
+
return nod
|
748 |
+
|
749 |
+
@torch.jit.ignore
|
750 |
+
def group_matcher(self, coarse=False):
|
751 |
+
return dict(
|
752 |
+
stem=r'^absolute_pos_embed|patch_embed', # stem and embed
|
753 |
+
blocks=r'^layers\.(\d+)' if coarse else [
|
754 |
+
(r'^layers\.(\d+).downsample', (0,)),
|
755 |
+
(r'^layers\.(\d+)\.\w+\.(\d+)', None),
|
756 |
+
(r'^norm', (99999,)),
|
757 |
+
]
|
758 |
+
)
|
759 |
+
|
760 |
+
@torch.jit.ignore
|
761 |
+
def set_grad_checkpointing(self, enable=True):
|
762 |
+
for l in self.layers:
|
763 |
+
l.grad_checkpointing = enable
|
764 |
+
|
765 |
+
@torch.jit.ignore
|
766 |
+
def get_classifier(self) -> nn.Module:
|
767 |
+
return self.head.fc
|
768 |
+
|
769 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
770 |
+
self.num_classes = num_classes
|
771 |
+
self.head.reset(num_classes, global_pool)
|
772 |
+
|
773 |
+
def forward_intermediates(
|
774 |
+
self,
|
775 |
+
x: torch.Tensor,
|
776 |
+
indices: Optional[Union[int, List[int]]] = None,
|
777 |
+
norm: bool = False,
|
778 |
+
stop_early: bool = False,
|
779 |
+
output_fmt: str = 'NCHW',
|
780 |
+
intermediates_only: bool = False,
|
781 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
782 |
+
""" Forward features that returns intermediates.
|
783 |
+
|
784 |
+
Args:
|
785 |
+
x: Input image tensor
|
786 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
787 |
+
norm: Apply norm layer to compatible intermediates
|
788 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
789 |
+
output_fmt: Shape of intermediate feature outputs
|
790 |
+
intermediates_only: Only return intermediate features
|
791 |
+
Returns:
|
792 |
+
|
793 |
+
"""
|
794 |
+
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
795 |
+
intermediates = []
|
796 |
+
take_indices, max_index = feature_take_indices(len(self.layers), indices)
|
797 |
+
|
798 |
+
# forward pass
|
799 |
+
x = self.patch_embed(x)
|
800 |
+
|
801 |
+
num_stages = len(self.layers)
|
802 |
+
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
803 |
+
stages = self.layers
|
804 |
+
else:
|
805 |
+
stages = self.layers[:max_index + 1]
|
806 |
+
for i, stage in enumerate(stages):
|
807 |
+
x = stage(x)
|
808 |
+
if i in take_indices:
|
809 |
+
if norm and i == num_stages - 1:
|
810 |
+
x_inter = self.norm(x) # applying final norm last intermediate
|
811 |
+
else:
|
812 |
+
x_inter = x
|
813 |
+
x_inter = x_inter.permute(0, 3, 1, 2).contiguous()
|
814 |
+
intermediates.append(x_inter)
|
815 |
+
|
816 |
+
if intermediates_only:
|
817 |
+
return intermediates
|
818 |
+
|
819 |
+
x = self.norm(x)
|
820 |
+
|
821 |
+
return x, intermediates
|
822 |
+
|
823 |
+
def prune_intermediate_layers(
|
824 |
+
self,
|
825 |
+
indices: Union[int, List[int]] = 1,
|
826 |
+
prune_norm: bool = False,
|
827 |
+
prune_head: bool = True,
|
828 |
+
):
|
829 |
+
""" Prune layers not required for specified intermediates.
|
830 |
+
"""
|
831 |
+
take_indices, max_index = feature_take_indices(len(self.layers), indices)
|
832 |
+
self.layers = self.layers[:max_index + 1] # truncate blocks
|
833 |
+
if prune_norm:
|
834 |
+
self.norm = nn.Identity()
|
835 |
+
if prune_head:
|
836 |
+
self.reset_classifier(0, '')
|
837 |
+
return take_indices
|
838 |
+
|
839 |
+
def forward_features(self, x):
|
840 |
+
x = self.patch_embed(x)
|
841 |
+
x = self.layers(x)
|
842 |
+
x = self.norm(x)
|
843 |
+
return x
|
844 |
+
|
845 |
+
def forward_head(self, x, pre_logits: bool = False):
|
846 |
+
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
|
847 |
+
|
848 |
+
def forward(self, x):
|
849 |
+
x = self.forward_features(x)
|
850 |
+
x = self.forward_head(x)
|
851 |
+
return x
|
852 |
+
|
853 |
+
|
854 |
+
def checkpoint_filter_fn(state_dict, model):
|
855 |
+
state_dict = state_dict.get('model', state_dict)
|
856 |
+
state_dict = state_dict.get('state_dict', state_dict)
|
857 |
+
native_checkpoint = 'head.fc.weight' in state_dict
|
858 |
+
out_dict = {}
|
859 |
+
import re
|
860 |
+
for k, v in state_dict.items():
|
861 |
+
if any([n in k for n in ('relative_position_index', 'relative_coords_table', 'attn_mask')]):
|
862 |
+
continue # skip buffers that should not be persistent
|
863 |
+
|
864 |
+
if 'patch_embed.proj.weight' in k:
|
865 |
+
_, _, H, W = model.patch_embed.proj.weight.shape
|
866 |
+
if v.shape[-2] != H or v.shape[-1] != W:
|
867 |
+
v = resample_patch_embed(
|
868 |
+
v,
|
869 |
+
(H, W),
|
870 |
+
interpolation='bicubic',
|
871 |
+
antialias=True,
|
872 |
+
verbose=True,
|
873 |
+
)
|
874 |
+
|
875 |
+
if not native_checkpoint:
|
876 |
+
# skip layer remapping for updated checkpoints
|
877 |
+
k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k)
|
878 |
+
k = k.replace('head.', 'head.fc.')
|
879 |
+
out_dict[k] = v
|
880 |
+
|
881 |
+
return out_dict
|
882 |
+
|
883 |
+
|
884 |
+
def _create_swin_transformer_v2(variant, pretrained=False, **kwargs):
|
885 |
+
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1))))
|
886 |
+
out_indices = kwargs.pop('out_indices', default_out_indices)
|
887 |
+
|
888 |
+
model = build_model_with_cfg(
|
889 |
+
SwinTransformerV2, variant, pretrained,
|
890 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
891 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
892 |
+
**kwargs)
|
893 |
+
return model
|
894 |
+
|
895 |
+
|
896 |
+
def _cfg(url='', **kwargs):
|
897 |
+
return {
|
898 |
+
'url': url,
|
899 |
+
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
|
900 |
+
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
901 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
902 |
+
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
|
903 |
+
'license': 'mit', **kwargs
|
904 |
+
}
|
905 |
+
|
906 |
+
|
907 |
+
default_cfgs = generate_default_cfgs({
|
908 |
+
'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k': _cfg(
|
909 |
+
hf_hub_id='timm/',
|
910 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth',
|
911 |
+
),
|
912 |
+
'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k': _cfg(
|
913 |
+
hf_hub_id='timm/',
|
914 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth',
|
915 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
|
916 |
+
),
|
917 |
+
'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k': _cfg(
|
918 |
+
hf_hub_id='timm/',
|
919 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth',
|
920 |
+
),
|
921 |
+
'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k': _cfg(
|
922 |
+
hf_hub_id='timm/',
|
923 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth',
|
924 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
|
925 |
+
),
|
926 |
+
|
927 |
+
'swinv2_tiny_window8_256.ms_in1k': _cfg(
|
928 |
+
hf_hub_id='timm/',
|
929 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth',
|
930 |
+
),
|
931 |
+
'swinv2_tiny_window16_256.ms_in1k': _cfg(
|
932 |
+
hf_hub_id='timm/',
|
933 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth',
|
934 |
+
),
|
935 |
+
'swinv2_small_window8_256.ms_in1k': _cfg(
|
936 |
+
hf_hub_id='timm/',
|
937 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth',
|
938 |
+
),
|
939 |
+
'swinv2_small_window16_256.ms_in1k': _cfg(
|
940 |
+
hf_hub_id='timm/',
|
941 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth',
|
942 |
+
),
|
943 |
+
'swinv2_base_window8_256.ms_in1k': _cfg(
|
944 |
+
hf_hub_id='timm/',
|
945 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth',
|
946 |
+
),
|
947 |
+
'swinv2_base_window16_256.ms_in1k': _cfg(
|
948 |
+
hf_hub_id='timm/',
|
949 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth',
|
950 |
+
),
|
951 |
+
|
952 |
+
'swinv2_base_window12_192.ms_in22k': _cfg(
|
953 |
+
hf_hub_id='timm/',
|
954 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth',
|
955 |
+
num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6)
|
956 |
+
),
|
957 |
+
'swinv2_large_window12_192.ms_in22k': _cfg(
|
958 |
+
hf_hub_id='timm/',
|
959 |
+
url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth',
|
960 |
+
num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6)
|
961 |
+
),
|
962 |
+
})
|
963 |
+
|
964 |
+
|
965 |
+
@register_model
|
966 |
+
def swinv2_tiny_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
967 |
+
"""
|
968 |
+
"""
|
969 |
+
model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24))
|
970 |
+
return _create_swin_transformer_v2(
|
971 |
+
'swinv2_tiny_window16_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
972 |
+
|
973 |
+
|
974 |
+
@register_model
|
975 |
+
def swinv2_tiny_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
976 |
+
"""
|
977 |
+
"""
|
978 |
+
model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24))
|
979 |
+
return _create_swin_transformer_v2(
|
980 |
+
'swinv2_tiny_window8_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
981 |
+
|
982 |
+
|
983 |
+
@register_model
|
984 |
+
def swinv2_small_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
985 |
+
"""
|
986 |
+
"""
|
987 |
+
model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24))
|
988 |
+
return _create_swin_transformer_v2(
|
989 |
+
'swinv2_small_window16_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
990 |
+
|
991 |
+
|
992 |
+
@register_model
|
993 |
+
def swinv2_small_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
994 |
+
"""
|
995 |
+
"""
|
996 |
+
model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24))
|
997 |
+
return _create_swin_transformer_v2(
|
998 |
+
'swinv2_small_window8_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
999 |
+
|
1000 |
+
|
1001 |
+
@register_model
|
1002 |
+
def swinv2_base_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1003 |
+
"""
|
1004 |
+
"""
|
1005 |
+
model_args = dict(window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32))
|
1006 |
+
return _create_swin_transformer_v2(
|
1007 |
+
'swinv2_base_window16_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
1008 |
+
|
1009 |
+
|
1010 |
+
@register_model
|
1011 |
+
def swinv2_base_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1012 |
+
"""
|
1013 |
+
"""
|
1014 |
+
model_args = dict(window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32))
|
1015 |
+
return _create_swin_transformer_v2(
|
1016 |
+
'swinv2_base_window8_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
1017 |
+
|
1018 |
+
|
1019 |
+
@register_model
|
1020 |
+
def swinv2_base_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1021 |
+
"""
|
1022 |
+
"""
|
1023 |
+
model_args = dict(window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32))
|
1024 |
+
return _create_swin_transformer_v2(
|
1025 |
+
'swinv2_base_window12_192', pretrained=pretrained, **dict(model_args, **kwargs))
|
1026 |
+
|
1027 |
+
|
1028 |
+
@register_model
|
1029 |
+
def swinv2_base_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1030 |
+
"""
|
1031 |
+
"""
|
1032 |
+
model_args = dict(
|
1033 |
+
window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32),
|
1034 |
+
pretrained_window_sizes=(12, 12, 12, 6))
|
1035 |
+
return _create_swin_transformer_v2(
|
1036 |
+
'swinv2_base_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs))
|
1037 |
+
|
1038 |
+
|
1039 |
+
@register_model
|
1040 |
+
def swinv2_base_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1041 |
+
"""
|
1042 |
+
"""
|
1043 |
+
model_args = dict(
|
1044 |
+
window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32),
|
1045 |
+
pretrained_window_sizes=(12, 12, 12, 6))
|
1046 |
+
return _create_swin_transformer_v2(
|
1047 |
+
'swinv2_base_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1048 |
+
|
1049 |
+
|
1050 |
+
@register_model
|
1051 |
+
def swinv2_large_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1052 |
+
"""
|
1053 |
+
"""
|
1054 |
+
model_args = dict(window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48))
|
1055 |
+
return _create_swin_transformer_v2(
|
1056 |
+
'swinv2_large_window12_192', pretrained=pretrained, **dict(model_args, **kwargs))
|
1057 |
+
|
1058 |
+
|
1059 |
+
@register_model
|
1060 |
+
def swinv2_large_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1061 |
+
"""
|
1062 |
+
"""
|
1063 |
+
model_args = dict(
|
1064 |
+
window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48),
|
1065 |
+
pretrained_window_sizes=(12, 12, 12, 6))
|
1066 |
+
return _create_swin_transformer_v2(
|
1067 |
+
'swinv2_large_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs))
|
1068 |
+
|
1069 |
+
|
1070 |
+
@register_model
|
1071 |
+
def swinv2_large_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2:
|
1072 |
+
"""
|
1073 |
+
"""
|
1074 |
+
model_args = dict(
|
1075 |
+
window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48),
|
1076 |
+
pretrained_window_sizes=(12, 12, 12, 6))
|
1077 |
+
return _create_swin_transformer_v2(
|
1078 |
+
'swinv2_large_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1079 |
+
|
1080 |
+
|
1081 |
+
register_model_deprecations(__name__, {
|
1082 |
+
'swinv2_base_window12_192_22k': 'swinv2_base_window12_192.ms_in22k',
|
1083 |
+
'swinv2_base_window12to16_192to256_22kft1k': 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k',
|
1084 |
+
'swinv2_base_window12to24_192to384_22kft1k': 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k',
|
1085 |
+
'swinv2_large_window12_192_22k': 'swinv2_large_window12_192.ms_in22k',
|
1086 |
+
'swinv2_large_window12to16_192to256_22kft1k': 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k',
|
1087 |
+
'swinv2_large_window12to24_192to384_22kft1k': 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k',
|
1088 |
+
})
|
pytorch-image-models/timm/models/swin_transformer_v2_cr.py
ADDED
@@ -0,0 +1,1153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Swin Transformer V2
|
2 |
+
|
3 |
+
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution`
|
4 |
+
- https://arxiv.org/pdf/2111.09883
|
5 |
+
|
6 |
+
Code adapted from https://github.com/ChristophReich1996/Swin-Transformer-V2, original copyright/license info below
|
7 |
+
|
8 |
+
This implementation is experimental and subject to change in manners that will break weight compat:
|
9 |
+
* Size of the pos embed MLP are not spelled out in paper in terms of dim, fixed for all models? vary with num_heads?
|
10 |
+
* currently dim is fixed, I feel it may make sense to scale with num_heads (dim per head)
|
11 |
+
* The specifics of the memory saving 'sequential attention' are not detailed, Christoph Reich has an impl at
|
12 |
+
GitHub link above. It needs further investigation as throughput vs mem tradeoff doesn't appear beneficial.
|
13 |
+
* num_heads per stage is not detailed for Huge and Giant model variants
|
14 |
+
* 'Giant' is 3B params in paper but ~2.6B here despite matching paper dim + block counts
|
15 |
+
* experiments are ongoing wrt to 'main branch' norm layer use and weight init scheme
|
16 |
+
|
17 |
+
Noteworthy additions over official Swin v1:
|
18 |
+
* MLP relative position embedding is looking promising and adapts to different image/window sizes
|
19 |
+
* This impl has been designed to allow easy change of image size with matching window size changes
|
20 |
+
* Non-square image size and window size are supported
|
21 |
+
|
22 |
+
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
|
23 |
+
"""
|
24 |
+
# --------------------------------------------------------
|
25 |
+
# Swin Transformer V2 reimplementation
|
26 |
+
# Copyright (c) 2021 Christoph Reich
|
27 |
+
# Licensed under The MIT License [see LICENSE for details]
|
28 |
+
# Written by Christoph Reich
|
29 |
+
# --------------------------------------------------------
|
30 |
+
import logging
|
31 |
+
import math
|
32 |
+
from typing import Tuple, Optional, List, Union, Any, Type
|
33 |
+
|
34 |
+
import torch
|
35 |
+
import torch.nn as nn
|
36 |
+
import torch.nn.functional as F
|
37 |
+
import torch.utils.checkpoint as checkpoint
|
38 |
+
|
39 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
40 |
+
from timm.layers import DropPath, Mlp, ClassifierHead, to_2tuple, _assert, ndgrid
|
41 |
+
from ._builder import build_model_with_cfg
|
42 |
+
from ._features import feature_take_indices
|
43 |
+
from ._features_fx import register_notrace_function
|
44 |
+
from ._manipulate import named_apply
|
45 |
+
from ._registry import generate_default_cfgs, register_model
|
46 |
+
|
47 |
+
__all__ = ['SwinTransformerV2Cr'] # model_registry will add each entrypoint fn to this
|
48 |
+
|
49 |
+
_logger = logging.getLogger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor:
|
53 |
+
"""Permutes a tensor from the shape (B, C, H, W) to (B, H, W, C). """
|
54 |
+
return x.permute(0, 2, 3, 1)
|
55 |
+
|
56 |
+
|
57 |
+
def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor:
|
58 |
+
"""Permutes a tensor from the shape (B, H, W, C) to (B, C, H, W). """
|
59 |
+
return x.permute(0, 3, 1, 2)
|
60 |
+
|
61 |
+
|
62 |
+
def window_partition(x, window_size: Tuple[int, int]):
|
63 |
+
"""
|
64 |
+
Args:
|
65 |
+
x: (B, H, W, C)
|
66 |
+
window_size (int): window size
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
windows: (num_windows*B, window_size, window_size, C)
|
70 |
+
"""
|
71 |
+
B, H, W, C = x.shape
|
72 |
+
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
73 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
74 |
+
return windows
|
75 |
+
|
76 |
+
|
77 |
+
@register_notrace_function # reason: int argument is a Proxy
|
78 |
+
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
|
79 |
+
"""
|
80 |
+
Args:
|
81 |
+
windows: (num_windows * B, window_size[0], window_size[1], C)
|
82 |
+
window_size (Tuple[int, int]): Window size
|
83 |
+
img_size (Tuple[int, int]): Image size
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
x: (B, H, W, C)
|
87 |
+
"""
|
88 |
+
H, W = img_size
|
89 |
+
C = windows.shape[-1]
|
90 |
+
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
|
91 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
class WindowMultiHeadAttention(nn.Module):
|
96 |
+
r"""This class implements window-based Multi-Head-Attention with log-spaced continuous position bias.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
dim (int): Number of input features
|
100 |
+
window_size (int): Window size
|
101 |
+
num_heads (int): Number of attention heads
|
102 |
+
drop_attn (float): Dropout rate of attention map
|
103 |
+
drop_proj (float): Dropout rate after projection
|
104 |
+
meta_hidden_dim (int): Number of hidden features in the two layer MLP meta network
|
105 |
+
sequential_attn (bool): If true sequential self-attention is performed
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
dim: int,
|
111 |
+
num_heads: int,
|
112 |
+
window_size: Tuple[int, int],
|
113 |
+
drop_attn: float = 0.0,
|
114 |
+
drop_proj: float = 0.0,
|
115 |
+
meta_hidden_dim: int = 384, # FIXME what's the optimal value?
|
116 |
+
sequential_attn: bool = False,
|
117 |
+
) -> None:
|
118 |
+
super(WindowMultiHeadAttention, self).__init__()
|
119 |
+
assert dim % num_heads == 0, \
|
120 |
+
"The number of input features (in_features) are not divisible by the number of heads (num_heads)."
|
121 |
+
self.in_features: int = dim
|
122 |
+
self.window_size: Tuple[int, int] = to_2tuple(window_size)
|
123 |
+
self.num_heads: int = num_heads
|
124 |
+
self.sequential_attn: bool = sequential_attn
|
125 |
+
|
126 |
+
self.qkv = nn.Linear(in_features=dim, out_features=dim * 3, bias=True)
|
127 |
+
self.attn_drop = nn.Dropout(drop_attn)
|
128 |
+
self.proj = nn.Linear(in_features=dim, out_features=dim, bias=True)
|
129 |
+
self.proj_drop = nn.Dropout(drop_proj)
|
130 |
+
# meta network for positional encodings
|
131 |
+
self.meta_mlp = Mlp(
|
132 |
+
2, # x, y
|
133 |
+
hidden_features=meta_hidden_dim,
|
134 |
+
out_features=num_heads,
|
135 |
+
act_layer=nn.ReLU,
|
136 |
+
drop=(0.125, 0.) # FIXME should there be stochasticity, appears to 'overfit' without?
|
137 |
+
)
|
138 |
+
# NOTE old checkpoints used inverse of logit_scale ('tau') following the paper, see conversion fn
|
139 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones(num_heads)))
|
140 |
+
self._make_pair_wise_relative_positions()
|
141 |
+
|
142 |
+
def _make_pair_wise_relative_positions(self) -> None:
|
143 |
+
"""Method initializes the pair-wise relative positions to compute the positional biases."""
|
144 |
+
device = self.logit_scale.device
|
145 |
+
coordinates = torch.stack(ndgrid(
|
146 |
+
torch.arange(self.window_size[0], device=device),
|
147 |
+
torch.arange(self.window_size[1], device=device)
|
148 |
+
), dim=0).flatten(1)
|
149 |
+
relative_coordinates = coordinates[:, :, None] - coordinates[:, None, :]
|
150 |
+
relative_coordinates = relative_coordinates.permute(1, 2, 0).reshape(-1, 2).float()
|
151 |
+
relative_coordinates_log = torch.sign(relative_coordinates) * torch.log(
|
152 |
+
1.0 + relative_coordinates.abs())
|
153 |
+
self.register_buffer("relative_coordinates_log", relative_coordinates_log, persistent=False)
|
154 |
+
|
155 |
+
def set_window_size(self, window_size: Tuple[int, int]) -> None:
|
156 |
+
"""Update window size & interpolate position embeddings
|
157 |
+
Args:
|
158 |
+
window_size (int): New window size
|
159 |
+
"""
|
160 |
+
window_size = to_2tuple(window_size)
|
161 |
+
if window_size != self.window_size:
|
162 |
+
self.window_size = window_size
|
163 |
+
self._make_pair_wise_relative_positions()
|
164 |
+
|
165 |
+
def _relative_positional_encodings(self) -> torch.Tensor:
|
166 |
+
"""Method computes the relative positional encodings
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
relative_position_bias (torch.Tensor): Relative positional encodings
|
170 |
+
(1, number of heads, window size ** 2, window size ** 2)
|
171 |
+
"""
|
172 |
+
window_area = self.window_size[0] * self.window_size[1]
|
173 |
+
relative_position_bias = self.meta_mlp(self.relative_coordinates_log)
|
174 |
+
relative_position_bias = relative_position_bias.transpose(1, 0).reshape(
|
175 |
+
self.num_heads, window_area, window_area
|
176 |
+
)
|
177 |
+
relative_position_bias = relative_position_bias.unsqueeze(0)
|
178 |
+
return relative_position_bias
|
179 |
+
|
180 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
181 |
+
""" Forward pass.
|
182 |
+
Args:
|
183 |
+
x (torch.Tensor): Input tensor of the shape (B * windows, N, C)
|
184 |
+
mask (Optional[torch.Tensor]): Attention mask for the shift case
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
Output tensor of the shape [B * windows, N, C]
|
188 |
+
"""
|
189 |
+
Bw, L, C = x.shape
|
190 |
+
|
191 |
+
qkv = self.qkv(x).view(Bw, L, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
192 |
+
query, key, value = qkv.unbind(0)
|
193 |
+
|
194 |
+
# compute attention map with scaled cosine attention
|
195 |
+
attn = (F.normalize(query, dim=-1) @ F.normalize(key, dim=-1).transpose(-2, -1))
|
196 |
+
logit_scale = torch.clamp(self.logit_scale.reshape(1, self.num_heads, 1, 1), max=math.log(1. / 0.01)).exp()
|
197 |
+
attn = attn * logit_scale
|
198 |
+
attn = attn + self._relative_positional_encodings()
|
199 |
+
|
200 |
+
if mask is not None:
|
201 |
+
# Apply mask if utilized
|
202 |
+
num_win: int = mask.shape[0]
|
203 |
+
attn = attn.view(Bw // num_win, num_win, self.num_heads, L, L)
|
204 |
+
attn = attn + mask.unsqueeze(1).unsqueeze(0)
|
205 |
+
attn = attn.view(-1, self.num_heads, L, L)
|
206 |
+
attn = attn.softmax(dim=-1)
|
207 |
+
attn = self.attn_drop(attn)
|
208 |
+
|
209 |
+
x = (attn @ value).transpose(1, 2).reshape(Bw, L, -1)
|
210 |
+
x = self.proj(x)
|
211 |
+
x = self.proj_drop(x)
|
212 |
+
return x
|
213 |
+
|
214 |
+
|
215 |
+
class SwinTransformerV2CrBlock(nn.Module):
|
216 |
+
r"""This class implements the Swin transformer block.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
dim (int): Number of input channels
|
220 |
+
num_heads (int): Number of attention heads to be utilized
|
221 |
+
feat_size (Tuple[int, int]): Input resolution
|
222 |
+
window_size (Tuple[int, int]): Window size to be utilized
|
223 |
+
shift_size (int): Shifting size to be used
|
224 |
+
mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels
|
225 |
+
proj_drop (float): Dropout in input mapping
|
226 |
+
drop_attn (float): Dropout rate of attention map
|
227 |
+
drop_path (float): Dropout in main path
|
228 |
+
extra_norm (bool): Insert extra norm on 'main' branch if True
|
229 |
+
sequential_attn (bool): If true sequential self-attention is performed
|
230 |
+
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
dim: int,
|
236 |
+
num_heads: int,
|
237 |
+
feat_size: Tuple[int, int],
|
238 |
+
window_size: Tuple[int, int],
|
239 |
+
shift_size: Tuple[int, int] = (0, 0),
|
240 |
+
always_partition: bool = False,
|
241 |
+
dynamic_mask: bool = False,
|
242 |
+
mlp_ratio: float = 4.0,
|
243 |
+
init_values: Optional[float] = 0,
|
244 |
+
proj_drop: float = 0.0,
|
245 |
+
drop_attn: float = 0.0,
|
246 |
+
drop_path: float = 0.0,
|
247 |
+
extra_norm: bool = False,
|
248 |
+
sequential_attn: bool = False,
|
249 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
250 |
+
):
|
251 |
+
super(SwinTransformerV2CrBlock, self).__init__()
|
252 |
+
self.dim: int = dim
|
253 |
+
self.feat_size: Tuple[int, int] = feat_size
|
254 |
+
self.target_shift_size: Tuple[int, int] = to_2tuple(shift_size)
|
255 |
+
self.always_partition = always_partition
|
256 |
+
self.dynamic_mask = dynamic_mask
|
257 |
+
self.window_size, self.shift_size = self._calc_window_shift(window_size)
|
258 |
+
self.window_area = self.window_size[0] * self.window_size[1]
|
259 |
+
self.init_values: Optional[float] = init_values
|
260 |
+
|
261 |
+
# attn branch
|
262 |
+
self.attn = WindowMultiHeadAttention(
|
263 |
+
dim=dim,
|
264 |
+
num_heads=num_heads,
|
265 |
+
window_size=self.window_size,
|
266 |
+
drop_attn=drop_attn,
|
267 |
+
drop_proj=proj_drop,
|
268 |
+
sequential_attn=sequential_attn,
|
269 |
+
)
|
270 |
+
self.norm1 = norm_layer(dim)
|
271 |
+
self.drop_path1 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity()
|
272 |
+
|
273 |
+
# mlp branch
|
274 |
+
self.mlp = Mlp(
|
275 |
+
in_features=dim,
|
276 |
+
hidden_features=int(dim * mlp_ratio),
|
277 |
+
drop=proj_drop,
|
278 |
+
out_features=dim,
|
279 |
+
)
|
280 |
+
self.norm2 = norm_layer(dim)
|
281 |
+
self.drop_path2 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity()
|
282 |
+
|
283 |
+
# Extra main branch norm layer mentioned for Huge/Giant models in V2 paper.
|
284 |
+
# Also being used as final network norm and optional stage ending norm while still in a C-last format.
|
285 |
+
self.norm3 = norm_layer(dim) if extra_norm else nn.Identity()
|
286 |
+
|
287 |
+
self.register_buffer(
|
288 |
+
"attn_mask",
|
289 |
+
None if self.dynamic_mask else self.get_attn_mask(),
|
290 |
+
persistent=False,
|
291 |
+
)
|
292 |
+
self.init_weights()
|
293 |
+
|
294 |
+
def _calc_window_shift(
|
295 |
+
self,
|
296 |
+
target_window_size: Tuple[int, int],
|
297 |
+
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
|
298 |
+
target_window_size = to_2tuple(target_window_size)
|
299 |
+
target_shift_size = self.target_shift_size
|
300 |
+
if any(target_shift_size):
|
301 |
+
# if non-zero, recalculate shift from current window size in case window size has changed
|
302 |
+
target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2)
|
303 |
+
|
304 |
+
if self.always_partition:
|
305 |
+
return target_window_size, target_shift_size
|
306 |
+
|
307 |
+
window_size = [f if f <= w else w for f, w in zip(self.feat_size, target_window_size)]
|
308 |
+
shift_size = [0 if f <= w else s for f, w, s in zip(self.feat_size, window_size, target_shift_size)]
|
309 |
+
return tuple(window_size), tuple(shift_size)
|
310 |
+
|
311 |
+
def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]:
|
312 |
+
"""Method generates the attention mask used in shift case."""
|
313 |
+
# Make masks for shift case
|
314 |
+
if any(self.shift_size):
|
315 |
+
# calculate attention mask for SW-MSA
|
316 |
+
if x is None:
|
317 |
+
img_mask = torch.zeros((1, *self.feat_size, 1)) # 1 H W 1
|
318 |
+
else:
|
319 |
+
img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) # 1 H W 1
|
320 |
+
cnt = 0
|
321 |
+
for h in (
|
322 |
+
(0, -self.window_size[0]),
|
323 |
+
(-self.window_size[0], -self.shift_size[0]),
|
324 |
+
(-self.shift_size[0], None),
|
325 |
+
):
|
326 |
+
for w in (
|
327 |
+
(0, -self.window_size[1]),
|
328 |
+
(-self.window_size[1], -self.shift_size[1]),
|
329 |
+
(-self.shift_size[1], None),
|
330 |
+
):
|
331 |
+
img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt
|
332 |
+
cnt += 1
|
333 |
+
mask_windows = window_partition(img_mask, self.window_size) # num_windows, window_size, window_size, 1
|
334 |
+
mask_windows = mask_windows.view(-1, self.window_area)
|
335 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
336 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
337 |
+
else:
|
338 |
+
attn_mask = None
|
339 |
+
return attn_mask
|
340 |
+
|
341 |
+
def init_weights(self):
|
342 |
+
# extra, module specific weight init
|
343 |
+
if self.init_values is not None:
|
344 |
+
nn.init.constant_(self.norm1.weight, self.init_values)
|
345 |
+
nn.init.constant_(self.norm2.weight, self.init_values)
|
346 |
+
|
347 |
+
def set_input_size(self, feat_size: Tuple[int, int], window_size: Tuple[int, int]) -> None:
|
348 |
+
"""Method updates the image resolution to be processed and window size and so the pair-wise relative positions.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
feat_size (Tuple[int, int]): New input resolution
|
352 |
+
window_size (int): New window size
|
353 |
+
"""
|
354 |
+
# Update input resolution
|
355 |
+
self.feat_size: Tuple[int, int] = feat_size
|
356 |
+
self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size))
|
357 |
+
self.window_area = self.window_size[0] * self.window_size[1]
|
358 |
+
self.attn.set_window_size(self.window_size)
|
359 |
+
self.register_buffer(
|
360 |
+
"attn_mask",
|
361 |
+
None if self.dynamic_mask else self.get_attn_mask(),
|
362 |
+
persistent=False,
|
363 |
+
)
|
364 |
+
|
365 |
+
def _shifted_window_attn(self, x):
|
366 |
+
B, H, W, C = x.shape
|
367 |
+
|
368 |
+
# cyclic shift
|
369 |
+
sh, sw = self.shift_size
|
370 |
+
do_shift: bool = any(self.shift_size)
|
371 |
+
if do_shift:
|
372 |
+
# FIXME PyTorch XLA needs cat impl, roll not lowered
|
373 |
+
# x = torch.cat([x[:, sh:], x[:, :sh]], dim=1)
|
374 |
+
# x = torch.cat([x[:, :, sw:], x[:, :, :sw]], dim=2)
|
375 |
+
x = torch.roll(x, shifts=(-sh, -sw), dims=(1, 2))
|
376 |
+
|
377 |
+
pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
|
378 |
+
pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
|
379 |
+
x = torch.nn.functional.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
380 |
+
_, Hp, Wp, _ = x.shape
|
381 |
+
|
382 |
+
# partition windows
|
383 |
+
x_windows = window_partition(x, self.window_size) # num_windows * B, window_size, window_size, C
|
384 |
+
x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C)
|
385 |
+
|
386 |
+
# W-MSA/SW-MSA
|
387 |
+
if getattr(self, 'dynamic_mask', False):
|
388 |
+
attn_mask = self.get_attn_mask(x)
|
389 |
+
else:
|
390 |
+
attn_mask = self.attn_mask
|
391 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # num_windows * B, window_size * window_size, C
|
392 |
+
|
393 |
+
# merge windows
|
394 |
+
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
|
395 |
+
x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) # B H' W' C
|
396 |
+
x = x[:, :H, :W, :].contiguous()
|
397 |
+
|
398 |
+
# reverse cyclic shift
|
399 |
+
if do_shift:
|
400 |
+
# FIXME PyTorch XLA needs cat impl, roll not lowered
|
401 |
+
# x = torch.cat([x[:, -sh:], x[:, :-sh]], dim=1)
|
402 |
+
# x = torch.cat([x[:, :, -sw:], x[:, :, :-sw]], dim=2)
|
403 |
+
x = torch.roll(x, shifts=(sh, sw), dims=(1, 2))
|
404 |
+
|
405 |
+
return x
|
406 |
+
|
407 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
408 |
+
"""Forward pass.
|
409 |
+
|
410 |
+
Args:
|
411 |
+
x (torch.Tensor): Input tensor of the shape [B, C, H, W]
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
output (torch.Tensor): Output tensor of the shape [B, C, H, W]
|
415 |
+
"""
|
416 |
+
# post-norm branches (op -> norm -> drop)
|
417 |
+
x = x + self.drop_path1(self.norm1(self._shifted_window_attn(x)))
|
418 |
+
|
419 |
+
B, H, W, C = x.shape
|
420 |
+
x = x.reshape(B, -1, C)
|
421 |
+
x = x + self.drop_path2(self.norm2(self.mlp(x)))
|
422 |
+
x = self.norm3(x) # main-branch norm enabled for some blocks / stages (every 6 for Huge/Giant)
|
423 |
+
x = x.reshape(B, H, W, C)
|
424 |
+
return x
|
425 |
+
|
426 |
+
|
427 |
+
class PatchMerging(nn.Module):
|
428 |
+
""" This class implements the patch merging as a strided convolution with a normalization before.
|
429 |
+
Args:
|
430 |
+
dim (int): Number of input channels
|
431 |
+
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized.
|
432 |
+
"""
|
433 |
+
|
434 |
+
def __init__(self, dim: int, norm_layer: Type[nn.Module] = nn.LayerNorm) -> None:
|
435 |
+
super(PatchMerging, self).__init__()
|
436 |
+
self.norm = norm_layer(4 * dim)
|
437 |
+
self.reduction = nn.Linear(in_features=4 * dim, out_features=2 * dim, bias=False)
|
438 |
+
|
439 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
440 |
+
""" Forward pass.
|
441 |
+
Args:
|
442 |
+
x (torch.Tensor): Input tensor of the shape [B, C, H, W]
|
443 |
+
Returns:
|
444 |
+
output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2]
|
445 |
+
"""
|
446 |
+
B, H, W, C = x.shape
|
447 |
+
|
448 |
+
pad_values = (0, 0, 0, W % 2, 0, H % 2)
|
449 |
+
x = nn.functional.pad(x, pad_values)
|
450 |
+
_, H, W, _ = x.shape
|
451 |
+
|
452 |
+
x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3)
|
453 |
+
x = self.norm(x)
|
454 |
+
x = self.reduction(x)
|
455 |
+
return x
|
456 |
+
|
457 |
+
|
458 |
+
class PatchEmbed(nn.Module):
|
459 |
+
""" 2D Image to Patch Embedding """
|
460 |
+
def __init__(
|
461 |
+
self,
|
462 |
+
img_size=224,
|
463 |
+
patch_size=16,
|
464 |
+
in_chans=3,
|
465 |
+
embed_dim=768,
|
466 |
+
norm_layer=None,
|
467 |
+
strict_img_size=True,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
img_size = to_2tuple(img_size)
|
471 |
+
patch_size = to_2tuple(patch_size)
|
472 |
+
self.img_size = img_size
|
473 |
+
self.patch_size = patch_size
|
474 |
+
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
475 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
476 |
+
self.strict_img_size = strict_img_size
|
477 |
+
|
478 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
479 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
480 |
+
|
481 |
+
def set_input_size(self, img_size: Tuple[int, int]):
|
482 |
+
img_size = to_2tuple(img_size)
|
483 |
+
if img_size != self.img_size:
|
484 |
+
self.img_size = img_size
|
485 |
+
self.grid_size = (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1])
|
486 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
487 |
+
|
488 |
+
def forward(self, x):
|
489 |
+
B, C, H, W = x.shape
|
490 |
+
if self.strict_img_size:
|
491 |
+
_assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
|
492 |
+
_assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
|
493 |
+
x = self.proj(x)
|
494 |
+
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
495 |
+
return x
|
496 |
+
|
497 |
+
|
498 |
+
class SwinTransformerV2CrStage(nn.Module):
|
499 |
+
r"""This class implements a stage of the Swin transformer including multiple layers.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
embed_dim (int): Number of input channels
|
503 |
+
depth (int): Depth of the stage (number of layers)
|
504 |
+
downscale (bool): If true input is downsampled (see Fig. 3 or V1 paper)
|
505 |
+
feat_size (Tuple[int, int]): input feature map size (H, W)
|
506 |
+
num_heads (int): Number of attention heads to be utilized
|
507 |
+
window_size (int): Window size to be utilized
|
508 |
+
mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels
|
509 |
+
proj_drop (float): Dropout in input mapping
|
510 |
+
drop_attn (float): Dropout rate of attention map
|
511 |
+
drop_path (float): Dropout in main path
|
512 |
+
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. Default: nn.LayerNorm
|
513 |
+
extra_norm_period (int): Insert extra norm layer on main branch every N (period) blocks
|
514 |
+
extra_norm_stage (bool): End each stage with an extra norm layer in main branch
|
515 |
+
sequential_attn (bool): If true sequential self-attention is performed
|
516 |
+
"""
|
517 |
+
|
518 |
+
def __init__(
|
519 |
+
self,
|
520 |
+
embed_dim: int,
|
521 |
+
depth: int,
|
522 |
+
downscale: bool,
|
523 |
+
num_heads: int,
|
524 |
+
feat_size: Tuple[int, int],
|
525 |
+
window_size: Tuple[int, int],
|
526 |
+
always_partition: bool = False,
|
527 |
+
dynamic_mask: bool = False,
|
528 |
+
mlp_ratio: float = 4.0,
|
529 |
+
init_values: Optional[float] = 0.0,
|
530 |
+
proj_drop: float = 0.0,
|
531 |
+
drop_attn: float = 0.0,
|
532 |
+
drop_path: Union[List[float], float] = 0.0,
|
533 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
534 |
+
extra_norm_period: int = 0,
|
535 |
+
extra_norm_stage: bool = False,
|
536 |
+
sequential_attn: bool = False,
|
537 |
+
):
|
538 |
+
super(SwinTransformerV2CrStage, self).__init__()
|
539 |
+
self.downscale: bool = downscale
|
540 |
+
self.grad_checkpointing: bool = False
|
541 |
+
self.feat_size: Tuple[int, int] = (feat_size[0] // 2, feat_size[1] // 2) if downscale else feat_size
|
542 |
+
|
543 |
+
if downscale:
|
544 |
+
self.downsample = PatchMerging(embed_dim, norm_layer=norm_layer)
|
545 |
+
embed_dim = embed_dim * 2
|
546 |
+
else:
|
547 |
+
self.downsample = nn.Identity()
|
548 |
+
|
549 |
+
def _extra_norm(index):
|
550 |
+
i = index + 1
|
551 |
+
if extra_norm_period and i % extra_norm_period == 0:
|
552 |
+
return True
|
553 |
+
return i == depth if extra_norm_stage else False
|
554 |
+
|
555 |
+
self.blocks = nn.Sequential(*[
|
556 |
+
SwinTransformerV2CrBlock(
|
557 |
+
dim=embed_dim,
|
558 |
+
num_heads=num_heads,
|
559 |
+
feat_size=self.feat_size,
|
560 |
+
window_size=window_size,
|
561 |
+
always_partition=always_partition,
|
562 |
+
dynamic_mask=dynamic_mask,
|
563 |
+
shift_size=tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size]),
|
564 |
+
mlp_ratio=mlp_ratio,
|
565 |
+
init_values=init_values,
|
566 |
+
proj_drop=proj_drop,
|
567 |
+
drop_attn=drop_attn,
|
568 |
+
drop_path=drop_path[index] if isinstance(drop_path, list) else drop_path,
|
569 |
+
extra_norm=_extra_norm(index),
|
570 |
+
sequential_attn=sequential_attn,
|
571 |
+
norm_layer=norm_layer,
|
572 |
+
)
|
573 |
+
for index in range(depth)]
|
574 |
+
)
|
575 |
+
|
576 |
+
def set_input_size(
|
577 |
+
self,
|
578 |
+
feat_size: Tuple[int, int],
|
579 |
+
window_size: int,
|
580 |
+
always_partition: Optional[bool] = None,
|
581 |
+
):
|
582 |
+
""" Updates the resolution to utilize and the window size and so the pair-wise relative positions.
|
583 |
+
|
584 |
+
Args:
|
585 |
+
window_size (int): New window size
|
586 |
+
feat_size (Tuple[int, int]): New input resolution
|
587 |
+
"""
|
588 |
+
self.feat_size = (feat_size[0] // 2, feat_size[1] // 2) if self.downscale else feat_size
|
589 |
+
for block in self.blocks:
|
590 |
+
block.set_input_size(
|
591 |
+
feat_size=self.feat_size,
|
592 |
+
window_size=window_size,
|
593 |
+
)
|
594 |
+
|
595 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
596 |
+
"""Forward pass.
|
597 |
+
Args:
|
598 |
+
x (torch.Tensor): Input tensor of the shape [B, C, H, W] or [B, L, C]
|
599 |
+
Returns:
|
600 |
+
output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2]
|
601 |
+
"""
|
602 |
+
x = bchw_to_bhwc(x)
|
603 |
+
x = self.downsample(x)
|
604 |
+
for block in self.blocks:
|
605 |
+
# Perform checkpointing if utilized
|
606 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
607 |
+
x = checkpoint.checkpoint(block, x)
|
608 |
+
else:
|
609 |
+
x = block(x)
|
610 |
+
x = bhwc_to_bchw(x)
|
611 |
+
return x
|
612 |
+
|
613 |
+
|
614 |
+
class SwinTransformerV2Cr(nn.Module):
|
615 |
+
r""" Swin Transformer V2
|
616 |
+
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` -
|
617 |
+
https://arxiv.org/pdf/2111.09883
|
618 |
+
|
619 |
+
Args:
|
620 |
+
img_size: Input resolution.
|
621 |
+
window_size: Window size. If None, grid_size // window_div
|
622 |
+
window_ratio: Window size to patch grid ratio.
|
623 |
+
patch_size: Patch size.
|
624 |
+
in_chans: Number of input channels.
|
625 |
+
depths: Depth of the stage (number of layers).
|
626 |
+
num_heads: Number of attention heads to be utilized.
|
627 |
+
embed_dim: Patch embedding dimension.
|
628 |
+
num_classes: Number of output classes.
|
629 |
+
mlp_ratio: Ratio of the hidden dimension in the FFN to the input channels.
|
630 |
+
drop_rate: Dropout rate.
|
631 |
+
proj_drop_rate: Projection dropout rate.
|
632 |
+
attn_drop_rate: Dropout rate of attention map.
|
633 |
+
drop_path_rate: Stochastic depth rate.
|
634 |
+
norm_layer: Type of normalization layer to be utilized.
|
635 |
+
extra_norm_period: Insert extra norm layer on main branch every N (period) blocks in stage
|
636 |
+
extra_norm_stage: End each stage with an extra norm layer in main branch
|
637 |
+
sequential_attn: If true sequential self-attention is performed.
|
638 |
+
"""
|
639 |
+
|
640 |
+
def __init__(
|
641 |
+
self,
|
642 |
+
img_size: Tuple[int, int] = (224, 224),
|
643 |
+
patch_size: int = 4,
|
644 |
+
window_size: Optional[int] = None,
|
645 |
+
window_ratio: int = 8,
|
646 |
+
always_partition: bool = False,
|
647 |
+
strict_img_size: bool = True,
|
648 |
+
in_chans: int = 3,
|
649 |
+
num_classes: int = 1000,
|
650 |
+
embed_dim: int = 96,
|
651 |
+
depths: Tuple[int, ...] = (2, 2, 6, 2),
|
652 |
+
num_heads: Tuple[int, ...] = (3, 6, 12, 24),
|
653 |
+
mlp_ratio: float = 4.0,
|
654 |
+
init_values: Optional[float] = 0.,
|
655 |
+
drop_rate: float = 0.0,
|
656 |
+
proj_drop_rate: float = 0.0,
|
657 |
+
attn_drop_rate: float = 0.0,
|
658 |
+
drop_path_rate: float = 0.0,
|
659 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
660 |
+
extra_norm_period: int = 0,
|
661 |
+
extra_norm_stage: bool = False,
|
662 |
+
sequential_attn: bool = False,
|
663 |
+
global_pool: str = 'avg',
|
664 |
+
weight_init='skip',
|
665 |
+
**kwargs: Any
|
666 |
+
) -> None:
|
667 |
+
super(SwinTransformerV2Cr, self).__init__()
|
668 |
+
img_size = to_2tuple(img_size)
|
669 |
+
self.num_classes: int = num_classes
|
670 |
+
self.patch_size: int = patch_size
|
671 |
+
self.img_size: Tuple[int, int] = img_size
|
672 |
+
self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
|
673 |
+
self.feature_info = []
|
674 |
+
|
675 |
+
self.patch_embed = PatchEmbed(
|
676 |
+
img_size=img_size,
|
677 |
+
patch_size=patch_size,
|
678 |
+
in_chans=in_chans,
|
679 |
+
embed_dim=embed_dim,
|
680 |
+
norm_layer=norm_layer,
|
681 |
+
strict_img_size=strict_img_size,
|
682 |
+
)
|
683 |
+
grid_size = self.patch_embed.grid_size
|
684 |
+
if window_size is None:
|
685 |
+
self.window_size = tuple([s // window_ratio for s in grid_size])
|
686 |
+
else:
|
687 |
+
self.window_size = to_2tuple(window_size)
|
688 |
+
|
689 |
+
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
690 |
+
stages = []
|
691 |
+
in_dim = embed_dim
|
692 |
+
in_scale = 1
|
693 |
+
for stage_idx, (depth, num_heads) in enumerate(zip(depths, num_heads)):
|
694 |
+
stages += [SwinTransformerV2CrStage(
|
695 |
+
embed_dim=in_dim,
|
696 |
+
depth=depth,
|
697 |
+
downscale=stage_idx != 0,
|
698 |
+
feat_size=(grid_size[0] // in_scale, grid_size[1] // in_scale),
|
699 |
+
num_heads=num_heads,
|
700 |
+
window_size=self.window_size,
|
701 |
+
always_partition=always_partition,
|
702 |
+
dynamic_mask=not strict_img_size,
|
703 |
+
mlp_ratio=mlp_ratio,
|
704 |
+
init_values=init_values,
|
705 |
+
proj_drop=proj_drop_rate,
|
706 |
+
drop_attn=attn_drop_rate,
|
707 |
+
drop_path=dpr[stage_idx],
|
708 |
+
extra_norm_period=extra_norm_period,
|
709 |
+
extra_norm_stage=extra_norm_stage or (stage_idx + 1) == len(depths), # last stage ends w/ norm
|
710 |
+
sequential_attn=sequential_attn,
|
711 |
+
norm_layer=norm_layer,
|
712 |
+
)]
|
713 |
+
if stage_idx != 0:
|
714 |
+
in_dim *= 2
|
715 |
+
in_scale *= 2
|
716 |
+
self.feature_info += [dict(num_chs=in_dim, reduction=4 * in_scale, module=f'stages.{stage_idx}')]
|
717 |
+
self.stages = nn.Sequential(*stages)
|
718 |
+
|
719 |
+
self.head = ClassifierHead(
|
720 |
+
self.num_features,
|
721 |
+
num_classes,
|
722 |
+
pool_type=global_pool,
|
723 |
+
drop_rate=drop_rate,
|
724 |
+
)
|
725 |
+
|
726 |
+
# current weight init skips custom init and uses pytorch layer defaults, seems to work well
|
727 |
+
# FIXME more experiments needed
|
728 |
+
if weight_init != 'skip':
|
729 |
+
named_apply(init_weights, self)
|
730 |
+
|
731 |
+
def set_input_size(
|
732 |
+
self,
|
733 |
+
img_size: Optional[Tuple[int, int]] = None,
|
734 |
+
window_size: Optional[Tuple[int, int]] = None,
|
735 |
+
window_ratio: int = 8,
|
736 |
+
always_partition: Optional[bool] = None,
|
737 |
+
) -> None:
|
738 |
+
"""Updates the image resolution, window size and so the pair-wise relative positions.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used
|
742 |
+
window_size (Optional[int]): New window size, if None based on new_img_size // window_div
|
743 |
+
window_ratio (int): divisor for calculating window size from patch grid size
|
744 |
+
always_partition: always partition / shift windows even if feat size is < window
|
745 |
+
"""
|
746 |
+
if img_size is not None:
|
747 |
+
self.patch_embed.set_input_size(img_size=img_size)
|
748 |
+
grid_size = self.patch_embed.grid_size
|
749 |
+
|
750 |
+
if window_size is None and window_ratio is not None:
|
751 |
+
window_size = tuple([s // window_ratio for s in grid_size])
|
752 |
+
|
753 |
+
for index, stage in enumerate(self.stages):
|
754 |
+
stage_scale = 2 ** max(index - 1, 0)
|
755 |
+
stage.set_input_size(
|
756 |
+
feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale),
|
757 |
+
window_size=window_size,
|
758 |
+
always_partition=always_partition,
|
759 |
+
)
|
760 |
+
|
761 |
+
@torch.jit.ignore
|
762 |
+
def group_matcher(self, coarse=False):
|
763 |
+
return dict(
|
764 |
+
stem=r'^patch_embed', # stem and embed
|
765 |
+
blocks=r'^stages\.(\d+)' if coarse else [
|
766 |
+
(r'^stages\.(\d+).downsample', (0,)),
|
767 |
+
(r'^stages\.(\d+)\.\w+\.(\d+)', None),
|
768 |
+
]
|
769 |
+
)
|
770 |
+
|
771 |
+
@torch.jit.ignore
|
772 |
+
def set_grad_checkpointing(self, enable=True):
|
773 |
+
for s in self.stages:
|
774 |
+
s.grad_checkpointing = enable
|
775 |
+
|
776 |
+
@torch.jit.ignore()
|
777 |
+
def get_classifier(self) -> nn.Module:
|
778 |
+
"""Method returns the classification head of the model.
|
779 |
+
Returns:
|
780 |
+
head (nn.Module): Current classification head
|
781 |
+
"""
|
782 |
+
return self.head.fc
|
783 |
+
|
784 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None) -> None:
|
785 |
+
"""Method results the classification head
|
786 |
+
|
787 |
+
Args:
|
788 |
+
num_classes (int): Number of classes to be predicted
|
789 |
+
global_pool (str): Unused
|
790 |
+
"""
|
791 |
+
self.num_classes = num_classes
|
792 |
+
self.head.reset(num_classes, global_pool)
|
793 |
+
|
794 |
+
def forward_intermediates(
|
795 |
+
self,
|
796 |
+
x: torch.Tensor,
|
797 |
+
indices: Optional[Union[int, List[int]]] = None,
|
798 |
+
norm: bool = False,
|
799 |
+
stop_early: bool = False,
|
800 |
+
output_fmt: str = 'NCHW',
|
801 |
+
intermediates_only: bool = False,
|
802 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
803 |
+
""" Forward features that returns intermediates.
|
804 |
+
|
805 |
+
Args:
|
806 |
+
x: Input image tensor
|
807 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
808 |
+
norm: Apply norm layer to compatible intermediates
|
809 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
810 |
+
output_fmt: Shape of intermediate feature outputs
|
811 |
+
intermediates_only: Only return intermediate features
|
812 |
+
Returns:
|
813 |
+
|
814 |
+
"""
|
815 |
+
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.'
|
816 |
+
intermediates = []
|
817 |
+
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
818 |
+
|
819 |
+
# forward pass
|
820 |
+
x = self.patch_embed(x)
|
821 |
+
|
822 |
+
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
|
823 |
+
stages = self.stages
|
824 |
+
else:
|
825 |
+
stages = self.stages[:max_index + 1]
|
826 |
+
for i, stage in enumerate(stages):
|
827 |
+
x = stage(x)
|
828 |
+
if i in take_indices:
|
829 |
+
intermediates.append(x)
|
830 |
+
|
831 |
+
if intermediates_only:
|
832 |
+
return intermediates
|
833 |
+
|
834 |
+
return x, intermediates
|
835 |
+
|
836 |
+
def prune_intermediate_layers(
|
837 |
+
self,
|
838 |
+
indices: Union[int, List[int]] = 1,
|
839 |
+
prune_norm: bool = False,
|
840 |
+
prune_head: bool = True,
|
841 |
+
):
|
842 |
+
""" Prune layers not required for specified intermediates.
|
843 |
+
"""
|
844 |
+
take_indices, max_index = feature_take_indices(len(self.stages), indices)
|
845 |
+
self.stages = self.stages[:max_index + 1] # truncate blocks
|
846 |
+
if prune_head:
|
847 |
+
self.reset_classifier(0, '')
|
848 |
+
return take_indices
|
849 |
+
|
850 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
851 |
+
x = self.patch_embed(x)
|
852 |
+
x = self.stages(x)
|
853 |
+
return x
|
854 |
+
|
855 |
+
def forward_head(self, x, pre_logits: bool = False):
|
856 |
+
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
|
857 |
+
|
858 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
859 |
+
x = self.forward_features(x)
|
860 |
+
x = self.forward_head(x)
|
861 |
+
return x
|
862 |
+
|
863 |
+
|
864 |
+
def init_weights(module: nn.Module, name: str = ''):
|
865 |
+
# FIXME WIP determining if there's a better weight init
|
866 |
+
if isinstance(module, nn.Linear):
|
867 |
+
if 'qkv' in name:
|
868 |
+
# treat the weights of Q, K, V separately
|
869 |
+
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
|
870 |
+
nn.init.uniform_(module.weight, -val, val)
|
871 |
+
elif 'head' in name:
|
872 |
+
nn.init.zeros_(module.weight)
|
873 |
+
else:
|
874 |
+
nn.init.xavier_uniform_(module.weight)
|
875 |
+
if module.bias is not None:
|
876 |
+
nn.init.zeros_(module.bias)
|
877 |
+
elif hasattr(module, 'init_weights'):
|
878 |
+
module.init_weights()
|
879 |
+
|
880 |
+
|
881 |
+
def checkpoint_filter_fn(state_dict, model):
|
882 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
883 |
+
state_dict = state_dict.get('model', state_dict)
|
884 |
+
state_dict = state_dict.get('state_dict', state_dict)
|
885 |
+
if 'head.fc.weight' in state_dict:
|
886 |
+
return state_dict
|
887 |
+
out_dict = {}
|
888 |
+
for k, v in state_dict.items():
|
889 |
+
if 'tau' in k:
|
890 |
+
# convert old tau based checkpoints -> logit_scale (inverse)
|
891 |
+
v = torch.log(1 / v)
|
892 |
+
k = k.replace('tau', 'logit_scale')
|
893 |
+
k = k.replace('head.', 'head.fc.')
|
894 |
+
out_dict[k] = v
|
895 |
+
return out_dict
|
896 |
+
|
897 |
+
|
898 |
+
def _create_swin_transformer_v2_cr(variant, pretrained=False, **kwargs):
|
899 |
+
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1))))
|
900 |
+
out_indices = kwargs.pop('out_indices', default_out_indices)
|
901 |
+
|
902 |
+
model = build_model_with_cfg(
|
903 |
+
SwinTransformerV2Cr, variant, pretrained,
|
904 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
905 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
906 |
+
**kwargs
|
907 |
+
)
|
908 |
+
return model
|
909 |
+
|
910 |
+
|
911 |
+
def _cfg(url='', **kwargs):
|
912 |
+
return {
|
913 |
+
'url': url,
|
914 |
+
'num_classes': 1000,
|
915 |
+
'input_size': (3, 224, 224),
|
916 |
+
'pool_size': (7, 7),
|
917 |
+
'crop_pct': 0.9,
|
918 |
+
'interpolation': 'bicubic',
|
919 |
+
'fixed_input_size': True,
|
920 |
+
'mean': IMAGENET_DEFAULT_MEAN,
|
921 |
+
'std': IMAGENET_DEFAULT_STD,
|
922 |
+
'first_conv': 'patch_embed.proj',
|
923 |
+
'classifier': 'head.fc',
|
924 |
+
**kwargs,
|
925 |
+
}
|
926 |
+
|
927 |
+
|
928 |
+
default_cfgs = generate_default_cfgs({
|
929 |
+
'swinv2_cr_tiny_384.untrained': _cfg(
|
930 |
+
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
|
931 |
+
'swinv2_cr_tiny_224.untrained': _cfg(
|
932 |
+
url="", input_size=(3, 224, 224), crop_pct=0.9),
|
933 |
+
'swinv2_cr_tiny_ns_224.sw_in1k': _cfg(
|
934 |
+
hf_hub_id='timm/',
|
935 |
+
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_tiny_ns_224-ba8166c6.pth",
|
936 |
+
input_size=(3, 224, 224), crop_pct=0.9),
|
937 |
+
'swinv2_cr_small_384.untrained': _cfg(
|
938 |
+
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
|
939 |
+
'swinv2_cr_small_224.sw_in1k': _cfg(
|
940 |
+
hf_hub_id='timm/',
|
941 |
+
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_224-0813c165.pth",
|
942 |
+
input_size=(3, 224, 224), crop_pct=0.9),
|
943 |
+
'swinv2_cr_small_ns_224.sw_in1k': _cfg(
|
944 |
+
hf_hub_id='timm/',
|
945 |
+
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_ns_224_iv-2ce90f8e.pth",
|
946 |
+
input_size=(3, 224, 224), crop_pct=0.9),
|
947 |
+
'swinv2_cr_small_ns_256.untrained': _cfg(
|
948 |
+
url="", input_size=(3, 256, 256), crop_pct=1.0, pool_size=(8, 8)),
|
949 |
+
'swinv2_cr_base_384.untrained': _cfg(
|
950 |
+
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
|
951 |
+
'swinv2_cr_base_224.untrained': _cfg(
|
952 |
+
url="", input_size=(3, 224, 224), crop_pct=0.9),
|
953 |
+
'swinv2_cr_base_ns_224.untrained': _cfg(
|
954 |
+
url="", input_size=(3, 224, 224), crop_pct=0.9),
|
955 |
+
'swinv2_cr_large_384.untrained': _cfg(
|
956 |
+
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
|
957 |
+
'swinv2_cr_large_224.untrained': _cfg(
|
958 |
+
url="", input_size=(3, 224, 224), crop_pct=0.9),
|
959 |
+
'swinv2_cr_huge_384.untrained': _cfg(
|
960 |
+
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
|
961 |
+
'swinv2_cr_huge_224.untrained': _cfg(
|
962 |
+
url="", input_size=(3, 224, 224), crop_pct=0.9),
|
963 |
+
'swinv2_cr_giant_384.untrained': _cfg(
|
964 |
+
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)),
|
965 |
+
'swinv2_cr_giant_224.untrained': _cfg(
|
966 |
+
url="", input_size=(3, 224, 224), crop_pct=0.9),
|
967 |
+
})
|
968 |
+
|
969 |
+
|
970 |
+
@register_model
|
971 |
+
def swinv2_cr_tiny_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
972 |
+
"""Swin-T V2 CR @ 384x384, trained ImageNet-1k"""
|
973 |
+
model_args = dict(
|
974 |
+
embed_dim=96,
|
975 |
+
depths=(2, 2, 6, 2),
|
976 |
+
num_heads=(3, 6, 12, 24),
|
977 |
+
)
|
978 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_384', pretrained=pretrained, **dict(model_args, **kwargs))
|
979 |
+
|
980 |
+
|
981 |
+
@register_model
|
982 |
+
def swinv2_cr_tiny_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
983 |
+
"""Swin-T V2 CR @ 224x224, trained ImageNet-1k"""
|
984 |
+
model_args = dict(
|
985 |
+
embed_dim=96,
|
986 |
+
depths=(2, 2, 6, 2),
|
987 |
+
num_heads=(3, 6, 12, 24),
|
988 |
+
)
|
989 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
990 |
+
|
991 |
+
|
992 |
+
@register_model
|
993 |
+
def swinv2_cr_tiny_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
994 |
+
"""Swin-T V2 CR @ 224x224, trained ImageNet-1k w/ extra stage norms.
|
995 |
+
** Experimental, may make default if results are improved. **
|
996 |
+
"""
|
997 |
+
model_args = dict(
|
998 |
+
embed_dim=96,
|
999 |
+
depths=(2, 2, 6, 2),
|
1000 |
+
num_heads=(3, 6, 12, 24),
|
1001 |
+
extra_norm_stage=True,
|
1002 |
+
)
|
1003 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1004 |
+
|
1005 |
+
|
1006 |
+
@register_model
|
1007 |
+
def swinv2_cr_small_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1008 |
+
"""Swin-S V2 CR @ 384x384, trained ImageNet-1k"""
|
1009 |
+
model_args = dict(
|
1010 |
+
embed_dim=96,
|
1011 |
+
depths=(2, 2, 18, 2),
|
1012 |
+
num_heads=(3, 6, 12, 24),
|
1013 |
+
)
|
1014 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_small_384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1015 |
+
|
1016 |
+
|
1017 |
+
@register_model
|
1018 |
+
def swinv2_cr_small_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1019 |
+
"""Swin-S V2 CR @ 224x224, trained ImageNet-1k"""
|
1020 |
+
model_args = dict(
|
1021 |
+
embed_dim=96,
|
1022 |
+
depths=(2, 2, 18, 2),
|
1023 |
+
num_heads=(3, 6, 12, 24),
|
1024 |
+
)
|
1025 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1026 |
+
|
1027 |
+
|
1028 |
+
@register_model
|
1029 |
+
def swinv2_cr_small_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1030 |
+
"""Swin-S V2 CR @ 224x224, trained ImageNet-1k"""
|
1031 |
+
model_args = dict(
|
1032 |
+
embed_dim=96,
|
1033 |
+
depths=(2, 2, 18, 2),
|
1034 |
+
num_heads=(3, 6, 12, 24),
|
1035 |
+
extra_norm_stage=True,
|
1036 |
+
)
|
1037 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1038 |
+
|
1039 |
+
|
1040 |
+
@register_model
|
1041 |
+
def swinv2_cr_small_ns_256(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1042 |
+
"""Swin-S V2 CR @ 256x256, trained ImageNet-1k"""
|
1043 |
+
model_args = dict(
|
1044 |
+
embed_dim=96,
|
1045 |
+
depths=(2, 2, 18, 2),
|
1046 |
+
num_heads=(3, 6, 12, 24),
|
1047 |
+
extra_norm_stage=True,
|
1048 |
+
)
|
1049 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_256', pretrained=pretrained, **dict(model_args, **kwargs))
|
1050 |
+
|
1051 |
+
|
1052 |
+
@register_model
|
1053 |
+
def swinv2_cr_base_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1054 |
+
"""Swin-B V2 CR @ 384x384, trained ImageNet-1k"""
|
1055 |
+
model_args = dict(
|
1056 |
+
embed_dim=128,
|
1057 |
+
depths=(2, 2, 18, 2),
|
1058 |
+
num_heads=(4, 8, 16, 32),
|
1059 |
+
)
|
1060 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_base_384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1061 |
+
|
1062 |
+
|
1063 |
+
@register_model
|
1064 |
+
def swinv2_cr_base_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1065 |
+
"""Swin-B V2 CR @ 224x224, trained ImageNet-1k"""
|
1066 |
+
model_args = dict(
|
1067 |
+
embed_dim=128,
|
1068 |
+
depths=(2, 2, 18, 2),
|
1069 |
+
num_heads=(4, 8, 16, 32),
|
1070 |
+
)
|
1071 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1072 |
+
|
1073 |
+
|
1074 |
+
@register_model
|
1075 |
+
def swinv2_cr_base_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1076 |
+
"""Swin-B V2 CR @ 224x224, trained ImageNet-1k"""
|
1077 |
+
model_args = dict(
|
1078 |
+
embed_dim=128,
|
1079 |
+
depths=(2, 2, 18, 2),
|
1080 |
+
num_heads=(4, 8, 16, 32),
|
1081 |
+
extra_norm_stage=True,
|
1082 |
+
)
|
1083 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_base_ns_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1084 |
+
|
1085 |
+
|
1086 |
+
@register_model
|
1087 |
+
def swinv2_cr_large_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1088 |
+
"""Swin-L V2 CR @ 384x384, trained ImageNet-1k"""
|
1089 |
+
model_args = dict(
|
1090 |
+
embed_dim=192,
|
1091 |
+
depths=(2, 2, 18, 2),
|
1092 |
+
num_heads=(6, 12, 24, 48),
|
1093 |
+
)
|
1094 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_large_384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1095 |
+
|
1096 |
+
|
1097 |
+
@register_model
|
1098 |
+
def swinv2_cr_large_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1099 |
+
"""Swin-L V2 CR @ 224x224, trained ImageNet-1k"""
|
1100 |
+
model_args = dict(
|
1101 |
+
embed_dim=192,
|
1102 |
+
depths=(2, 2, 18, 2),
|
1103 |
+
num_heads=(6, 12, 24, 48),
|
1104 |
+
)
|
1105 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1106 |
+
|
1107 |
+
|
1108 |
+
@register_model
|
1109 |
+
def swinv2_cr_huge_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1110 |
+
"""Swin-H V2 CR @ 384x384, trained ImageNet-1k"""
|
1111 |
+
model_args = dict(
|
1112 |
+
embed_dim=352,
|
1113 |
+
depths=(2, 2, 18, 2),
|
1114 |
+
num_heads=(11, 22, 44, 88), # head count not certain for Huge, 384 & 224 trying diff values
|
1115 |
+
extra_norm_period=6,
|
1116 |
+
)
|
1117 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_huge_384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1118 |
+
|
1119 |
+
|
1120 |
+
@register_model
|
1121 |
+
def swinv2_cr_huge_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1122 |
+
"""Swin-H V2 CR @ 224x224, trained ImageNet-1k"""
|
1123 |
+
model_args = dict(
|
1124 |
+
embed_dim=352,
|
1125 |
+
depths=(2, 2, 18, 2),
|
1126 |
+
num_heads=(8, 16, 32, 64), # head count not certain for Huge, 384 & 224 trying diff values
|
1127 |
+
extra_norm_period=6,
|
1128 |
+
)
|
1129 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
1130 |
+
|
1131 |
+
|
1132 |
+
@register_model
|
1133 |
+
def swinv2_cr_giant_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1134 |
+
"""Swin-G V2 CR @ 384x384, trained ImageNet-1k"""
|
1135 |
+
model_args = dict(
|
1136 |
+
embed_dim=512,
|
1137 |
+
depths=(2, 2, 42, 2),
|
1138 |
+
num_heads=(16, 32, 64, 128),
|
1139 |
+
extra_norm_period=6,
|
1140 |
+
)
|
1141 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_giant_384', pretrained=pretrained, **dict(model_args, **kwargs))
|
1142 |
+
|
1143 |
+
|
1144 |
+
@register_model
|
1145 |
+
def swinv2_cr_giant_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr:
|
1146 |
+
"""Swin-G V2 CR @ 224x224, trained ImageNet-1k"""
|
1147 |
+
model_args = dict(
|
1148 |
+
embed_dim=512,
|
1149 |
+
depths=(2, 2, 42, 2),
|
1150 |
+
num_heads=(16, 32, 64, 128),
|
1151 |
+
extra_norm_period=6,
|
1152 |
+
)
|
1153 |
+
return _create_swin_transformer_v2_cr('swinv2_cr_giant_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
pytorch-image-models/timm/models/tiny_vit.py
ADDED
@@ -0,0 +1,715 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" TinyViT
|
2 |
+
|
3 |
+
Paper: `TinyViT: Fast Pretraining Distillation for Small Vision Transformers`
|
4 |
+
- https://arxiv.org/abs/2207.10666
|
5 |
+
|
6 |
+
Adapted from official impl at https://github.com/microsoft/Cream/tree/main/TinyViT
|
7 |
+
"""
|
8 |
+
|
9 |
+
__all__ = ['TinyVit']
|
10 |
+
|
11 |
+
import itertools
|
12 |
+
from functools import partial
|
13 |
+
from typing import Dict, Optional
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
20 |
+
from timm.layers import LayerNorm2d, NormMlpClassifierHead, DropPath,\
|
21 |
+
trunc_normal_, resize_rel_pos_bias_table_levit, use_fused_attn
|
22 |
+
from ._builder import build_model_with_cfg
|
23 |
+
from ._features_fx import register_notrace_module
|
24 |
+
from ._manipulate import checkpoint_seq
|
25 |
+
from ._registry import register_model, generate_default_cfgs
|
26 |
+
|
27 |
+
|
28 |
+
class ConvNorm(torch.nn.Sequential):
|
29 |
+
def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
|
30 |
+
super().__init__()
|
31 |
+
self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False)
|
32 |
+
self.bn = nn.BatchNorm2d(out_chs)
|
33 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
34 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
35 |
+
|
36 |
+
@torch.no_grad()
|
37 |
+
def fuse(self):
|
38 |
+
c, bn = self.conv, self.bn
|
39 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
40 |
+
w = c.weight * w[:, None, None, None]
|
41 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
42 |
+
(bn.running_var + bn.eps) ** 0.5
|
43 |
+
m = torch.nn.Conv2d(
|
44 |
+
w.size(1) * self.conv.groups, w.size(0), w.shape[2:],
|
45 |
+
stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups)
|
46 |
+
m.weight.data.copy_(w)
|
47 |
+
m.bias.data.copy_(b)
|
48 |
+
return m
|
49 |
+
|
50 |
+
|
51 |
+
class PatchEmbed(nn.Module):
|
52 |
+
def __init__(self, in_chs, out_chs, act_layer):
|
53 |
+
super().__init__()
|
54 |
+
self.stride = 4
|
55 |
+
self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1)
|
56 |
+
self.act = act_layer()
|
57 |
+
self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.conv1(x)
|
61 |
+
x = self.act(x)
|
62 |
+
x = self.conv2(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class MBConv(nn.Module):
|
67 |
+
def __init__(self, in_chs, out_chs, expand_ratio, act_layer, drop_path):
|
68 |
+
super().__init__()
|
69 |
+
mid_chs = int(in_chs * expand_ratio)
|
70 |
+
self.conv1 = ConvNorm(in_chs, mid_chs, ks=1)
|
71 |
+
self.act1 = act_layer()
|
72 |
+
self.conv2 = ConvNorm(mid_chs, mid_chs, ks=3, stride=1, pad=1, groups=mid_chs)
|
73 |
+
self.act2 = act_layer()
|
74 |
+
self.conv3 = ConvNorm(mid_chs, out_chs, ks=1, bn_weight_init=0.0)
|
75 |
+
self.act3 = act_layer()
|
76 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
shortcut = x
|
80 |
+
x = self.conv1(x)
|
81 |
+
x = self.act1(x)
|
82 |
+
x = self.conv2(x)
|
83 |
+
x = self.act2(x)
|
84 |
+
x = self.conv3(x)
|
85 |
+
x = self.drop_path(x)
|
86 |
+
x += shortcut
|
87 |
+
x = self.act3(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class PatchMerging(nn.Module):
|
92 |
+
def __init__(self, dim, out_dim, act_layer):
|
93 |
+
super().__init__()
|
94 |
+
self.conv1 = ConvNorm(dim, out_dim, 1, 1, 0)
|
95 |
+
self.act1 = act_layer()
|
96 |
+
self.conv2 = ConvNorm(out_dim, out_dim, 3, 2, 1, groups=out_dim)
|
97 |
+
self.act2 = act_layer()
|
98 |
+
self.conv3 = ConvNorm(out_dim, out_dim, 1, 1, 0)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x = self.conv1(x)
|
102 |
+
x = self.act1(x)
|
103 |
+
x = self.conv2(x)
|
104 |
+
x = self.act2(x)
|
105 |
+
x = self.conv3(x)
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
class ConvLayer(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
dim,
|
113 |
+
depth,
|
114 |
+
act_layer,
|
115 |
+
drop_path=0.,
|
116 |
+
conv_expand_ratio=4.,
|
117 |
+
):
|
118 |
+
super().__init__()
|
119 |
+
self.dim = dim
|
120 |
+
self.depth = depth
|
121 |
+
self.blocks = nn.Sequential(*[
|
122 |
+
MBConv(
|
123 |
+
dim, dim, conv_expand_ratio, act_layer,
|
124 |
+
drop_path[i] if isinstance(drop_path, list) else drop_path,
|
125 |
+
)
|
126 |
+
for i in range(depth)
|
127 |
+
])
|
128 |
+
|
129 |
+
def forward(self, x):
|
130 |
+
x = self.blocks(x)
|
131 |
+
return x
|
132 |
+
|
133 |
+
|
134 |
+
class NormMlp(nn.Module):
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
in_features,
|
138 |
+
hidden_features=None,
|
139 |
+
out_features=None,
|
140 |
+
norm_layer=nn.LayerNorm,
|
141 |
+
act_layer=nn.GELU,
|
142 |
+
drop=0.,
|
143 |
+
):
|
144 |
+
super().__init__()
|
145 |
+
out_features = out_features or in_features
|
146 |
+
hidden_features = hidden_features or in_features
|
147 |
+
self.norm = norm_layer(in_features)
|
148 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
149 |
+
self.act = act_layer()
|
150 |
+
self.drop1 = nn.Dropout(drop)
|
151 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
152 |
+
self.drop2 = nn.Dropout(drop)
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
x = self.norm(x)
|
156 |
+
x = self.fc1(x)
|
157 |
+
x = self.act(x)
|
158 |
+
x = self.drop1(x)
|
159 |
+
x = self.fc2(x)
|
160 |
+
x = self.drop2(x)
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class Attention(torch.nn.Module):
|
165 |
+
fused_attn: torch.jit.Final[bool]
|
166 |
+
attention_bias_cache: Dict[str, torch.Tensor]
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
dim,
|
171 |
+
key_dim,
|
172 |
+
num_heads=8,
|
173 |
+
attn_ratio=4,
|
174 |
+
resolution=(14, 14),
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
assert isinstance(resolution, tuple) and len(resolution) == 2
|
178 |
+
self.num_heads = num_heads
|
179 |
+
self.scale = key_dim ** -0.5
|
180 |
+
self.key_dim = key_dim
|
181 |
+
self.val_dim = int(attn_ratio * key_dim)
|
182 |
+
self.out_dim = self.val_dim * num_heads
|
183 |
+
self.attn_ratio = attn_ratio
|
184 |
+
self.resolution = resolution
|
185 |
+
self.fused_attn = use_fused_attn()
|
186 |
+
|
187 |
+
self.norm = nn.LayerNorm(dim)
|
188 |
+
self.qkv = nn.Linear(dim, num_heads * (self.val_dim + 2 * key_dim))
|
189 |
+
self.proj = nn.Linear(self.out_dim, dim)
|
190 |
+
|
191 |
+
points = list(itertools.product(range(resolution[0]), range(resolution[1])))
|
192 |
+
N = len(points)
|
193 |
+
attention_offsets = {}
|
194 |
+
idxs = []
|
195 |
+
for p1 in points:
|
196 |
+
for p2 in points:
|
197 |
+
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
|
198 |
+
if offset not in attention_offsets:
|
199 |
+
attention_offsets[offset] = len(attention_offsets)
|
200 |
+
idxs.append(attention_offsets[offset])
|
201 |
+
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
|
202 |
+
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False)
|
203 |
+
self.attention_bias_cache = {}
|
204 |
+
|
205 |
+
@torch.no_grad()
|
206 |
+
def train(self, mode=True):
|
207 |
+
super().train(mode)
|
208 |
+
if mode and self.attention_bias_cache:
|
209 |
+
self.attention_bias_cache = {} # clear ab cache
|
210 |
+
|
211 |
+
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
212 |
+
if torch.jit.is_tracing() or self.training:
|
213 |
+
return self.attention_biases[:, self.attention_bias_idxs]
|
214 |
+
else:
|
215 |
+
device_key = str(device)
|
216 |
+
if device_key not in self.attention_bias_cache:
|
217 |
+
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
218 |
+
return self.attention_bias_cache[device_key]
|
219 |
+
|
220 |
+
def forward(self, x):
|
221 |
+
attn_bias = self.get_attention_biases(x.device)
|
222 |
+
B, N, _ = x.shape
|
223 |
+
# Normalization
|
224 |
+
x = self.norm(x)
|
225 |
+
qkv = self.qkv(x)
|
226 |
+
# (B, N, num_heads, d)
|
227 |
+
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3)
|
228 |
+
# (B, num_heads, N, d)
|
229 |
+
q = q.permute(0, 2, 1, 3)
|
230 |
+
k = k.permute(0, 2, 1, 3)
|
231 |
+
v = v.permute(0, 2, 1, 3)
|
232 |
+
|
233 |
+
if self.fused_attn:
|
234 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
|
235 |
+
else:
|
236 |
+
q = q * self.scale
|
237 |
+
attn = q @ k.transpose(-2, -1)
|
238 |
+
attn = attn + attn_bias
|
239 |
+
attn = attn.softmax(dim=-1)
|
240 |
+
x = attn @ v
|
241 |
+
x = x.transpose(1, 2).reshape(B, N, self.out_dim)
|
242 |
+
x = self.proj(x)
|
243 |
+
return x
|
244 |
+
|
245 |
+
|
246 |
+
class TinyVitBlock(nn.Module):
|
247 |
+
""" TinyViT Block.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
dim (int): Number of input channels.
|
251 |
+
num_heads (int): Number of attention heads.
|
252 |
+
window_size (int): Window size.
|
253 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
254 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
255 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
256 |
+
local_conv_size (int): the kernel size of the convolution between
|
257 |
+
Attention and MLP. Default: 3
|
258 |
+
act_layer: the activation function. Default: nn.GELU
|
259 |
+
"""
|
260 |
+
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
dim,
|
264 |
+
num_heads,
|
265 |
+
window_size=7,
|
266 |
+
mlp_ratio=4.,
|
267 |
+
drop=0.,
|
268 |
+
drop_path=0.,
|
269 |
+
local_conv_size=3,
|
270 |
+
act_layer=nn.GELU
|
271 |
+
):
|
272 |
+
super().__init__()
|
273 |
+
self.dim = dim
|
274 |
+
self.num_heads = num_heads
|
275 |
+
assert window_size > 0, 'window_size must be greater than 0'
|
276 |
+
self.window_size = window_size
|
277 |
+
self.mlp_ratio = mlp_ratio
|
278 |
+
|
279 |
+
assert dim % num_heads == 0, 'dim must be divisible by num_heads'
|
280 |
+
head_dim = dim // num_heads
|
281 |
+
|
282 |
+
window_resolution = (window_size, window_size)
|
283 |
+
self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)
|
284 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
285 |
+
|
286 |
+
|
287 |
+
self.mlp = NormMlp(
|
288 |
+
in_features=dim,
|
289 |
+
hidden_features=int(dim * mlp_ratio),
|
290 |
+
act_layer=act_layer,
|
291 |
+
drop=drop,
|
292 |
+
)
|
293 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
294 |
+
|
295 |
+
pad = local_conv_size // 2
|
296 |
+
self.local_conv = ConvNorm(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
B, H, W, C = x.shape
|
300 |
+
L = H * W
|
301 |
+
|
302 |
+
shortcut = x
|
303 |
+
if H == self.window_size and W == self.window_size:
|
304 |
+
x = x.reshape(B, L, C)
|
305 |
+
x = self.attn(x)
|
306 |
+
x = x.view(B, H, W, C)
|
307 |
+
else:
|
308 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
309 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
310 |
+
padding = pad_b > 0 or pad_r > 0
|
311 |
+
if padding:
|
312 |
+
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
|
313 |
+
|
314 |
+
# window partition
|
315 |
+
pH, pW = H + pad_b, W + pad_r
|
316 |
+
nH = pH // self.window_size
|
317 |
+
nW = pW // self.window_size
|
318 |
+
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
|
319 |
+
B * nH * nW, self.window_size * self.window_size, C
|
320 |
+
)
|
321 |
+
|
322 |
+
x = self.attn(x)
|
323 |
+
|
324 |
+
# window reverse
|
325 |
+
x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C)
|
326 |
+
|
327 |
+
if padding:
|
328 |
+
x = x[:, :H, :W].contiguous()
|
329 |
+
x = shortcut + self.drop_path1(x)
|
330 |
+
|
331 |
+
x = x.permute(0, 3, 1, 2)
|
332 |
+
x = self.local_conv(x)
|
333 |
+
x = x.reshape(B, C, L).transpose(1, 2)
|
334 |
+
|
335 |
+
x = x + self.drop_path2(self.mlp(x))
|
336 |
+
return x.view(B, H, W, C)
|
337 |
+
|
338 |
+
def extra_repr(self) -> str:
|
339 |
+
return f"dim={self.dim}, num_heads={self.num_heads}, " \
|
340 |
+
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
|
341 |
+
|
342 |
+
|
343 |
+
register_notrace_module(TinyVitBlock)
|
344 |
+
|
345 |
+
|
346 |
+
class TinyVitStage(nn.Module):
|
347 |
+
""" A basic TinyViT layer for one stage.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
dim (int): Number of input channels.
|
351 |
+
out_dim: the output dimension of the layer
|
352 |
+
depth (int): Number of blocks.
|
353 |
+
num_heads (int): Number of attention heads.
|
354 |
+
window_size (int): Local window size.
|
355 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
356 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
357 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
358 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
359 |
+
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3
|
360 |
+
act_layer: the activation function. Default: nn.GELU
|
361 |
+
"""
|
362 |
+
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
dim,
|
366 |
+
out_dim,
|
367 |
+
depth,
|
368 |
+
num_heads,
|
369 |
+
window_size,
|
370 |
+
mlp_ratio=4.,
|
371 |
+
drop=0.,
|
372 |
+
drop_path=0.,
|
373 |
+
downsample=None,
|
374 |
+
local_conv_size=3,
|
375 |
+
act_layer=nn.GELU,
|
376 |
+
):
|
377 |
+
|
378 |
+
super().__init__()
|
379 |
+
self.depth = depth
|
380 |
+
self.out_dim = out_dim
|
381 |
+
|
382 |
+
# patch merging layer
|
383 |
+
if downsample is not None:
|
384 |
+
self.downsample = downsample(
|
385 |
+
dim=dim,
|
386 |
+
out_dim=out_dim,
|
387 |
+
act_layer=act_layer,
|
388 |
+
)
|
389 |
+
else:
|
390 |
+
self.downsample = nn.Identity()
|
391 |
+
assert dim == out_dim
|
392 |
+
|
393 |
+
# build blocks
|
394 |
+
self.blocks = nn.Sequential(*[
|
395 |
+
TinyVitBlock(
|
396 |
+
dim=out_dim,
|
397 |
+
num_heads=num_heads,
|
398 |
+
window_size=window_size,
|
399 |
+
mlp_ratio=mlp_ratio,
|
400 |
+
drop=drop,
|
401 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
402 |
+
local_conv_size=local_conv_size,
|
403 |
+
act_layer=act_layer,
|
404 |
+
)
|
405 |
+
for i in range(depth)])
|
406 |
+
|
407 |
+
def forward(self, x):
|
408 |
+
x = self.downsample(x)
|
409 |
+
x = x.permute(0, 2, 3, 1) # BCHW -> BHWC
|
410 |
+
x = self.blocks(x)
|
411 |
+
x = x.permute(0, 3, 1, 2) # BHWC -> BCHW
|
412 |
+
return x
|
413 |
+
|
414 |
+
def extra_repr(self) -> str:
|
415 |
+
return f"dim={self.out_dim}, depth={self.depth}"
|
416 |
+
|
417 |
+
|
418 |
+
class TinyVit(nn.Module):
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
in_chans=3,
|
422 |
+
num_classes=1000,
|
423 |
+
global_pool='avg',
|
424 |
+
embed_dims=(96, 192, 384, 768),
|
425 |
+
depths=(2, 2, 6, 2),
|
426 |
+
num_heads=(3, 6, 12, 24),
|
427 |
+
window_sizes=(7, 7, 14, 7),
|
428 |
+
mlp_ratio=4.,
|
429 |
+
drop_rate=0.,
|
430 |
+
drop_path_rate=0.1,
|
431 |
+
use_checkpoint=False,
|
432 |
+
mbconv_expand_ratio=4.0,
|
433 |
+
local_conv_size=3,
|
434 |
+
act_layer=nn.GELU,
|
435 |
+
):
|
436 |
+
super().__init__()
|
437 |
+
|
438 |
+
self.num_classes = num_classes
|
439 |
+
self.depths = depths
|
440 |
+
self.num_stages = len(depths)
|
441 |
+
self.mlp_ratio = mlp_ratio
|
442 |
+
self.grad_checkpointing = use_checkpoint
|
443 |
+
|
444 |
+
self.patch_embed = PatchEmbed(
|
445 |
+
in_chs=in_chans,
|
446 |
+
out_chs=embed_dims[0],
|
447 |
+
act_layer=act_layer,
|
448 |
+
)
|
449 |
+
|
450 |
+
# stochastic depth rate rule
|
451 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
452 |
+
|
453 |
+
# build stages
|
454 |
+
self.stages = nn.Sequential()
|
455 |
+
stride = self.patch_embed.stride
|
456 |
+
prev_dim = embed_dims[0]
|
457 |
+
self.feature_info = []
|
458 |
+
for stage_idx in range(self.num_stages):
|
459 |
+
if stage_idx == 0:
|
460 |
+
stage = ConvLayer(
|
461 |
+
dim=prev_dim,
|
462 |
+
depth=depths[stage_idx],
|
463 |
+
act_layer=act_layer,
|
464 |
+
drop_path=dpr[:depths[stage_idx]],
|
465 |
+
conv_expand_ratio=mbconv_expand_ratio,
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
out_dim = embed_dims[stage_idx]
|
469 |
+
drop_path_rate = dpr[sum(depths[:stage_idx]):sum(depths[:stage_idx + 1])]
|
470 |
+
stage = TinyVitStage(
|
471 |
+
dim=embed_dims[stage_idx - 1],
|
472 |
+
out_dim=out_dim,
|
473 |
+
depth=depths[stage_idx],
|
474 |
+
num_heads=num_heads[stage_idx],
|
475 |
+
window_size=window_sizes[stage_idx],
|
476 |
+
mlp_ratio=self.mlp_ratio,
|
477 |
+
drop=drop_rate,
|
478 |
+
local_conv_size=local_conv_size,
|
479 |
+
drop_path=drop_path_rate,
|
480 |
+
downsample=PatchMerging,
|
481 |
+
act_layer=act_layer,
|
482 |
+
)
|
483 |
+
prev_dim = out_dim
|
484 |
+
stride *= 2
|
485 |
+
self.stages.append(stage)
|
486 |
+
self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{stage_idx}')]
|
487 |
+
|
488 |
+
# Classifier head
|
489 |
+
self.num_features = self.head_hidden_size = embed_dims[-1]
|
490 |
+
|
491 |
+
norm_layer_cf = partial(LayerNorm2d, eps=1e-5)
|
492 |
+
self.head = NormMlpClassifierHead(
|
493 |
+
self.num_features,
|
494 |
+
num_classes,
|
495 |
+
pool_type=global_pool,
|
496 |
+
norm_layer=norm_layer_cf,
|
497 |
+
)
|
498 |
+
|
499 |
+
# init weights
|
500 |
+
self.apply(self._init_weights)
|
501 |
+
|
502 |
+
def _init_weights(self, m):
|
503 |
+
if isinstance(m, nn.Linear):
|
504 |
+
trunc_normal_(m.weight, std=.02)
|
505 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
506 |
+
nn.init.constant_(m.bias, 0)
|
507 |
+
|
508 |
+
@torch.jit.ignore
|
509 |
+
def no_weight_decay_keywords(self):
|
510 |
+
return {'attention_biases'}
|
511 |
+
|
512 |
+
@torch.jit.ignore
|
513 |
+
def no_weight_decay(self):
|
514 |
+
return {x for x in self.state_dict().keys() if 'attention_biases' in x}
|
515 |
+
|
516 |
+
@torch.jit.ignore
|
517 |
+
def group_matcher(self, coarse=False):
|
518 |
+
matcher = dict(
|
519 |
+
stem=r'^patch_embed',
|
520 |
+
blocks=r'^stages\.(\d+)' if coarse else [
|
521 |
+
(r'^stages\.(\d+).downsample', (0,)),
|
522 |
+
(r'^stages\.(\d+)\.\w+\.(\d+)', None),
|
523 |
+
]
|
524 |
+
)
|
525 |
+
return matcher
|
526 |
+
|
527 |
+
@torch.jit.ignore
|
528 |
+
def set_grad_checkpointing(self, enable=True):
|
529 |
+
self.grad_checkpointing = enable
|
530 |
+
|
531 |
+
@torch.jit.ignore
|
532 |
+
def get_classifier(self) -> nn.Module:
|
533 |
+
return self.head.fc
|
534 |
+
|
535 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
536 |
+
self.num_classes = num_classes
|
537 |
+
self.head.reset(num_classes, pool_type=global_pool)
|
538 |
+
|
539 |
+
def forward_features(self, x):
|
540 |
+
x = self.patch_embed(x)
|
541 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
542 |
+
x = checkpoint_seq(self.stages, x)
|
543 |
+
else:
|
544 |
+
x = self.stages(x)
|
545 |
+
return x
|
546 |
+
|
547 |
+
def forward_head(self, x, pre_logits: bool = False):
|
548 |
+
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
549 |
+
return x
|
550 |
+
|
551 |
+
def forward(self, x):
|
552 |
+
x = self.forward_features(x)
|
553 |
+
x = self.forward_head(x)
|
554 |
+
return x
|
555 |
+
|
556 |
+
|
557 |
+
def checkpoint_filter_fn(state_dict, model):
|
558 |
+
if 'model' in state_dict.keys():
|
559 |
+
state_dict = state_dict['model']
|
560 |
+
target_sd = model.state_dict()
|
561 |
+
out_dict = {}
|
562 |
+
for k, v in state_dict.items():
|
563 |
+
if k.endswith('attention_bias_idxs'):
|
564 |
+
continue
|
565 |
+
if 'attention_biases' in k:
|
566 |
+
# TODO: whether move this func into model for dynamic input resolution? (high risk)
|
567 |
+
v = resize_rel_pos_bias_table_levit(v.T, target_sd[k].shape[::-1]).T
|
568 |
+
out_dict[k] = v
|
569 |
+
return out_dict
|
570 |
+
|
571 |
+
|
572 |
+
def _cfg(url='', **kwargs):
|
573 |
+
return {
|
574 |
+
'url': url,
|
575 |
+
'num_classes': 1000,
|
576 |
+
'mean': IMAGENET_DEFAULT_MEAN,
|
577 |
+
'std': IMAGENET_DEFAULT_STD,
|
578 |
+
'first_conv': 'patch_embed.conv1.conv',
|
579 |
+
'classifier': 'head.fc',
|
580 |
+
'pool_size': (7, 7),
|
581 |
+
'input_size': (3, 224, 224),
|
582 |
+
'crop_pct': 0.95,
|
583 |
+
**kwargs,
|
584 |
+
}
|
585 |
+
|
586 |
+
|
587 |
+
default_cfgs = generate_default_cfgs({
|
588 |
+
'tiny_vit_5m_224.dist_in22k': _cfg(
|
589 |
+
hf_hub_id='timm/',
|
590 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22k_distill.pth',
|
591 |
+
num_classes=21841
|
592 |
+
),
|
593 |
+
'tiny_vit_5m_224.dist_in22k_ft_in1k': _cfg(
|
594 |
+
hf_hub_id='timm/',
|
595 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22kto1k_distill.pth'
|
596 |
+
),
|
597 |
+
'tiny_vit_5m_224.in1k': _cfg(
|
598 |
+
hf_hub_id='timm/',
|
599 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_1k.pth'
|
600 |
+
),
|
601 |
+
'tiny_vit_11m_224.dist_in22k': _cfg(
|
602 |
+
hf_hub_id='timm/',
|
603 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22k_distill.pth',
|
604 |
+
num_classes=21841
|
605 |
+
),
|
606 |
+
'tiny_vit_11m_224.dist_in22k_ft_in1k': _cfg(
|
607 |
+
hf_hub_id='timm/',
|
608 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22kto1k_distill.pth'
|
609 |
+
),
|
610 |
+
'tiny_vit_11m_224.in1k': _cfg(
|
611 |
+
hf_hub_id='timm/',
|
612 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_1k.pth'
|
613 |
+
),
|
614 |
+
'tiny_vit_21m_224.dist_in22k': _cfg(
|
615 |
+
hf_hub_id='timm/',
|
616 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22k_distill.pth',
|
617 |
+
num_classes=21841
|
618 |
+
),
|
619 |
+
'tiny_vit_21m_224.dist_in22k_ft_in1k': _cfg(
|
620 |
+
hf_hub_id='timm/',
|
621 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_distill.pth'
|
622 |
+
),
|
623 |
+
'tiny_vit_21m_224.in1k': _cfg(
|
624 |
+
hf_hub_id='timm/',
|
625 |
+
#url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_1k.pth'
|
626 |
+
),
|
627 |
+
'tiny_vit_21m_384.dist_in22k_ft_in1k': _cfg(
|
628 |
+
hf_hub_id='timm/',
|
629 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_384_distill.pth',
|
630 |
+
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
|
631 |
+
),
|
632 |
+
'tiny_vit_21m_512.dist_in22k_ft_in1k': _cfg(
|
633 |
+
hf_hub_id='timm/',
|
634 |
+
# url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_512_distill.pth',
|
635 |
+
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash',
|
636 |
+
),
|
637 |
+
})
|
638 |
+
|
639 |
+
|
640 |
+
def _create_tiny_vit(variant, pretrained=False, **kwargs):
|
641 |
+
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
|
642 |
+
model = build_model_with_cfg(
|
643 |
+
TinyVit,
|
644 |
+
variant,
|
645 |
+
pretrained,
|
646 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
647 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
648 |
+
**kwargs
|
649 |
+
)
|
650 |
+
return model
|
651 |
+
|
652 |
+
|
653 |
+
@register_model
|
654 |
+
def tiny_vit_5m_224(pretrained=False, **kwargs):
|
655 |
+
model_kwargs = dict(
|
656 |
+
embed_dims=[64, 128, 160, 320],
|
657 |
+
depths=[2, 2, 6, 2],
|
658 |
+
num_heads=[2, 4, 5, 10],
|
659 |
+
window_sizes=[7, 7, 14, 7],
|
660 |
+
drop_path_rate=0.0,
|
661 |
+
)
|
662 |
+
model_kwargs.update(kwargs)
|
663 |
+
return _create_tiny_vit('tiny_vit_5m_224', pretrained, **model_kwargs)
|
664 |
+
|
665 |
+
|
666 |
+
@register_model
|
667 |
+
def tiny_vit_11m_224(pretrained=False, **kwargs):
|
668 |
+
model_kwargs = dict(
|
669 |
+
embed_dims=[64, 128, 256, 448],
|
670 |
+
depths=[2, 2, 6, 2],
|
671 |
+
num_heads=[2, 4, 8, 14],
|
672 |
+
window_sizes=[7, 7, 14, 7],
|
673 |
+
drop_path_rate=0.1,
|
674 |
+
)
|
675 |
+
model_kwargs.update(kwargs)
|
676 |
+
return _create_tiny_vit('tiny_vit_11m_224', pretrained, **model_kwargs)
|
677 |
+
|
678 |
+
|
679 |
+
@register_model
|
680 |
+
def tiny_vit_21m_224(pretrained=False, **kwargs):
|
681 |
+
model_kwargs = dict(
|
682 |
+
embed_dims=[96, 192, 384, 576],
|
683 |
+
depths=[2, 2, 6, 2],
|
684 |
+
num_heads=[3, 6, 12, 18],
|
685 |
+
window_sizes=[7, 7, 14, 7],
|
686 |
+
drop_path_rate=0.2,
|
687 |
+
)
|
688 |
+
model_kwargs.update(kwargs)
|
689 |
+
return _create_tiny_vit('tiny_vit_21m_224', pretrained, **model_kwargs)
|
690 |
+
|
691 |
+
|
692 |
+
@register_model
|
693 |
+
def tiny_vit_21m_384(pretrained=False, **kwargs):
|
694 |
+
model_kwargs = dict(
|
695 |
+
embed_dims=[96, 192, 384, 576],
|
696 |
+
depths=[2, 2, 6, 2],
|
697 |
+
num_heads=[3, 6, 12, 18],
|
698 |
+
window_sizes=[12, 12, 24, 12],
|
699 |
+
drop_path_rate=0.1,
|
700 |
+
)
|
701 |
+
model_kwargs.update(kwargs)
|
702 |
+
return _create_tiny_vit('tiny_vit_21m_384', pretrained, **model_kwargs)
|
703 |
+
|
704 |
+
|
705 |
+
@register_model
|
706 |
+
def tiny_vit_21m_512(pretrained=False, **kwargs):
|
707 |
+
model_kwargs = dict(
|
708 |
+
embed_dims=[96, 192, 384, 576],
|
709 |
+
depths=[2, 2, 6, 2],
|
710 |
+
num_heads=[3, 6, 12, 18],
|
711 |
+
window_sizes=[16, 16, 32, 16],
|
712 |
+
drop_path_rate=0.1,
|
713 |
+
)
|
714 |
+
model_kwargs.update(kwargs)
|
715 |
+
return _create_tiny_vit('tiny_vit_21m_512', pretrained, **model_kwargs)
|
pytorch-image-models/timm/models/tnt.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Transformer in Transformer (TNT) in PyTorch
|
2 |
+
|
3 |
+
A PyTorch implement of TNT as described in
|
4 |
+
'Transformer in Transformer' - https://arxiv.org/abs/2103.00112
|
5 |
+
|
6 |
+
The official mindspore code is released and available at
|
7 |
+
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT
|
8 |
+
"""
|
9 |
+
import math
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.utils.checkpoint import checkpoint
|
15 |
+
|
16 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
17 |
+
from timm.layers import Mlp, DropPath, trunc_normal_, _assert, to_2tuple
|
18 |
+
from ._builder import build_model_with_cfg
|
19 |
+
from ._registry import register_model
|
20 |
+
from .vision_transformer import resize_pos_embed
|
21 |
+
|
22 |
+
__all__ = ['TNT'] # model_registry will add each entrypoint fn to this
|
23 |
+
|
24 |
+
|
25 |
+
def _cfg(url='', **kwargs):
|
26 |
+
return {
|
27 |
+
'url': url,
|
28 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
29 |
+
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
30 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
31 |
+
'first_conv': 'pixel_embed.proj', 'classifier': 'head',
|
32 |
+
**kwargs
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
default_cfgs = {
|
37 |
+
'tnt_s_patch16_224': _cfg(
|
38 |
+
url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar',
|
39 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
40 |
+
),
|
41 |
+
'tnt_b_patch16_224': _cfg(
|
42 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
43 |
+
),
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
class Attention(nn.Module):
|
48 |
+
""" Multi-Head Attention
|
49 |
+
"""
|
50 |
+
def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
51 |
+
super().__init__()
|
52 |
+
self.hidden_dim = hidden_dim
|
53 |
+
self.num_heads = num_heads
|
54 |
+
head_dim = hidden_dim // num_heads
|
55 |
+
self.head_dim = head_dim
|
56 |
+
self.scale = head_dim ** -0.5
|
57 |
+
|
58 |
+
self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias)
|
59 |
+
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
60 |
+
self.attn_drop = nn.Dropout(attn_drop, inplace=True)
|
61 |
+
self.proj = nn.Linear(dim, dim)
|
62 |
+
self.proj_drop = nn.Dropout(proj_drop, inplace=True)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
B, N, C = x.shape
|
66 |
+
qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
67 |
+
q, k = qk.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
68 |
+
v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
69 |
+
|
70 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
71 |
+
attn = attn.softmax(dim=-1)
|
72 |
+
attn = self.attn_drop(attn)
|
73 |
+
|
74 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
75 |
+
x = self.proj(x)
|
76 |
+
x = self.proj_drop(x)
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
class Block(nn.Module):
|
81 |
+
""" TNT Block
|
82 |
+
"""
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
dim,
|
86 |
+
dim_out,
|
87 |
+
num_pixel,
|
88 |
+
num_heads_in=4,
|
89 |
+
num_heads_out=12,
|
90 |
+
mlp_ratio=4.,
|
91 |
+
qkv_bias=False,
|
92 |
+
proj_drop=0.,
|
93 |
+
attn_drop=0.,
|
94 |
+
drop_path=0.,
|
95 |
+
act_layer=nn.GELU,
|
96 |
+
norm_layer=nn.LayerNorm,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
# Inner transformer
|
100 |
+
self.norm_in = norm_layer(dim)
|
101 |
+
self.attn_in = Attention(
|
102 |
+
dim,
|
103 |
+
dim,
|
104 |
+
num_heads=num_heads_in,
|
105 |
+
qkv_bias=qkv_bias,
|
106 |
+
attn_drop=attn_drop,
|
107 |
+
proj_drop=proj_drop,
|
108 |
+
)
|
109 |
+
|
110 |
+
self.norm_mlp_in = norm_layer(dim)
|
111 |
+
self.mlp_in = Mlp(
|
112 |
+
in_features=dim,
|
113 |
+
hidden_features=int(dim * 4),
|
114 |
+
out_features=dim,
|
115 |
+
act_layer=act_layer,
|
116 |
+
drop=proj_drop,
|
117 |
+
)
|
118 |
+
|
119 |
+
self.norm1_proj = norm_layer(dim)
|
120 |
+
self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True)
|
121 |
+
|
122 |
+
# Outer transformer
|
123 |
+
self.norm_out = norm_layer(dim_out)
|
124 |
+
self.attn_out = Attention(
|
125 |
+
dim_out,
|
126 |
+
dim_out,
|
127 |
+
num_heads=num_heads_out,
|
128 |
+
qkv_bias=qkv_bias,
|
129 |
+
attn_drop=attn_drop,
|
130 |
+
proj_drop=proj_drop,
|
131 |
+
)
|
132 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
133 |
+
|
134 |
+
self.norm_mlp = norm_layer(dim_out)
|
135 |
+
self.mlp = Mlp(
|
136 |
+
in_features=dim_out,
|
137 |
+
hidden_features=int(dim_out * mlp_ratio),
|
138 |
+
out_features=dim_out,
|
139 |
+
act_layer=act_layer,
|
140 |
+
drop=proj_drop,
|
141 |
+
)
|
142 |
+
|
143 |
+
def forward(self, pixel_embed, patch_embed):
|
144 |
+
# inner
|
145 |
+
pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed)))
|
146 |
+
pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed)))
|
147 |
+
# outer
|
148 |
+
B, N, C = patch_embed.size()
|
149 |
+
patch_embed = torch.cat(
|
150 |
+
[patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))],
|
151 |
+
dim=1)
|
152 |
+
patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed)))
|
153 |
+
patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed)))
|
154 |
+
return pixel_embed, patch_embed
|
155 |
+
|
156 |
+
|
157 |
+
class PixelEmbed(nn.Module):
|
158 |
+
""" Image to Pixel Embedding
|
159 |
+
"""
|
160 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4):
|
161 |
+
super().__init__()
|
162 |
+
img_size = to_2tuple(img_size)
|
163 |
+
patch_size = to_2tuple(patch_size)
|
164 |
+
# grid_size property necessary for resizing positional embedding
|
165 |
+
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
166 |
+
num_patches = (self.grid_size[0]) * (self.grid_size[1])
|
167 |
+
self.img_size = img_size
|
168 |
+
self.num_patches = num_patches
|
169 |
+
self.in_dim = in_dim
|
170 |
+
new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
|
171 |
+
self.new_patch_size = new_patch_size
|
172 |
+
|
173 |
+
self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride)
|
174 |
+
self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size)
|
175 |
+
|
176 |
+
def forward(self, x, pixel_pos):
|
177 |
+
B, C, H, W = x.shape
|
178 |
+
_assert(H == self.img_size[0],
|
179 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
|
180 |
+
_assert(W == self.img_size[1],
|
181 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
|
182 |
+
x = self.proj(x)
|
183 |
+
x = self.unfold(x)
|
184 |
+
x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1])
|
185 |
+
x = x + pixel_pos
|
186 |
+
x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2)
|
187 |
+
return x
|
188 |
+
|
189 |
+
|
190 |
+
class TNT(nn.Module):
|
191 |
+
""" Transformer in Transformer - https://arxiv.org/abs/2103.00112
|
192 |
+
"""
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
img_size=224,
|
196 |
+
patch_size=16,
|
197 |
+
in_chans=3,
|
198 |
+
num_classes=1000,
|
199 |
+
global_pool='token',
|
200 |
+
embed_dim=768,
|
201 |
+
inner_dim=48,
|
202 |
+
depth=12,
|
203 |
+
num_heads_inner=4,
|
204 |
+
num_heads_outer=12,
|
205 |
+
mlp_ratio=4.,
|
206 |
+
qkv_bias=False,
|
207 |
+
drop_rate=0.,
|
208 |
+
pos_drop_rate=0.,
|
209 |
+
proj_drop_rate=0.,
|
210 |
+
attn_drop_rate=0.,
|
211 |
+
drop_path_rate=0.,
|
212 |
+
norm_layer=nn.LayerNorm,
|
213 |
+
first_stride=4,
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
assert global_pool in ('', 'token', 'avg')
|
217 |
+
self.num_classes = num_classes
|
218 |
+
self.global_pool = global_pool
|
219 |
+
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models
|
220 |
+
self.grad_checkpointing = False
|
221 |
+
|
222 |
+
self.pixel_embed = PixelEmbed(
|
223 |
+
img_size=img_size,
|
224 |
+
patch_size=patch_size,
|
225 |
+
in_chans=in_chans,
|
226 |
+
in_dim=inner_dim,
|
227 |
+
stride=first_stride,
|
228 |
+
)
|
229 |
+
num_patches = self.pixel_embed.num_patches
|
230 |
+
self.num_patches = num_patches
|
231 |
+
new_patch_size = self.pixel_embed.new_patch_size
|
232 |
+
num_pixel = new_patch_size[0] * new_patch_size[1]
|
233 |
+
|
234 |
+
self.norm1_proj = norm_layer(num_pixel * inner_dim)
|
235 |
+
self.proj = nn.Linear(num_pixel * inner_dim, embed_dim)
|
236 |
+
self.norm2_proj = norm_layer(embed_dim)
|
237 |
+
|
238 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
239 |
+
self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
240 |
+
self.pixel_pos = nn.Parameter(torch.zeros(1, inner_dim, new_patch_size[0], new_patch_size[1]))
|
241 |
+
self.pos_drop = nn.Dropout(p=pos_drop_rate)
|
242 |
+
|
243 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
244 |
+
blocks = []
|
245 |
+
for i in range(depth):
|
246 |
+
blocks.append(Block(
|
247 |
+
dim=inner_dim,
|
248 |
+
dim_out=embed_dim,
|
249 |
+
num_pixel=num_pixel,
|
250 |
+
num_heads_in=num_heads_inner,
|
251 |
+
num_heads_out=num_heads_outer,
|
252 |
+
mlp_ratio=mlp_ratio,
|
253 |
+
qkv_bias=qkv_bias,
|
254 |
+
proj_drop=proj_drop_rate,
|
255 |
+
attn_drop=attn_drop_rate,
|
256 |
+
drop_path=dpr[i],
|
257 |
+
norm_layer=norm_layer,
|
258 |
+
))
|
259 |
+
self.blocks = nn.ModuleList(blocks)
|
260 |
+
self.norm = norm_layer(embed_dim)
|
261 |
+
|
262 |
+
self.head_drop = nn.Dropout(drop_rate)
|
263 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
264 |
+
|
265 |
+
trunc_normal_(self.cls_token, std=.02)
|
266 |
+
trunc_normal_(self.patch_pos, std=.02)
|
267 |
+
trunc_normal_(self.pixel_pos, std=.02)
|
268 |
+
self.apply(self._init_weights)
|
269 |
+
|
270 |
+
def _init_weights(self, m):
|
271 |
+
if isinstance(m, nn.Linear):
|
272 |
+
trunc_normal_(m.weight, std=.02)
|
273 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
274 |
+
nn.init.constant_(m.bias, 0)
|
275 |
+
elif isinstance(m, nn.LayerNorm):
|
276 |
+
nn.init.constant_(m.bias, 0)
|
277 |
+
nn.init.constant_(m.weight, 1.0)
|
278 |
+
|
279 |
+
@torch.jit.ignore
|
280 |
+
def no_weight_decay(self):
|
281 |
+
return {'patch_pos', 'pixel_pos', 'cls_token'}
|
282 |
+
|
283 |
+
@torch.jit.ignore
|
284 |
+
def group_matcher(self, coarse=False):
|
285 |
+
matcher = dict(
|
286 |
+
stem=r'^cls_token|patch_pos|pixel_pos|pixel_embed|norm[12]_proj|proj', # stem and embed / pos
|
287 |
+
blocks=[
|
288 |
+
(r'^blocks\.(\d+)', None),
|
289 |
+
(r'^norm', (99999,)),
|
290 |
+
]
|
291 |
+
)
|
292 |
+
return matcher
|
293 |
+
|
294 |
+
@torch.jit.ignore
|
295 |
+
def set_grad_checkpointing(self, enable=True):
|
296 |
+
self.grad_checkpointing = enable
|
297 |
+
|
298 |
+
@torch.jit.ignore
|
299 |
+
def get_classifier(self) -> nn.Module:
|
300 |
+
return self.head
|
301 |
+
|
302 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
303 |
+
self.num_classes = num_classes
|
304 |
+
if global_pool is not None:
|
305 |
+
assert global_pool in ('', 'token', 'avg')
|
306 |
+
self.global_pool = global_pool
|
307 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
308 |
+
|
309 |
+
def forward_features(self, x):
|
310 |
+
B = x.shape[0]
|
311 |
+
pixel_embed = self.pixel_embed(x, self.pixel_pos)
|
312 |
+
|
313 |
+
patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1))))
|
314 |
+
patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1)
|
315 |
+
patch_embed = patch_embed + self.patch_pos
|
316 |
+
patch_embed = self.pos_drop(patch_embed)
|
317 |
+
|
318 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
319 |
+
for blk in self.blocks:
|
320 |
+
pixel_embed, patch_embed = checkpoint(blk, pixel_embed, patch_embed)
|
321 |
+
else:
|
322 |
+
for blk in self.blocks:
|
323 |
+
pixel_embed, patch_embed = blk(pixel_embed, patch_embed)
|
324 |
+
|
325 |
+
patch_embed = self.norm(patch_embed)
|
326 |
+
return patch_embed
|
327 |
+
|
328 |
+
def forward_head(self, x, pre_logits: bool = False):
|
329 |
+
if self.global_pool:
|
330 |
+
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
331 |
+
x = self.head_drop(x)
|
332 |
+
return x if pre_logits else self.head(x)
|
333 |
+
|
334 |
+
def forward(self, x):
|
335 |
+
x = self.forward_features(x)
|
336 |
+
x = self.forward_head(x)
|
337 |
+
return x
|
338 |
+
|
339 |
+
|
340 |
+
def checkpoint_filter_fn(state_dict, model):
|
341 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
342 |
+
if state_dict['patch_pos'].shape != model.patch_pos.shape:
|
343 |
+
state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'],
|
344 |
+
model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size)
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def _create_tnt(variant, pretrained=False, **kwargs):
|
349 |
+
if kwargs.get('features_only', None):
|
350 |
+
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
351 |
+
|
352 |
+
model = build_model_with_cfg(
|
353 |
+
TNT, variant, pretrained,
|
354 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
355 |
+
**kwargs)
|
356 |
+
return model
|
357 |
+
|
358 |
+
|
359 |
+
@register_model
|
360 |
+
def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT:
|
361 |
+
model_cfg = dict(
|
362 |
+
patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6,
|
363 |
+
qkv_bias=False)
|
364 |
+
model = _create_tnt('tnt_s_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs))
|
365 |
+
return model
|
366 |
+
|
367 |
+
|
368 |
+
@register_model
|
369 |
+
def tnt_b_patch16_224(pretrained=False, **kwargs) -> TNT:
|
370 |
+
model_cfg = dict(
|
371 |
+
patch_size=16, embed_dim=640, inner_dim=40, depth=12, num_heads_outer=10,
|
372 |
+
qkv_bias=False)
|
373 |
+
model = _create_tnt('tnt_b_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs))
|
374 |
+
return model
|
pytorch-image-models/timm/models/tresnet.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
TResNet: High Performance GPU-Dedicated Architecture
|
3 |
+
https://arxiv.org/pdf/2003.13630.pdf
|
4 |
+
|
5 |
+
Original model: https://github.com/mrT23/TResNet
|
6 |
+
|
7 |
+
"""
|
8 |
+
from collections import OrderedDict
|
9 |
+
from functools import partial
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
|
15 |
+
from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule, ConvNormAct, DropPath
|
16 |
+
from ._builder import build_model_with_cfg
|
17 |
+
from ._manipulate import checkpoint_seq
|
18 |
+
from ._registry import register_model, generate_default_cfgs, register_model_deprecations
|
19 |
+
|
20 |
+
__all__ = ['TResNet'] # model_registry will add each entrypoint fn to this
|
21 |
+
|
22 |
+
|
23 |
+
class BasicBlock(nn.Module):
|
24 |
+
expansion = 1
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
inplanes,
|
29 |
+
planes,
|
30 |
+
stride=1,
|
31 |
+
downsample=None,
|
32 |
+
use_se=True,
|
33 |
+
aa_layer=None,
|
34 |
+
drop_path_rate=0.
|
35 |
+
):
|
36 |
+
super(BasicBlock, self).__init__()
|
37 |
+
self.downsample = downsample
|
38 |
+
self.stride = stride
|
39 |
+
act_layer = partial(nn.LeakyReLU, negative_slope=1e-3)
|
40 |
+
|
41 |
+
self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer)
|
42 |
+
self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False)
|
43 |
+
self.act = nn.ReLU(inplace=True)
|
44 |
+
|
45 |
+
rd_chs = max(planes * self.expansion // 4, 64)
|
46 |
+
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None
|
47 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
if self.downsample is not None:
|
51 |
+
shortcut = self.downsample(x)
|
52 |
+
else:
|
53 |
+
shortcut = x
|
54 |
+
out = self.conv1(x)
|
55 |
+
out = self.conv2(out)
|
56 |
+
if self.se is not None:
|
57 |
+
out = self.se(out)
|
58 |
+
out = self.drop_path(out) + shortcut
|
59 |
+
out = self.act(out)
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
class Bottleneck(nn.Module):
|
64 |
+
expansion = 4
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
inplanes,
|
69 |
+
planes,
|
70 |
+
stride=1,
|
71 |
+
downsample=None,
|
72 |
+
use_se=True,
|
73 |
+
act_layer=None,
|
74 |
+
aa_layer=None,
|
75 |
+
drop_path_rate=0.,
|
76 |
+
):
|
77 |
+
super(Bottleneck, self).__init__()
|
78 |
+
self.downsample = downsample
|
79 |
+
self.stride = stride
|
80 |
+
act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3)
|
81 |
+
|
82 |
+
self.conv1 = ConvNormAct(
|
83 |
+
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer)
|
84 |
+
self.conv2 = ConvNormAct(
|
85 |
+
planes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer)
|
86 |
+
|
87 |
+
reduction_chs = max(planes * self.expansion // 8, 64)
|
88 |
+
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None
|
89 |
+
|
90 |
+
self.conv3 = ConvNormAct(
|
91 |
+
planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False)
|
92 |
+
|
93 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
94 |
+
self.act = nn.ReLU(inplace=True)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
if self.downsample is not None:
|
98 |
+
shortcut = self.downsample(x)
|
99 |
+
else:
|
100 |
+
shortcut = x
|
101 |
+
out = self.conv1(x)
|
102 |
+
out = self.conv2(out)
|
103 |
+
if self.se is not None:
|
104 |
+
out = self.se(out)
|
105 |
+
out = self.conv3(out)
|
106 |
+
out = self.drop_path(out) + shortcut
|
107 |
+
out = self.act(out)
|
108 |
+
return out
|
109 |
+
|
110 |
+
|
111 |
+
class TResNet(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
layers,
|
115 |
+
in_chans=3,
|
116 |
+
num_classes=1000,
|
117 |
+
width_factor=1.0,
|
118 |
+
v2=False,
|
119 |
+
global_pool='fast',
|
120 |
+
drop_rate=0.,
|
121 |
+
drop_path_rate=0.,
|
122 |
+
):
|
123 |
+
self.num_classes = num_classes
|
124 |
+
self.drop_rate = drop_rate
|
125 |
+
self.grad_checkpointing = False
|
126 |
+
super(TResNet, self).__init__()
|
127 |
+
|
128 |
+
aa_layer = BlurPool2d
|
129 |
+
act_layer = nn.LeakyReLU
|
130 |
+
|
131 |
+
# TResnet stages
|
132 |
+
self.inplanes = int(64 * width_factor)
|
133 |
+
self.planes = int(64 * width_factor)
|
134 |
+
if v2:
|
135 |
+
self.inplanes = self.inplanes // 8 * 8
|
136 |
+
self.planes = self.planes // 8 * 8
|
137 |
+
|
138 |
+
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
|
139 |
+
conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer)
|
140 |
+
layer1 = self._make_layer(
|
141 |
+
Bottleneck if v2 else BasicBlock,
|
142 |
+
self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0])
|
143 |
+
layer2 = self._make_layer(
|
144 |
+
Bottleneck if v2 else BasicBlock,
|
145 |
+
self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1])
|
146 |
+
layer3 = self._make_layer(
|
147 |
+
Bottleneck,
|
148 |
+
self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2])
|
149 |
+
layer4 = self._make_layer(
|
150 |
+
Bottleneck,
|
151 |
+
self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3])
|
152 |
+
|
153 |
+
# body
|
154 |
+
self.body = nn.Sequential(OrderedDict([
|
155 |
+
('s2d', SpaceToDepth()),
|
156 |
+
('conv1', conv1),
|
157 |
+
('layer1', layer1),
|
158 |
+
('layer2', layer2),
|
159 |
+
('layer3', layer3),
|
160 |
+
('layer4', layer4),
|
161 |
+
]))
|
162 |
+
|
163 |
+
self.feature_info = [
|
164 |
+
dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D?
|
165 |
+
dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'),
|
166 |
+
dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'),
|
167 |
+
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'),
|
168 |
+
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'),
|
169 |
+
]
|
170 |
+
|
171 |
+
# head
|
172 |
+
self.num_features = self.head_hidden_size = (self.planes * 8) * Bottleneck.expansion
|
173 |
+
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
174 |
+
|
175 |
+
# model initialization
|
176 |
+
for m in self.modules():
|
177 |
+
if isinstance(m, nn.Conv2d):
|
178 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
|
179 |
+
if isinstance(m, nn.Linear):
|
180 |
+
m.weight.data.normal_(0, 0.01)
|
181 |
+
|
182 |
+
# residual connections special initialization
|
183 |
+
for m in self.modules():
|
184 |
+
if isinstance(m, BasicBlock):
|
185 |
+
nn.init.zeros_(m.conv2.bn.weight)
|
186 |
+
if isinstance(m, Bottleneck):
|
187 |
+
nn.init.zeros_(m.conv3.bn.weight)
|
188 |
+
|
189 |
+
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.):
|
190 |
+
downsample = None
|
191 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
192 |
+
layers = []
|
193 |
+
if stride == 2:
|
194 |
+
# avg pooling before 1x1 conv
|
195 |
+
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False))
|
196 |
+
layers += [ConvNormAct(
|
197 |
+
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False)]
|
198 |
+
downsample = nn.Sequential(*layers)
|
199 |
+
|
200 |
+
layers = []
|
201 |
+
for i in range(blocks):
|
202 |
+
layers.append(block(
|
203 |
+
self.inplanes,
|
204 |
+
planes,
|
205 |
+
stride=stride if i == 0 else 1,
|
206 |
+
downsample=downsample if i == 0 else None,
|
207 |
+
use_se=use_se,
|
208 |
+
aa_layer=aa_layer,
|
209 |
+
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
|
210 |
+
))
|
211 |
+
self.inplanes = planes * block.expansion
|
212 |
+
return nn.Sequential(*layers)
|
213 |
+
|
214 |
+
@torch.jit.ignore
|
215 |
+
def group_matcher(self, coarse=False):
|
216 |
+
matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)')
|
217 |
+
return matcher
|
218 |
+
|
219 |
+
@torch.jit.ignore
|
220 |
+
def set_grad_checkpointing(self, enable=True):
|
221 |
+
self.grad_checkpointing = enable
|
222 |
+
|
223 |
+
@torch.jit.ignore
|
224 |
+
def get_classifier(self) -> nn.Module:
|
225 |
+
return self.head.fc
|
226 |
+
|
227 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
228 |
+
self.head.reset(num_classes, pool_type=global_pool)
|
229 |
+
|
230 |
+
def forward_features(self, x):
|
231 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
232 |
+
x = self.body.s2d(x)
|
233 |
+
x = self.body.conv1(x)
|
234 |
+
x = checkpoint_seq([
|
235 |
+
self.body.layer1,
|
236 |
+
self.body.layer2,
|
237 |
+
self.body.layer3,
|
238 |
+
self.body.layer4],
|
239 |
+
x, flatten=True)
|
240 |
+
else:
|
241 |
+
x = self.body(x)
|
242 |
+
return x
|
243 |
+
|
244 |
+
def forward_head(self, x, pre_logits: bool = False):
|
245 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
x = self.forward_features(x)
|
249 |
+
x = self.forward_head(x)
|
250 |
+
return x
|
251 |
+
|
252 |
+
|
253 |
+
def checkpoint_filter_fn(state_dict, model):
|
254 |
+
if 'body.conv1.conv.weight' in state_dict:
|
255 |
+
return state_dict
|
256 |
+
|
257 |
+
import re
|
258 |
+
state_dict = state_dict.get('model', state_dict)
|
259 |
+
state_dict = state_dict.get('state_dict', state_dict)
|
260 |
+
out_dict = {}
|
261 |
+
for k, v in state_dict.items():
|
262 |
+
k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k)
|
263 |
+
k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k)
|
264 |
+
k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k)
|
265 |
+
k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k)
|
266 |
+
k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k)
|
267 |
+
k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k)
|
268 |
+
if k.endswith('bn.weight'):
|
269 |
+
# convert weight from inplace_abn to batchnorm
|
270 |
+
v = v.abs().add(1e-5)
|
271 |
+
out_dict[k] = v
|
272 |
+
return out_dict
|
273 |
+
|
274 |
+
|
275 |
+
def _create_tresnet(variant, pretrained=False, **kwargs):
|
276 |
+
return build_model_with_cfg(
|
277 |
+
TResNet,
|
278 |
+
variant,
|
279 |
+
pretrained,
|
280 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
281 |
+
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True),
|
282 |
+
**kwargs,
|
283 |
+
)
|
284 |
+
|
285 |
+
|
286 |
+
def _cfg(url='', **kwargs):
|
287 |
+
return {
|
288 |
+
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
289 |
+
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
290 |
+
'mean': (0., 0., 0.), 'std': (1., 1., 1.),
|
291 |
+
'first_conv': 'body.conv1.conv', 'classifier': 'head.fc',
|
292 |
+
**kwargs
|
293 |
+
}
|
294 |
+
|
295 |
+
|
296 |
+
default_cfgs = generate_default_cfgs({
|
297 |
+
'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
|
298 |
+
'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
|
299 |
+
'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'),
|
300 |
+
'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'),
|
301 |
+
'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'),
|
302 |
+
'tresnet_m.miil_in1k_448': _cfg(
|
303 |
+
input_size=(3, 448, 448), pool_size=(14, 14),
|
304 |
+
hf_hub_id='timm/'),
|
305 |
+
'tresnet_l.miil_in1k_448': _cfg(
|
306 |
+
input_size=(3, 448, 448), pool_size=(14, 14),
|
307 |
+
hf_hub_id='timm/'),
|
308 |
+
'tresnet_xl.miil_in1k_448': _cfg(
|
309 |
+
input_size=(3, 448, 448), pool_size=(14, 14),
|
310 |
+
hf_hub_id='timm/'),
|
311 |
+
|
312 |
+
'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'),
|
313 |
+
'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221),
|
314 |
+
})
|
315 |
+
|
316 |
+
|
317 |
+
@register_model
|
318 |
+
def tresnet_m(pretrained=False, **kwargs) -> TResNet:
|
319 |
+
model_args = dict(layers=[3, 4, 11, 3])
|
320 |
+
return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs))
|
321 |
+
|
322 |
+
|
323 |
+
@register_model
|
324 |
+
def tresnet_l(pretrained=False, **kwargs) -> TResNet:
|
325 |
+
model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2)
|
326 |
+
return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs))
|
327 |
+
|
328 |
+
|
329 |
+
@register_model
|
330 |
+
def tresnet_xl(pretrained=False, **kwargs) -> TResNet:
|
331 |
+
model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3)
|
332 |
+
return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs))
|
333 |
+
|
334 |
+
|
335 |
+
@register_model
|
336 |
+
def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet:
|
337 |
+
model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True)
|
338 |
+
return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs))
|
339 |
+
|
340 |
+
|
341 |
+
register_model_deprecations(__name__, {
|
342 |
+
'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k',
|
343 |
+
'tresnet_m_448': 'tresnet_m.miil_in1k_448',
|
344 |
+
'tresnet_l_448': 'tresnet_l.miil_in1k_448',
|
345 |
+
'tresnet_xl_448': 'tresnet_xl.miil_in1k_448',
|
346 |
+
})
|
pytorch-image-models/timm/models/twins.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Twins
|
2 |
+
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
|
3 |
+
- https://arxiv.org/pdf/2104.13840.pdf
|
4 |
+
|
5 |
+
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below
|
6 |
+
|
7 |
+
"""
|
8 |
+
# --------------------------------------------------------
|
9 |
+
# Twins
|
10 |
+
# Copyright (c) 2021 Meituan
|
11 |
+
# Licensed under The Apache 2.0 License [see LICENSE for details]
|
12 |
+
# Written by Xinjie Li, Xiangxiang Chu
|
13 |
+
# --------------------------------------------------------
|
14 |
+
import math
|
15 |
+
from functools import partial
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
23 |
+
from timm.layers import Mlp, DropPath, to_2tuple, trunc_normal_, use_fused_attn
|
24 |
+
from ._builder import build_model_with_cfg
|
25 |
+
from ._features import feature_take_indices
|
26 |
+
from ._features_fx import register_notrace_module
|
27 |
+
from ._registry import register_model, generate_default_cfgs
|
28 |
+
from .vision_transformer import Attention
|
29 |
+
|
30 |
+
__all__ = ['Twins'] # model_registry will add each entrypoint fn to this
|
31 |
+
|
32 |
+
Size_ = Tuple[int, int]
|
33 |
+
|
34 |
+
|
35 |
+
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
|
36 |
+
class LocallyGroupedAttn(nn.Module):
|
37 |
+
""" LSA: self attention within a group
|
38 |
+
"""
|
39 |
+
fused_attn: torch.jit.Final[bool]
|
40 |
+
|
41 |
+
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
|
42 |
+
assert ws != 1
|
43 |
+
super(LocallyGroupedAttn, self).__init__()
|
44 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
45 |
+
|
46 |
+
self.dim = dim
|
47 |
+
self.num_heads = num_heads
|
48 |
+
head_dim = dim // num_heads
|
49 |
+
self.scale = head_dim ** -0.5
|
50 |
+
self.fused_attn = use_fused_attn()
|
51 |
+
|
52 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
53 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
54 |
+
self.proj = nn.Linear(dim, dim)
|
55 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
56 |
+
self.ws = ws
|
57 |
+
|
58 |
+
def forward(self, x, size: Size_):
|
59 |
+
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
|
60 |
+
# both. You can choose any one, we recommend forward_padding because it's neat. However,
|
61 |
+
# the masking implementation is more reasonable and accurate.
|
62 |
+
B, N, C = x.shape
|
63 |
+
H, W = size
|
64 |
+
x = x.view(B, H, W, C)
|
65 |
+
pad_l = pad_t = 0
|
66 |
+
pad_r = (self.ws - W % self.ws) % self.ws
|
67 |
+
pad_b = (self.ws - H % self.ws) % self.ws
|
68 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
69 |
+
_, Hp, Wp, _ = x.shape
|
70 |
+
_h, _w = Hp // self.ws, Wp // self.ws
|
71 |
+
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
|
72 |
+
qkv = self.qkv(x).reshape(
|
73 |
+
B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
|
74 |
+
q, k, v = qkv.unbind(0)
|
75 |
+
|
76 |
+
if self.fused_attn:
|
77 |
+
x = F.scaled_dot_product_attention(
|
78 |
+
q, k, v,
|
79 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
q = q * self.scale
|
83 |
+
attn = q @ k.transpose(-2, -1)
|
84 |
+
attn = attn.softmax(dim=-1)
|
85 |
+
attn = self.attn_drop(attn)
|
86 |
+
x = attn @ v
|
87 |
+
|
88 |
+
x = x.transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
|
89 |
+
x = x.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
|
90 |
+
if pad_r > 0 or pad_b > 0:
|
91 |
+
x = x[:, :H, :W, :].contiguous()
|
92 |
+
x = x.reshape(B, N, C)
|
93 |
+
x = self.proj(x)
|
94 |
+
x = self.proj_drop(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
# def forward_mask(self, x, size: Size_):
|
98 |
+
# B, N, C = x.shape
|
99 |
+
# H, W = size
|
100 |
+
# x = x.view(B, H, W, C)
|
101 |
+
# pad_l = pad_t = 0
|
102 |
+
# pad_r = (self.ws - W % self.ws) % self.ws
|
103 |
+
# pad_b = (self.ws - H % self.ws) % self.ws
|
104 |
+
# x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
105 |
+
# _, Hp, Wp, _ = x.shape
|
106 |
+
# _h, _w = Hp // self.ws, Wp // self.ws
|
107 |
+
# mask = torch.zeros((1, Hp, Wp), device=x.device)
|
108 |
+
# mask[:, -pad_b:, :].fill_(1)
|
109 |
+
# mask[:, :, -pad_r:].fill_(1)
|
110 |
+
#
|
111 |
+
# x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C
|
112 |
+
# mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h * _w, self.ws * self.ws)
|
113 |
+
# attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws
|
114 |
+
# attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0))
|
115 |
+
# qkv = self.qkv(x).reshape(
|
116 |
+
# B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
|
117 |
+
# # n_h, B, _w*_h, nhead, ws*ws, dim
|
118 |
+
# q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head
|
119 |
+
# attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws
|
120 |
+
# attn = attn + attn_mask.unsqueeze(2)
|
121 |
+
# attn = attn.softmax(dim=-1)
|
122 |
+
# attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head
|
123 |
+
# attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
|
124 |
+
# x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
|
125 |
+
# if pad_r > 0 or pad_b > 0:
|
126 |
+
# x = x[:, :H, :W, :].contiguous()
|
127 |
+
# x = x.reshape(B, N, C)
|
128 |
+
# x = self.proj(x)
|
129 |
+
# x = self.proj_drop(x)
|
130 |
+
# return x
|
131 |
+
|
132 |
+
|
133 |
+
class GlobalSubSampleAttn(nn.Module):
|
134 |
+
""" GSA: using a key to summarize the information for a group to be efficient.
|
135 |
+
"""
|
136 |
+
fused_attn: torch.jit.Final[bool]
|
137 |
+
|
138 |
+
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
|
139 |
+
super().__init__()
|
140 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
141 |
+
|
142 |
+
self.dim = dim
|
143 |
+
self.num_heads = num_heads
|
144 |
+
head_dim = dim // num_heads
|
145 |
+
self.scale = head_dim ** -0.5
|
146 |
+
self.fused_attn = use_fused_attn()
|
147 |
+
|
148 |
+
self.q = nn.Linear(dim, dim, bias=True)
|
149 |
+
self.kv = nn.Linear(dim, dim * 2, bias=True)
|
150 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
151 |
+
self.proj = nn.Linear(dim, dim)
|
152 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
153 |
+
|
154 |
+
self.sr_ratio = sr_ratio
|
155 |
+
if sr_ratio > 1:
|
156 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
157 |
+
self.norm = nn.LayerNorm(dim)
|
158 |
+
else:
|
159 |
+
self.sr = None
|
160 |
+
self.norm = None
|
161 |
+
|
162 |
+
def forward(self, x, size: Size_):
|
163 |
+
B, N, C = x.shape
|
164 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
165 |
+
|
166 |
+
if self.sr is not None:
|
167 |
+
x = x.permute(0, 2, 1).reshape(B, C, *size)
|
168 |
+
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
|
169 |
+
x = self.norm(x)
|
170 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
171 |
+
k, v = kv.unbind(0)
|
172 |
+
|
173 |
+
if self.fused_attn:
|
174 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
175 |
+
q, k, v,
|
176 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
q = q * self.scale
|
180 |
+
attn = q @ k.transpose(-2, -1)
|
181 |
+
attn = attn.softmax(dim=-1)
|
182 |
+
attn = self.attn_drop(attn)
|
183 |
+
x = attn @ v
|
184 |
+
|
185 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
186 |
+
x = self.proj(x)
|
187 |
+
x = self.proj_drop(x)
|
188 |
+
|
189 |
+
return x
|
190 |
+
|
191 |
+
|
192 |
+
class Block(nn.Module):
|
193 |
+
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
dim,
|
197 |
+
num_heads,
|
198 |
+
mlp_ratio=4.,
|
199 |
+
proj_drop=0.,
|
200 |
+
attn_drop=0.,
|
201 |
+
drop_path=0.,
|
202 |
+
act_layer=nn.GELU,
|
203 |
+
norm_layer=nn.LayerNorm,
|
204 |
+
sr_ratio=1,
|
205 |
+
ws=None,
|
206 |
+
):
|
207 |
+
super().__init__()
|
208 |
+
self.norm1 = norm_layer(dim)
|
209 |
+
if ws is None:
|
210 |
+
self.attn = Attention(dim, num_heads, False, None, attn_drop, proj_drop)
|
211 |
+
elif ws == 1:
|
212 |
+
self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, proj_drop, sr_ratio)
|
213 |
+
else:
|
214 |
+
self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, proj_drop, ws)
|
215 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
216 |
+
|
217 |
+
self.norm2 = norm_layer(dim)
|
218 |
+
self.mlp = Mlp(
|
219 |
+
in_features=dim,
|
220 |
+
hidden_features=int(dim * mlp_ratio),
|
221 |
+
act_layer=act_layer,
|
222 |
+
drop=proj_drop,
|
223 |
+
)
|
224 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
225 |
+
|
226 |
+
def forward(self, x, size: Size_):
|
227 |
+
x = x + self.drop_path1(self.attn(self.norm1(x), size))
|
228 |
+
x = x + self.drop_path2(self.mlp(self.norm2(x)))
|
229 |
+
return x
|
230 |
+
|
231 |
+
|
232 |
+
class PosConv(nn.Module):
|
233 |
+
# PEG from https://arxiv.org/abs/2102.10882
|
234 |
+
def __init__(self, in_chans, embed_dim=768, stride=1):
|
235 |
+
super(PosConv, self).__init__()
|
236 |
+
self.proj = nn.Sequential(
|
237 |
+
nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim),
|
238 |
+
)
|
239 |
+
self.stride = stride
|
240 |
+
|
241 |
+
def forward(self, x, size: Size_):
|
242 |
+
B, N, C = x.shape
|
243 |
+
cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
|
244 |
+
x = self.proj(cnn_feat_token)
|
245 |
+
if self.stride == 1:
|
246 |
+
x += cnn_feat_token
|
247 |
+
x = x.flatten(2).transpose(1, 2)
|
248 |
+
return x
|
249 |
+
|
250 |
+
def no_weight_decay(self):
|
251 |
+
return ['proj.%d.weight' % i for i in range(4)]
|
252 |
+
|
253 |
+
|
254 |
+
class PatchEmbed(nn.Module):
|
255 |
+
""" Image to Patch Embedding
|
256 |
+
"""
|
257 |
+
|
258 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
259 |
+
super().__init__()
|
260 |
+
img_size = to_2tuple(img_size)
|
261 |
+
patch_size = to_2tuple(patch_size)
|
262 |
+
|
263 |
+
self.img_size = img_size
|
264 |
+
self.patch_size = patch_size
|
265 |
+
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
|
266 |
+
f"img_size {img_size} should be divided by patch_size {patch_size}."
|
267 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
268 |
+
self.num_patches = self.H * self.W
|
269 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
270 |
+
self.norm = nn.LayerNorm(embed_dim)
|
271 |
+
|
272 |
+
def forward(self, x) -> Tuple[torch.Tensor, Size_]:
|
273 |
+
B, C, H, W = x.shape
|
274 |
+
|
275 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
276 |
+
x = self.norm(x)
|
277 |
+
out_size = (H // self.patch_size[0], W // self.patch_size[1])
|
278 |
+
|
279 |
+
return x, out_size
|
280 |
+
|
281 |
+
|
282 |
+
class Twins(nn.Module):
|
283 |
+
""" Twins Vision Transfomer (Revisiting Spatial Attention)
|
284 |
+
|
285 |
+
Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git
|
286 |
+
"""
|
287 |
+
def __init__(
|
288 |
+
self,
|
289 |
+
img_size=224,
|
290 |
+
patch_size=4,
|
291 |
+
in_chans=3,
|
292 |
+
num_classes=1000,
|
293 |
+
global_pool='avg',
|
294 |
+
embed_dims=(64, 128, 256, 512),
|
295 |
+
num_heads=(1, 2, 4, 8),
|
296 |
+
mlp_ratios=(4, 4, 4, 4),
|
297 |
+
depths=(3, 4, 6, 3),
|
298 |
+
sr_ratios=(8, 4, 2, 1),
|
299 |
+
wss=None,
|
300 |
+
drop_rate=0.,
|
301 |
+
pos_drop_rate=0.,
|
302 |
+
proj_drop_rate=0.,
|
303 |
+
attn_drop_rate=0.,
|
304 |
+
drop_path_rate=0.,
|
305 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
306 |
+
block_cls=Block,
|
307 |
+
):
|
308 |
+
super().__init__()
|
309 |
+
self.num_classes = num_classes
|
310 |
+
self.global_pool = global_pool
|
311 |
+
self.depths = depths
|
312 |
+
self.embed_dims = embed_dims
|
313 |
+
self.num_features = self.head_hidden_size = embed_dims[-1]
|
314 |
+
self.grad_checkpointing = False
|
315 |
+
|
316 |
+
img_size = to_2tuple(img_size)
|
317 |
+
prev_chs = in_chans
|
318 |
+
self.patch_embeds = nn.ModuleList()
|
319 |
+
self.pos_drops = nn.ModuleList()
|
320 |
+
for i in range(len(depths)):
|
321 |
+
self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i]))
|
322 |
+
self.pos_drops.append(nn.Dropout(p=pos_drop_rate))
|
323 |
+
prev_chs = embed_dims[i]
|
324 |
+
img_size = tuple(t // patch_size for t in img_size)
|
325 |
+
patch_size = 2
|
326 |
+
|
327 |
+
self.blocks = nn.ModuleList()
|
328 |
+
self.feature_info = []
|
329 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
330 |
+
cur = 0
|
331 |
+
for k in range(len(depths)):
|
332 |
+
_block = nn.ModuleList([block_cls(
|
333 |
+
dim=embed_dims[k],
|
334 |
+
num_heads=num_heads[k],
|
335 |
+
mlp_ratio=mlp_ratios[k],
|
336 |
+
proj_drop=proj_drop_rate,
|
337 |
+
attn_drop=attn_drop_rate,
|
338 |
+
drop_path=dpr[cur + i],
|
339 |
+
norm_layer=norm_layer,
|
340 |
+
sr_ratio=sr_ratios[k],
|
341 |
+
ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])],
|
342 |
+
)
|
343 |
+
self.blocks.append(_block)
|
344 |
+
self.feature_info += [dict(module=f'block.{k}', num_chs=embed_dims[k], reduction=2**(2+k))]
|
345 |
+
cur += depths[k]
|
346 |
+
|
347 |
+
self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims])
|
348 |
+
|
349 |
+
self.norm = norm_layer(self.num_features)
|
350 |
+
|
351 |
+
# classification head
|
352 |
+
self.head_drop = nn.Dropout(drop_rate)
|
353 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
354 |
+
|
355 |
+
# init weights
|
356 |
+
self.apply(self._init_weights)
|
357 |
+
|
358 |
+
@torch.jit.ignore
|
359 |
+
def no_weight_decay(self):
|
360 |
+
return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()])
|
361 |
+
|
362 |
+
@torch.jit.ignore
|
363 |
+
def group_matcher(self, coarse=False):
|
364 |
+
matcher = dict(
|
365 |
+
stem=r'^patch_embeds.0', # stem and embed
|
366 |
+
blocks=[
|
367 |
+
(r'^(?:blocks|patch_embeds|pos_block)\.(\d+)', None),
|
368 |
+
('^norm', (99999,))
|
369 |
+
] if coarse else [
|
370 |
+
(r'^blocks\.(\d+)\.(\d+)', None),
|
371 |
+
(r'^(?:patch_embeds|pos_block)\.(\d+)', (0,)),
|
372 |
+
(r'^norm', (99999,))
|
373 |
+
]
|
374 |
+
)
|
375 |
+
return matcher
|
376 |
+
|
377 |
+
@torch.jit.ignore
|
378 |
+
def set_grad_checkpointing(self, enable=True):
|
379 |
+
assert not enable, 'gradient checkpointing not supported'
|
380 |
+
|
381 |
+
@torch.jit.ignore
|
382 |
+
def get_classifier(self) -> nn.Module:
|
383 |
+
return self.head
|
384 |
+
|
385 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
386 |
+
self.num_classes = num_classes
|
387 |
+
if global_pool is not None:
|
388 |
+
assert global_pool in ('', 'avg')
|
389 |
+
self.global_pool = global_pool
|
390 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
391 |
+
|
392 |
+
def _init_weights(self, m):
|
393 |
+
if isinstance(m, nn.Linear):
|
394 |
+
trunc_normal_(m.weight, std=.02)
|
395 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
396 |
+
nn.init.constant_(m.bias, 0)
|
397 |
+
elif isinstance(m, nn.LayerNorm):
|
398 |
+
nn.init.constant_(m.bias, 0)
|
399 |
+
nn.init.constant_(m.weight, 1.0)
|
400 |
+
elif isinstance(m, nn.Conv2d):
|
401 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
402 |
+
fan_out //= m.groups
|
403 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
404 |
+
if m.bias is not None:
|
405 |
+
m.bias.data.zero_()
|
406 |
+
|
407 |
+
def forward_intermediates(
|
408 |
+
self,
|
409 |
+
x: torch.Tensor,
|
410 |
+
indices: Optional[Union[int, List[int]]] = None,
|
411 |
+
norm: bool = False,
|
412 |
+
stop_early: bool = False,
|
413 |
+
output_fmt: str = 'NCHW',
|
414 |
+
intermediates_only: bool = False,
|
415 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
416 |
+
""" Forward features that returns intermediates.
|
417 |
+
Args:
|
418 |
+
x: Input image tensor
|
419 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
420 |
+
norm: Apply norm layer to all intermediates
|
421 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
422 |
+
output_fmt: Shape of intermediate feature outputs
|
423 |
+
intermediates_only: Only return intermediate features
|
424 |
+
Returns:
|
425 |
+
|
426 |
+
"""
|
427 |
+
assert output_fmt == 'NCHW', 'Output shape for Twins must be NCHW.'
|
428 |
+
intermediates = []
|
429 |
+
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
430 |
+
|
431 |
+
# FIXME slice block/pos_block if < max
|
432 |
+
|
433 |
+
# forward pass
|
434 |
+
B, _, height, width = x.shape
|
435 |
+
for i, (embed, drop, blocks, pos_blk) in enumerate(zip(
|
436 |
+
self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)
|
437 |
+
):
|
438 |
+
x, size = embed(x)
|
439 |
+
x = drop(x)
|
440 |
+
for j, blk in enumerate(blocks):
|
441 |
+
x = blk(x, size)
|
442 |
+
if j == 0:
|
443 |
+
x = pos_blk(x, size) # PEG here
|
444 |
+
|
445 |
+
if i < len(self.depths) - 1:
|
446 |
+
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
|
447 |
+
if i in take_indices:
|
448 |
+
intermediates.append(x)
|
449 |
+
else:
|
450 |
+
if i in take_indices:
|
451 |
+
# only last feature can be normed
|
452 |
+
x_feat = self.norm(x) if norm else x
|
453 |
+
intermediates.append(x_feat.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous())
|
454 |
+
|
455 |
+
if intermediates_only:
|
456 |
+
return intermediates
|
457 |
+
|
458 |
+
x = self.norm(x)
|
459 |
+
|
460 |
+
return x, intermediates
|
461 |
+
|
462 |
+
def prune_intermediate_layers(
|
463 |
+
self,
|
464 |
+
indices: Union[int, List[int]] = 1,
|
465 |
+
prune_norm: bool = False,
|
466 |
+
prune_head: bool = True,
|
467 |
+
):
|
468 |
+
""" Prune layers not required for specified intermediates.
|
469 |
+
"""
|
470 |
+
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
|
471 |
+
# FIXME add block pruning
|
472 |
+
if prune_norm:
|
473 |
+
self.norm = nn.Identity()
|
474 |
+
if prune_head:
|
475 |
+
self.reset_classifier(0, '')
|
476 |
+
return take_indices
|
477 |
+
|
478 |
+
def forward_features(self, x):
|
479 |
+
B = x.shape[0]
|
480 |
+
for i, (embed, drop, blocks, pos_blk) in enumerate(
|
481 |
+
zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)):
|
482 |
+
x, size = embed(x)
|
483 |
+
x = drop(x)
|
484 |
+
for j, blk in enumerate(blocks):
|
485 |
+
x = blk(x, size)
|
486 |
+
if j == 0:
|
487 |
+
x = pos_blk(x, size) # PEG here
|
488 |
+
if i < len(self.depths) - 1:
|
489 |
+
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
|
490 |
+
x = self.norm(x)
|
491 |
+
return x
|
492 |
+
|
493 |
+
def forward_head(self, x, pre_logits: bool = False):
|
494 |
+
if self.global_pool == 'avg':
|
495 |
+
x = x.mean(dim=1)
|
496 |
+
x = self.head_drop(x)
|
497 |
+
return x if pre_logits else self.head(x)
|
498 |
+
|
499 |
+
def forward(self, x):
|
500 |
+
x = self.forward_features(x)
|
501 |
+
x = self.forward_head(x)
|
502 |
+
return x
|
503 |
+
|
504 |
+
|
505 |
+
def _create_twins(variant, pretrained=False, **kwargs):
|
506 |
+
out_indices = kwargs.pop('out_indices', 4)
|
507 |
+
model = build_model_with_cfg(
|
508 |
+
Twins, variant, pretrained,
|
509 |
+
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
|
510 |
+
**kwargs,
|
511 |
+
)
|
512 |
+
return model
|
513 |
+
|
514 |
+
|
515 |
+
def _cfg(url='', **kwargs):
|
516 |
+
return {
|
517 |
+
'url': url,
|
518 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
519 |
+
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
520 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
521 |
+
'first_conv': 'patch_embeds.0.proj', 'classifier': 'head',
|
522 |
+
**kwargs
|
523 |
+
}
|
524 |
+
|
525 |
+
|
526 |
+
default_cfgs = generate_default_cfgs({
|
527 |
+
'twins_pcpvt_small.in1k': _cfg(hf_hub_id='timm/'),
|
528 |
+
'twins_pcpvt_base.in1k': _cfg(hf_hub_id='timm/'),
|
529 |
+
'twins_pcpvt_large.in1k': _cfg(hf_hub_id='timm/'),
|
530 |
+
'twins_svt_small.in1k': _cfg(hf_hub_id='timm/'),
|
531 |
+
'twins_svt_base.in1k': _cfg(hf_hub_id='timm/'),
|
532 |
+
'twins_svt_large.in1k': _cfg(hf_hub_id='timm/'),
|
533 |
+
})
|
534 |
+
|
535 |
+
|
536 |
+
@register_model
|
537 |
+
def twins_pcpvt_small(pretrained=False, **kwargs) -> Twins:
|
538 |
+
model_args = dict(
|
539 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
540 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1])
|
541 |
+
return _create_twins('twins_pcpvt_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
542 |
+
|
543 |
+
|
544 |
+
@register_model
|
545 |
+
def twins_pcpvt_base(pretrained=False, **kwargs) -> Twins:
|
546 |
+
model_args = dict(
|
547 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
548 |
+
depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1])
|
549 |
+
return _create_twins('twins_pcpvt_base', pretrained=pretrained, **dict(model_args, **kwargs))
|
550 |
+
|
551 |
+
|
552 |
+
@register_model
|
553 |
+
def twins_pcpvt_large(pretrained=False, **kwargs) -> Twins:
|
554 |
+
model_args = dict(
|
555 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
556 |
+
depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1])
|
557 |
+
return _create_twins('twins_pcpvt_large', pretrained=pretrained, **dict(model_args, **kwargs))
|
558 |
+
|
559 |
+
|
560 |
+
@register_model
|
561 |
+
def twins_svt_small(pretrained=False, **kwargs) -> Twins:
|
562 |
+
model_args = dict(
|
563 |
+
patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4],
|
564 |
+
depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1])
|
565 |
+
return _create_twins('twins_svt_small', pretrained=pretrained, **dict(model_args, **kwargs))
|
566 |
+
|
567 |
+
|
568 |
+
@register_model
|
569 |
+
def twins_svt_base(pretrained=False, **kwargs) -> Twins:
|
570 |
+
model_args = dict(
|
571 |
+
patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4],
|
572 |
+
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1])
|
573 |
+
return _create_twins('twins_svt_base', pretrained=pretrained, **dict(model_args, **kwargs))
|
574 |
+
|
575 |
+
|
576 |
+
@register_model
|
577 |
+
def twins_svt_large(pretrained=False, **kwargs) -> Twins:
|
578 |
+
model_args = dict(
|
579 |
+
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
|
580 |
+
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1])
|
581 |
+
return _create_twins('twins_svt_large', pretrained=pretrained, **dict(model_args, **kwargs))
|
pytorch-image-models/timm/models/vgg.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""VGG
|
2 |
+
|
3 |
+
Adapted from https://github.com/pytorch/vision 'vgg.py' (BSD-3-Clause) with a few changes for
|
4 |
+
timm functionality.
|
5 |
+
|
6 |
+
Copyright 2021 Ross Wightman
|
7 |
+
"""
|
8 |
+
from typing import Any, Dict, List, Optional, Union, cast
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
15 |
+
from timm.layers import ClassifierHead
|
16 |
+
from ._builder import build_model_with_cfg
|
17 |
+
from ._features_fx import register_notrace_module
|
18 |
+
from ._registry import register_model, generate_default_cfgs
|
19 |
+
|
20 |
+
__all__ = ['VGG']
|
21 |
+
|
22 |
+
|
23 |
+
cfgs: Dict[str, List[Union[str, int]]] = {
|
24 |
+
'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
25 |
+
'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
26 |
+
'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
27 |
+
'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
|
32 |
+
class ConvMlp(nn.Module):
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
in_features=512,
|
37 |
+
out_features=4096,
|
38 |
+
kernel_size=7,
|
39 |
+
mlp_ratio=1.0,
|
40 |
+
drop_rate: float = 0.2,
|
41 |
+
act_layer: nn.Module = None,
|
42 |
+
conv_layer: nn.Module = None,
|
43 |
+
):
|
44 |
+
super(ConvMlp, self).__init__()
|
45 |
+
self.input_kernel_size = kernel_size
|
46 |
+
mid_features = int(out_features * mlp_ratio)
|
47 |
+
self.fc1 = conv_layer(in_features, mid_features, kernel_size, bias=True)
|
48 |
+
self.act1 = act_layer(True)
|
49 |
+
self.drop = nn.Dropout(drop_rate)
|
50 |
+
self.fc2 = conv_layer(mid_features, out_features, 1, bias=True)
|
51 |
+
self.act2 = act_layer(True)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
if x.shape[-2] < self.input_kernel_size or x.shape[-1] < self.input_kernel_size:
|
55 |
+
# keep the input size >= 7x7
|
56 |
+
output_size = (max(self.input_kernel_size, x.shape[-2]), max(self.input_kernel_size, x.shape[-1]))
|
57 |
+
x = F.adaptive_avg_pool2d(x, output_size)
|
58 |
+
x = self.fc1(x)
|
59 |
+
x = self.act1(x)
|
60 |
+
x = self.drop(x)
|
61 |
+
x = self.fc2(x)
|
62 |
+
x = self.act2(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class VGG(nn.Module):
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
cfg: List[Any],
|
71 |
+
num_classes: int = 1000,
|
72 |
+
in_chans: int = 3,
|
73 |
+
output_stride: int = 32,
|
74 |
+
mlp_ratio: float = 1.0,
|
75 |
+
act_layer: nn.Module = nn.ReLU,
|
76 |
+
conv_layer: nn.Module = nn.Conv2d,
|
77 |
+
norm_layer: nn.Module = None,
|
78 |
+
global_pool: str = 'avg',
|
79 |
+
drop_rate: float = 0.,
|
80 |
+
) -> None:
|
81 |
+
super(VGG, self).__init__()
|
82 |
+
assert output_stride == 32
|
83 |
+
self.num_classes = num_classes
|
84 |
+
self.drop_rate = drop_rate
|
85 |
+
self.grad_checkpointing = False
|
86 |
+
self.use_norm = norm_layer is not None
|
87 |
+
self.feature_info = []
|
88 |
+
|
89 |
+
prev_chs = in_chans
|
90 |
+
net_stride = 1
|
91 |
+
pool_layer = nn.MaxPool2d
|
92 |
+
layers: List[nn.Module] = []
|
93 |
+
for v in cfg:
|
94 |
+
last_idx = len(layers) - 1
|
95 |
+
if v == 'M':
|
96 |
+
self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{last_idx}'))
|
97 |
+
layers += [pool_layer(kernel_size=2, stride=2)]
|
98 |
+
net_stride *= 2
|
99 |
+
else:
|
100 |
+
v = cast(int, v)
|
101 |
+
conv2d = conv_layer(prev_chs, v, kernel_size=3, padding=1)
|
102 |
+
if norm_layer is not None:
|
103 |
+
layers += [conv2d, norm_layer(v), act_layer(inplace=True)]
|
104 |
+
else:
|
105 |
+
layers += [conv2d, act_layer(inplace=True)]
|
106 |
+
prev_chs = v
|
107 |
+
self.features = nn.Sequential(*layers)
|
108 |
+
self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{len(layers) - 1}'))
|
109 |
+
|
110 |
+
self.num_features = prev_chs
|
111 |
+
self.head_hidden_size = 4096
|
112 |
+
self.pre_logits = ConvMlp(
|
113 |
+
prev_chs,
|
114 |
+
self.head_hidden_size,
|
115 |
+
7,
|
116 |
+
mlp_ratio=mlp_ratio,
|
117 |
+
drop_rate=drop_rate,
|
118 |
+
act_layer=act_layer,
|
119 |
+
conv_layer=conv_layer,
|
120 |
+
)
|
121 |
+
self.head = ClassifierHead(
|
122 |
+
self.head_hidden_size,
|
123 |
+
num_classes,
|
124 |
+
pool_type=global_pool,
|
125 |
+
drop_rate=drop_rate,
|
126 |
+
)
|
127 |
+
|
128 |
+
self._initialize_weights()
|
129 |
+
|
130 |
+
@torch.jit.ignore
|
131 |
+
def group_matcher(self, coarse=False):
|
132 |
+
# this treats BN layers as separate groups for bn variants, a lot of effort to fix that
|
133 |
+
return dict(stem=r'^features\.0', blocks=r'^features\.(\d+)')
|
134 |
+
|
135 |
+
@torch.jit.ignore
|
136 |
+
def set_grad_checkpointing(self, enable=True):
|
137 |
+
assert not enable, 'gradient checkpointing not supported'
|
138 |
+
|
139 |
+
@torch.jit.ignore
|
140 |
+
def get_classifier(self) -> nn.Module:
|
141 |
+
return self.head.fc
|
142 |
+
|
143 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
144 |
+
self.num_classes = num_classes
|
145 |
+
self.head.reset(num_classes, global_pool)
|
146 |
+
|
147 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
148 |
+
x = self.features(x)
|
149 |
+
return x
|
150 |
+
|
151 |
+
def forward_head(self, x: torch.Tensor, pre_logits: bool = False):
|
152 |
+
x = self.pre_logits(x)
|
153 |
+
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
|
154 |
+
|
155 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
156 |
+
x = self.forward_features(x)
|
157 |
+
x = self.forward_head(x)
|
158 |
+
return x
|
159 |
+
|
160 |
+
def _initialize_weights(self) -> None:
|
161 |
+
for m in self.modules():
|
162 |
+
if isinstance(m, nn.Conv2d):
|
163 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
164 |
+
if m.bias is not None:
|
165 |
+
nn.init.constant_(m.bias, 0)
|
166 |
+
elif isinstance(m, nn.BatchNorm2d):
|
167 |
+
nn.init.constant_(m.weight, 1)
|
168 |
+
nn.init.constant_(m.bias, 0)
|
169 |
+
elif isinstance(m, nn.Linear):
|
170 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
171 |
+
nn.init.constant_(m.bias, 0)
|
172 |
+
|
173 |
+
|
174 |
+
def _filter_fn(state_dict):
|
175 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
176 |
+
out_dict = {}
|
177 |
+
for k, v in state_dict.items():
|
178 |
+
k_r = k
|
179 |
+
k_r = k_r.replace('classifier.0', 'pre_logits.fc1')
|
180 |
+
k_r = k_r.replace('classifier.3', 'pre_logits.fc2')
|
181 |
+
k_r = k_r.replace('classifier.6', 'head.fc')
|
182 |
+
if 'classifier.0.weight' in k:
|
183 |
+
v = v.reshape(-1, 512, 7, 7)
|
184 |
+
if 'classifier.3.weight' in k:
|
185 |
+
v = v.reshape(-1, 4096, 1, 1)
|
186 |
+
out_dict[k_r] = v
|
187 |
+
return out_dict
|
188 |
+
|
189 |
+
|
190 |
+
def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG:
|
191 |
+
cfg = variant.split('_')[0]
|
192 |
+
# NOTE: VGG is one of few models with stride==1 features w/ 6 out_indices [0..5]
|
193 |
+
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5))
|
194 |
+
model = build_model_with_cfg(
|
195 |
+
VGG,
|
196 |
+
variant,
|
197 |
+
pretrained,
|
198 |
+
model_cfg=cfgs[cfg],
|
199 |
+
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
200 |
+
pretrained_filter_fn=_filter_fn,
|
201 |
+
**kwargs,
|
202 |
+
)
|
203 |
+
return model
|
204 |
+
|
205 |
+
|
206 |
+
def _cfg(url='', **kwargs):
|
207 |
+
return {
|
208 |
+
'url': url,
|
209 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
210 |
+
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
211 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
212 |
+
'first_conv': 'features.0', 'classifier': 'head.fc',
|
213 |
+
**kwargs
|
214 |
+
}
|
215 |
+
|
216 |
+
|
217 |
+
default_cfgs = generate_default_cfgs({
|
218 |
+
'vgg11.tv_in1k': _cfg(hf_hub_id='timm/'),
|
219 |
+
'vgg13.tv_in1k': _cfg(hf_hub_id='timm/'),
|
220 |
+
'vgg16.tv_in1k': _cfg(hf_hub_id='timm/'),
|
221 |
+
'vgg19.tv_in1k': _cfg(hf_hub_id='timm/'),
|
222 |
+
'vgg11_bn.tv_in1k': _cfg(hf_hub_id='timm/'),
|
223 |
+
'vgg13_bn.tv_in1k': _cfg(hf_hub_id='timm/'),
|
224 |
+
'vgg16_bn.tv_in1k': _cfg(hf_hub_id='timm/'),
|
225 |
+
'vgg19_bn.tv_in1k': _cfg(hf_hub_id='timm/'),
|
226 |
+
})
|
227 |
+
|
228 |
+
|
229 |
+
@register_model
|
230 |
+
def vgg11(pretrained: bool = False, **kwargs: Any) -> VGG:
|
231 |
+
r"""VGG 11-layer model (configuration "A") from
|
232 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
233 |
+
"""
|
234 |
+
model_args = dict(**kwargs)
|
235 |
+
return _create_vgg('vgg11', pretrained=pretrained, **model_args)
|
236 |
+
|
237 |
+
|
238 |
+
@register_model
|
239 |
+
def vgg11_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
240 |
+
r"""VGG 11-layer model (configuration "A") with batch normalization
|
241 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
242 |
+
"""
|
243 |
+
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
244 |
+
return _create_vgg('vgg11_bn', pretrained=pretrained, **model_args)
|
245 |
+
|
246 |
+
|
247 |
+
@register_model
|
248 |
+
def vgg13(pretrained: bool = False, **kwargs: Any) -> VGG:
|
249 |
+
r"""VGG 13-layer model (configuration "B")
|
250 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
251 |
+
"""
|
252 |
+
model_args = dict(**kwargs)
|
253 |
+
return _create_vgg('vgg13', pretrained=pretrained, **model_args)
|
254 |
+
|
255 |
+
|
256 |
+
@register_model
|
257 |
+
def vgg13_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
258 |
+
r"""VGG 13-layer model (configuration "B") with batch normalization
|
259 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
260 |
+
"""
|
261 |
+
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
262 |
+
return _create_vgg('vgg13_bn', pretrained=pretrained, **model_args)
|
263 |
+
|
264 |
+
|
265 |
+
@register_model
|
266 |
+
def vgg16(pretrained: bool = False, **kwargs: Any) -> VGG:
|
267 |
+
r"""VGG 16-layer model (configuration "D")
|
268 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
269 |
+
"""
|
270 |
+
model_args = dict(**kwargs)
|
271 |
+
return _create_vgg('vgg16', pretrained=pretrained, **model_args)
|
272 |
+
|
273 |
+
|
274 |
+
@register_model
|
275 |
+
def vgg16_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
276 |
+
r"""VGG 16-layer model (configuration "D") with batch normalization
|
277 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
278 |
+
"""
|
279 |
+
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
280 |
+
return _create_vgg('vgg16_bn', pretrained=pretrained, **model_args)
|
281 |
+
|
282 |
+
|
283 |
+
@register_model
|
284 |
+
def vgg19(pretrained: bool = False, **kwargs: Any) -> VGG:
|
285 |
+
r"""VGG 19-layer model (configuration "E")
|
286 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
287 |
+
"""
|
288 |
+
model_args = dict(**kwargs)
|
289 |
+
return _create_vgg('vgg19', pretrained=pretrained, **model_args)
|
290 |
+
|
291 |
+
|
292 |
+
@register_model
|
293 |
+
def vgg19_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
|
294 |
+
r"""VGG 19-layer model (configuration 'E') with batch normalization
|
295 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
|
296 |
+
"""
|
297 |
+
model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
|
298 |
+
return _create_vgg('vgg19_bn', pretrained=pretrained, **model_args)
|
pytorch-image-models/timm/models/visformer.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Visformer
|
2 |
+
|
3 |
+
Paper: Visformer: The Vision-friendly Transformer - https://arxiv.org/abs/2104.12533
|
4 |
+
|
5 |
+
From original at https://github.com/danczs/Visformer
|
6 |
+
|
7 |
+
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
14 |
+
from timm.layers import to_2tuple, trunc_normal_, DropPath, PatchEmbed, LayerNorm2d, create_classifier, use_fused_attn
|
15 |
+
from ._builder import build_model_with_cfg
|
16 |
+
from ._manipulate import checkpoint_seq
|
17 |
+
from ._registry import register_model, generate_default_cfgs
|
18 |
+
|
19 |
+
__all__ = ['Visformer']
|
20 |
+
|
21 |
+
|
22 |
+
class SpatialMlp(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
in_features,
|
26 |
+
hidden_features=None,
|
27 |
+
out_features=None,
|
28 |
+
act_layer=nn.GELU,
|
29 |
+
drop=0.,
|
30 |
+
group=8,
|
31 |
+
spatial_conv=False,
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
out_features = out_features or in_features
|
35 |
+
hidden_features = hidden_features or in_features
|
36 |
+
drop_probs = to_2tuple(drop)
|
37 |
+
|
38 |
+
self.in_features = in_features
|
39 |
+
self.out_features = out_features
|
40 |
+
self.spatial_conv = spatial_conv
|
41 |
+
if self.spatial_conv:
|
42 |
+
if group < 2: # net setting
|
43 |
+
hidden_features = in_features * 5 // 6
|
44 |
+
else:
|
45 |
+
hidden_features = in_features * 2
|
46 |
+
self.hidden_features = hidden_features
|
47 |
+
self.group = group
|
48 |
+
self.conv1 = nn.Conv2d(in_features, hidden_features, 1, stride=1, padding=0, bias=False)
|
49 |
+
self.act1 = act_layer()
|
50 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
51 |
+
if self.spatial_conv:
|
52 |
+
self.conv2 = nn.Conv2d(
|
53 |
+
hidden_features, hidden_features, 3, stride=1, padding=1, groups=self.group, bias=False)
|
54 |
+
self.act2 = act_layer()
|
55 |
+
else:
|
56 |
+
self.conv2 = None
|
57 |
+
self.act2 = None
|
58 |
+
self.conv3 = nn.Conv2d(hidden_features, out_features, 1, stride=1, padding=0, bias=False)
|
59 |
+
self.drop3 = nn.Dropout(drop_probs[1])
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.conv1(x)
|
63 |
+
x = self.act1(x)
|
64 |
+
x = self.drop1(x)
|
65 |
+
if self.conv2 is not None:
|
66 |
+
x = self.conv2(x)
|
67 |
+
x = self.act2(x)
|
68 |
+
x = self.conv3(x)
|
69 |
+
x = self.drop3(x)
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
class Attention(nn.Module):
|
74 |
+
fused_attn: torch.jit.Final[bool]
|
75 |
+
|
76 |
+
def __init__(self, dim, num_heads=8, head_dim_ratio=1., attn_drop=0., proj_drop=0.):
|
77 |
+
super().__init__()
|
78 |
+
self.dim = dim
|
79 |
+
self.num_heads = num_heads
|
80 |
+
head_dim = round(dim // num_heads * head_dim_ratio)
|
81 |
+
self.head_dim = head_dim
|
82 |
+
self.scale = head_dim ** -0.5
|
83 |
+
self.fused_attn = use_fused_attn(experimental=True)
|
84 |
+
|
85 |
+
self.qkv = nn.Conv2d(dim, head_dim * num_heads * 3, 1, stride=1, padding=0, bias=False)
|
86 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
87 |
+
self.proj = nn.Conv2d(self.head_dim * self.num_heads, dim, 1, stride=1, padding=0, bias=False)
|
88 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
B, C, H, W = x.shape
|
92 |
+
x = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, -1).permute(1, 0, 2, 4, 3)
|
93 |
+
q, k, v = x.unbind(0)
|
94 |
+
|
95 |
+
if self.fused_attn:
|
96 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
97 |
+
q.contiguous(), k.contiguous(), v.contiguous(),
|
98 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
99 |
+
)
|
100 |
+
else:
|
101 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
102 |
+
attn = attn.softmax(dim=-1)
|
103 |
+
attn = self.attn_drop(attn)
|
104 |
+
x = attn @ v
|
105 |
+
|
106 |
+
x = x.permute(0, 1, 3, 2).reshape(B, -1, H, W)
|
107 |
+
x = self.proj(x)
|
108 |
+
x = self.proj_drop(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class Block(nn.Module):
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
dim,
|
116 |
+
num_heads,
|
117 |
+
head_dim_ratio=1.,
|
118 |
+
mlp_ratio=4.,
|
119 |
+
proj_drop=0.,
|
120 |
+
attn_drop=0.,
|
121 |
+
drop_path=0.,
|
122 |
+
act_layer=nn.GELU,
|
123 |
+
norm_layer=LayerNorm2d,
|
124 |
+
group=8,
|
125 |
+
attn_disabled=False,
|
126 |
+
spatial_conv=False,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.spatial_conv = spatial_conv
|
130 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
131 |
+
if attn_disabled:
|
132 |
+
self.norm1 = None
|
133 |
+
self.attn = None
|
134 |
+
else:
|
135 |
+
self.norm1 = norm_layer(dim)
|
136 |
+
self.attn = Attention(
|
137 |
+
dim,
|
138 |
+
num_heads=num_heads,
|
139 |
+
head_dim_ratio=head_dim_ratio,
|
140 |
+
attn_drop=attn_drop,
|
141 |
+
proj_drop=proj_drop,
|
142 |
+
)
|
143 |
+
|
144 |
+
self.norm2 = norm_layer(dim)
|
145 |
+
self.mlp = SpatialMlp(
|
146 |
+
in_features=dim,
|
147 |
+
hidden_features=int(dim * mlp_ratio),
|
148 |
+
act_layer=act_layer,
|
149 |
+
drop=proj_drop,
|
150 |
+
group=group,
|
151 |
+
spatial_conv=spatial_conv,
|
152 |
+
)
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
if self.attn is not None:
|
156 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
157 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
158 |
+
return x
|
159 |
+
|
160 |
+
|
161 |
+
class Visformer(nn.Module):
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
img_size=224,
|
165 |
+
patch_size=16,
|
166 |
+
in_chans=3,
|
167 |
+
num_classes=1000,
|
168 |
+
init_channels=32,
|
169 |
+
embed_dim=384,
|
170 |
+
depth=12,
|
171 |
+
num_heads=6,
|
172 |
+
mlp_ratio=4.,
|
173 |
+
drop_rate=0.,
|
174 |
+
pos_drop_rate=0.,
|
175 |
+
proj_drop_rate=0.,
|
176 |
+
attn_drop_rate=0.,
|
177 |
+
drop_path_rate=0.,
|
178 |
+
norm_layer=LayerNorm2d,
|
179 |
+
attn_stage='111',
|
180 |
+
use_pos_embed=True,
|
181 |
+
spatial_conv='111',
|
182 |
+
vit_stem=False,
|
183 |
+
group=8,
|
184 |
+
global_pool='avg',
|
185 |
+
conv_init=False,
|
186 |
+
embed_norm=None,
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
img_size = to_2tuple(img_size)
|
190 |
+
self.num_classes = num_classes
|
191 |
+
self.embed_dim = embed_dim
|
192 |
+
self.init_channels = init_channels
|
193 |
+
self.img_size = img_size
|
194 |
+
self.vit_stem = vit_stem
|
195 |
+
self.conv_init = conv_init
|
196 |
+
if isinstance(depth, (list, tuple)):
|
197 |
+
self.stage_num1, self.stage_num2, self.stage_num3 = depth
|
198 |
+
depth = sum(depth)
|
199 |
+
else:
|
200 |
+
self.stage_num1 = self.stage_num3 = depth // 3
|
201 |
+
self.stage_num2 = depth - self.stage_num1 - self.stage_num3
|
202 |
+
self.use_pos_embed = use_pos_embed
|
203 |
+
self.grad_checkpointing = False
|
204 |
+
|
205 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
|
206 |
+
# stage 1
|
207 |
+
if self.vit_stem:
|
208 |
+
self.stem = None
|
209 |
+
self.patch_embed1 = PatchEmbed(
|
210 |
+
img_size=img_size,
|
211 |
+
patch_size=patch_size,
|
212 |
+
in_chans=in_chans,
|
213 |
+
embed_dim=embed_dim,
|
214 |
+
norm_layer=embed_norm,
|
215 |
+
flatten=False,
|
216 |
+
)
|
217 |
+
img_size = [x // patch_size for x in img_size]
|
218 |
+
else:
|
219 |
+
if self.init_channels is None:
|
220 |
+
self.stem = None
|
221 |
+
self.patch_embed1 = PatchEmbed(
|
222 |
+
img_size=img_size,
|
223 |
+
patch_size=patch_size // 2,
|
224 |
+
in_chans=in_chans,
|
225 |
+
embed_dim=embed_dim // 2,
|
226 |
+
norm_layer=embed_norm,
|
227 |
+
flatten=False,
|
228 |
+
)
|
229 |
+
img_size = [x // (patch_size // 2) for x in img_size]
|
230 |
+
else:
|
231 |
+
self.stem = nn.Sequential(
|
232 |
+
nn.Conv2d(in_chans, self.init_channels, 7, stride=2, padding=3, bias=False),
|
233 |
+
nn.BatchNorm2d(self.init_channels),
|
234 |
+
nn.ReLU(inplace=True)
|
235 |
+
)
|
236 |
+
img_size = [x // 2 for x in img_size]
|
237 |
+
self.patch_embed1 = PatchEmbed(
|
238 |
+
img_size=img_size,
|
239 |
+
patch_size=patch_size // 4,
|
240 |
+
in_chans=self.init_channels,
|
241 |
+
embed_dim=embed_dim // 2,
|
242 |
+
norm_layer=embed_norm,
|
243 |
+
flatten=False,
|
244 |
+
)
|
245 |
+
img_size = [x // (patch_size // 4) for x in img_size]
|
246 |
+
|
247 |
+
if self.use_pos_embed:
|
248 |
+
if self.vit_stem:
|
249 |
+
self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim, *img_size))
|
250 |
+
else:
|
251 |
+
self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim//2, *img_size))
|
252 |
+
self.pos_drop = nn.Dropout(p=pos_drop_rate)
|
253 |
+
else:
|
254 |
+
self.pos_embed1 = None
|
255 |
+
|
256 |
+
self.stage1 = nn.Sequential(*[
|
257 |
+
Block(
|
258 |
+
dim=embed_dim//2,
|
259 |
+
num_heads=num_heads,
|
260 |
+
head_dim_ratio=0.5,
|
261 |
+
mlp_ratio=mlp_ratio,
|
262 |
+
proj_drop=proj_drop_rate,
|
263 |
+
attn_drop=attn_drop_rate,
|
264 |
+
drop_path=dpr[i],
|
265 |
+
norm_layer=norm_layer,
|
266 |
+
group=group,
|
267 |
+
attn_disabled=(attn_stage[0] == '0'),
|
268 |
+
spatial_conv=(spatial_conv[0] == '1'),
|
269 |
+
)
|
270 |
+
for i in range(self.stage_num1)
|
271 |
+
])
|
272 |
+
|
273 |
+
# stage2
|
274 |
+
if not self.vit_stem:
|
275 |
+
self.patch_embed2 = PatchEmbed(
|
276 |
+
img_size=img_size,
|
277 |
+
patch_size=patch_size // 8,
|
278 |
+
in_chans=embed_dim // 2,
|
279 |
+
embed_dim=embed_dim,
|
280 |
+
norm_layer=embed_norm,
|
281 |
+
flatten=False,
|
282 |
+
)
|
283 |
+
img_size = [x // (patch_size // 8) for x in img_size]
|
284 |
+
if self.use_pos_embed:
|
285 |
+
self.pos_embed2 = nn.Parameter(torch.zeros(1, embed_dim, *img_size))
|
286 |
+
else:
|
287 |
+
self.pos_embed2 = None
|
288 |
+
else:
|
289 |
+
self.patch_embed2 = None
|
290 |
+
self.stage2 = nn.Sequential(*[
|
291 |
+
Block(
|
292 |
+
dim=embed_dim,
|
293 |
+
num_heads=num_heads,
|
294 |
+
head_dim_ratio=1.0,
|
295 |
+
mlp_ratio=mlp_ratio,
|
296 |
+
proj_drop=proj_drop_rate,
|
297 |
+
attn_drop=attn_drop_rate,
|
298 |
+
drop_path=dpr[i],
|
299 |
+
norm_layer=norm_layer,
|
300 |
+
group=group,
|
301 |
+
attn_disabled=(attn_stage[1] == '0'),
|
302 |
+
spatial_conv=(spatial_conv[1] == '1'),
|
303 |
+
)
|
304 |
+
for i in range(self.stage_num1, self.stage_num1+self.stage_num2)
|
305 |
+
])
|
306 |
+
|
307 |
+
# stage 3
|
308 |
+
if not self.vit_stem:
|
309 |
+
self.patch_embed3 = PatchEmbed(
|
310 |
+
img_size=img_size,
|
311 |
+
patch_size=patch_size // 8,
|
312 |
+
in_chans=embed_dim,
|
313 |
+
embed_dim=embed_dim * 2,
|
314 |
+
norm_layer=embed_norm,
|
315 |
+
flatten=False,
|
316 |
+
)
|
317 |
+
img_size = [x // (patch_size // 8) for x in img_size]
|
318 |
+
if self.use_pos_embed:
|
319 |
+
self.pos_embed3 = nn.Parameter(torch.zeros(1, embed_dim*2, *img_size))
|
320 |
+
else:
|
321 |
+
self.pos_embed3 = None
|
322 |
+
else:
|
323 |
+
self.patch_embed3 = None
|
324 |
+
self.stage3 = nn.Sequential(*[
|
325 |
+
Block(
|
326 |
+
dim=embed_dim * 2,
|
327 |
+
num_heads=num_heads,
|
328 |
+
head_dim_ratio=1.0,
|
329 |
+
mlp_ratio=mlp_ratio,
|
330 |
+
proj_drop=proj_drop_rate,
|
331 |
+
attn_drop=attn_drop_rate,
|
332 |
+
drop_path=dpr[i],
|
333 |
+
norm_layer=norm_layer,
|
334 |
+
group=group,
|
335 |
+
attn_disabled=(attn_stage[2] == '0'),
|
336 |
+
spatial_conv=(spatial_conv[2] == '1'),
|
337 |
+
)
|
338 |
+
for i in range(self.stage_num1+self.stage_num2, depth)
|
339 |
+
])
|
340 |
+
|
341 |
+
self.num_features = self.head_hidden_size = embed_dim if self.vit_stem else embed_dim * 2
|
342 |
+
self.norm = norm_layer(self.num_features)
|
343 |
+
|
344 |
+
# head
|
345 |
+
global_pool, head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
346 |
+
self.global_pool = global_pool
|
347 |
+
self.head_drop = nn.Dropout(drop_rate)
|
348 |
+
self.head = head
|
349 |
+
|
350 |
+
# weights init
|
351 |
+
if self.use_pos_embed:
|
352 |
+
trunc_normal_(self.pos_embed1, std=0.02)
|
353 |
+
if not self.vit_stem:
|
354 |
+
trunc_normal_(self.pos_embed2, std=0.02)
|
355 |
+
trunc_normal_(self.pos_embed3, std=0.02)
|
356 |
+
self.apply(self._init_weights)
|
357 |
+
|
358 |
+
def _init_weights(self, m):
|
359 |
+
if isinstance(m, nn.Linear):
|
360 |
+
trunc_normal_(m.weight, std=0.02)
|
361 |
+
if m.bias is not None:
|
362 |
+
nn.init.constant_(m.bias, 0)
|
363 |
+
elif isinstance(m, nn.Conv2d):
|
364 |
+
if self.conv_init:
|
365 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
366 |
+
else:
|
367 |
+
trunc_normal_(m.weight, std=0.02)
|
368 |
+
if m.bias is not None:
|
369 |
+
nn.init.constant_(m.bias, 0.)
|
370 |
+
|
371 |
+
@torch.jit.ignore
|
372 |
+
def group_matcher(self, coarse=False):
|
373 |
+
return dict(
|
374 |
+
stem=r'^patch_embed1|pos_embed1|stem', # stem and embed
|
375 |
+
blocks=[
|
376 |
+
(r'^stage(\d+)\.(\d+)' if coarse else r'^stage(\d+)\.(\d+)', None),
|
377 |
+
(r'^(?:patch_embed|pos_embed)(\d+)', (0,)),
|
378 |
+
(r'^norm', (99999,))
|
379 |
+
]
|
380 |
+
)
|
381 |
+
|
382 |
+
@torch.jit.ignore
|
383 |
+
def set_grad_checkpointing(self, enable=True):
|
384 |
+
self.grad_checkpointing = enable
|
385 |
+
|
386 |
+
@torch.jit.ignore
|
387 |
+
def get_classifier(self) -> nn.Module:
|
388 |
+
return self.head
|
389 |
+
|
390 |
+
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
391 |
+
self.num_classes = num_classes
|
392 |
+
self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
393 |
+
|
394 |
+
def forward_features(self, x):
|
395 |
+
if self.stem is not None:
|
396 |
+
x = self.stem(x)
|
397 |
+
|
398 |
+
# stage 1
|
399 |
+
x = self.patch_embed1(x)
|
400 |
+
if self.pos_embed1 is not None:
|
401 |
+
x = self.pos_drop(x + self.pos_embed1)
|
402 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
403 |
+
x = checkpoint_seq(self.stage1, x)
|
404 |
+
else:
|
405 |
+
x = self.stage1(x)
|
406 |
+
|
407 |
+
# stage 2
|
408 |
+
if self.patch_embed2 is not None:
|
409 |
+
x = self.patch_embed2(x)
|
410 |
+
if self.pos_embed2 is not None:
|
411 |
+
x = self.pos_drop(x + self.pos_embed2)
|
412 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
413 |
+
x = checkpoint_seq(self.stage2, x)
|
414 |
+
else:
|
415 |
+
x = self.stage2(x)
|
416 |
+
|
417 |
+
# stage3
|
418 |
+
if self.patch_embed3 is not None:
|
419 |
+
x = self.patch_embed3(x)
|
420 |
+
if self.pos_embed3 is not None:
|
421 |
+
x = self.pos_drop(x + self.pos_embed3)
|
422 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
423 |
+
x = checkpoint_seq(self.stage3, x)
|
424 |
+
else:
|
425 |
+
x = self.stage3(x)
|
426 |
+
|
427 |
+
x = self.norm(x)
|
428 |
+
return x
|
429 |
+
|
430 |
+
def forward_head(self, x, pre_logits: bool = False):
|
431 |
+
x = self.global_pool(x)
|
432 |
+
x = self.head_drop(x)
|
433 |
+
return x if pre_logits else self.head(x)
|
434 |
+
|
435 |
+
def forward(self, x):
|
436 |
+
x = self.forward_features(x)
|
437 |
+
x = self.forward_head(x)
|
438 |
+
return x
|
439 |
+
|
440 |
+
|
441 |
+
def _create_visformer(variant, pretrained=False, default_cfg=None, **kwargs):
|
442 |
+
if kwargs.get('features_only', None):
|
443 |
+
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
444 |
+
model = build_model_with_cfg(Visformer, variant, pretrained, **kwargs)
|
445 |
+
return model
|
446 |
+
|
447 |
+
|
448 |
+
def _cfg(url='', **kwargs):
|
449 |
+
return {
|
450 |
+
'url': url,
|
451 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
452 |
+
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
453 |
+
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
454 |
+
'first_conv': 'stem.0', 'classifier': 'head',
|
455 |
+
**kwargs
|
456 |
+
}
|
457 |
+
|
458 |
+
|
459 |
+
default_cfgs = generate_default_cfgs({
|
460 |
+
'visformer_tiny.in1k': _cfg(hf_hub_id='timm/'),
|
461 |
+
'visformer_small.in1k': _cfg(hf_hub_id='timm/'),
|
462 |
+
})
|
463 |
+
|
464 |
+
|
465 |
+
@register_model
|
466 |
+
def visformer_tiny(pretrained=False, **kwargs) -> Visformer:
|
467 |
+
model_cfg = dict(
|
468 |
+
init_channels=16, embed_dim=192, depth=(7, 4, 4), num_heads=3, mlp_ratio=4., group=8,
|
469 |
+
attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True,
|
470 |
+
embed_norm=nn.BatchNorm2d)
|
471 |
+
model = _create_visformer('visformer_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs))
|
472 |
+
return model
|
473 |
+
|
474 |
+
|
475 |
+
@register_model
|
476 |
+
def visformer_small(pretrained=False, **kwargs) -> Visformer:
|
477 |
+
model_cfg = dict(
|
478 |
+
init_channels=32, embed_dim=384, depth=(7, 4, 4), num_heads=6, mlp_ratio=4., group=8,
|
479 |
+
attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True,
|
480 |
+
embed_norm=nn.BatchNorm2d)
|
481 |
+
model = _create_visformer('visformer_small', pretrained=pretrained, **dict(model_cfg, **kwargs))
|
482 |
+
return model
|
483 |
+
|
484 |
+
|
485 |
+
# @register_model
|
486 |
+
# def visformer_net1(pretrained=False, **kwargs):
|
487 |
+
# model = Visformer(
|
488 |
+
# init_channels=None, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111',
|
489 |
+
# spatial_conv='000', vit_stem=True, conv_init=True, **kwargs)
|
490 |
+
# model.default_cfg = _cfg()
|
491 |
+
# return model
|
492 |
+
#
|
493 |
+
#
|
494 |
+
# @register_model
|
495 |
+
# def visformer_net2(pretrained=False, **kwargs):
|
496 |
+
# model = Visformer(
|
497 |
+
# init_channels=32, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111',
|
498 |
+
# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
|
499 |
+
# model.default_cfg = _cfg()
|
500 |
+
# return model
|
501 |
+
#
|
502 |
+
#
|
503 |
+
# @register_model
|
504 |
+
# def visformer_net3(pretrained=False, **kwargs):
|
505 |
+
# model = Visformer(
|
506 |
+
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111',
|
507 |
+
# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
|
508 |
+
# model.default_cfg = _cfg()
|
509 |
+
# return model
|
510 |
+
#
|
511 |
+
#
|
512 |
+
# @register_model
|
513 |
+
# def visformer_net4(pretrained=False, **kwargs):
|
514 |
+
# model = Visformer(
|
515 |
+
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111',
|
516 |
+
# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
|
517 |
+
# model.default_cfg = _cfg()
|
518 |
+
# return model
|
519 |
+
#
|
520 |
+
#
|
521 |
+
# @register_model
|
522 |
+
# def visformer_net5(pretrained=False, **kwargs):
|
523 |
+
# model = Visformer(
|
524 |
+
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111',
|
525 |
+
# spatial_conv='111', vit_stem=False, conv_init=True, **kwargs)
|
526 |
+
# model.default_cfg = _cfg()
|
527 |
+
# return model
|
528 |
+
#
|
529 |
+
#
|
530 |
+
# @register_model
|
531 |
+
# def visformer_net6(pretrained=False, **kwargs):
|
532 |
+
# model = Visformer(
|
533 |
+
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111',
|
534 |
+
# pos_embed=False, spatial_conv='111', conv_init=True, **kwargs)
|
535 |
+
# model.default_cfg = _cfg()
|
536 |
+
# return model
|
537 |
+
#
|
538 |
+
#
|
539 |
+
# @register_model
|
540 |
+
# def visformer_net7(pretrained=False, **kwargs):
|
541 |
+
# model = Visformer(
|
542 |
+
# init_channels=32, embed_dim=384, depth=(6, 7, 7), num_heads=6, group=1, attn_stage='000',
|
543 |
+
# pos_embed=False, spatial_conv='111', conv_init=True, **kwargs)
|
544 |
+
# model.default_cfg = _cfg()
|
545 |
+
# return model
|
546 |
+
|
547 |
+
|
548 |
+
|
549 |
+
|