|
""" Swin Transformer V2 |
|
|
|
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` |
|
- https://arxiv.org/pdf/2111.09883 |
|
|
|
Code adapted from https://github.com/ChristophReich1996/Swin-Transformer-V2, original copyright/license info below |
|
|
|
This implementation is experimental and subject to change in manners that will break weight compat: |
|
* Size of the pos embed MLP are not spelled out in paper in terms of dim, fixed for all models? vary with num_heads? |
|
* currently dim is fixed, I feel it may make sense to scale with num_heads (dim per head) |
|
* The specifics of the memory saving 'sequential attention' are not detailed, Christoph Reich has an impl at |
|
GitHub link above. It needs further investigation as throughput vs mem tradeoff doesn't appear beneficial. |
|
* num_heads per stage is not detailed for Huge and Giant model variants |
|
* 'Giant' is 3B params in paper but ~2.6B here despite matching paper dim + block counts |
|
* experiments are ongoing wrt to 'main branch' norm layer use and weight init scheme |
|
|
|
Noteworthy additions over official Swin v1: |
|
* MLP relative position embedding is looking promising and adapts to different image/window sizes |
|
* This impl has been designed to allow easy change of image size with matching window size changes |
|
* Non-square image size and window size are supported |
|
|
|
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import math |
|
from typing import Tuple, Optional, List, Union, Any, Type |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import DropPath, Mlp, ClassifierHead, to_2tuple, _assert, ndgrid |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._features_fx import register_notrace_function |
|
from ._manipulate import named_apply, checkpoint |
|
from ._registry import generate_default_cfgs, register_model |
|
|
|
__all__ = ['SwinTransformerV2Cr'] |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor: |
|
"""Permutes a tensor from the shape (B, C, H, W) to (B, H, W, C). """ |
|
return x.permute(0, 2, 3, 1) |
|
|
|
|
|
def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor: |
|
"""Permutes a tensor from the shape (B, H, W, C) to (B, C, H, W). """ |
|
return x.permute(0, 3, 1, 2) |
|
|
|
|
|
def window_partition(x, window_size: Tuple[int, int]): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
|
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) |
|
return windows |
|
|
|
|
|
@register_notrace_function |
|
def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): |
|
""" |
|
Args: |
|
windows: (num_windows * B, window_size[0], window_size[1], C) |
|
window_size (Tuple[int, int]): Window size |
|
img_size (Tuple[int, int]): Image size |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
H, W = img_size |
|
C = windows.shape[-1] |
|
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) |
|
return x |
|
|
|
|
|
class WindowMultiHeadAttention(nn.Module): |
|
r"""This class implements window-based Multi-Head-Attention with log-spaced continuous position bias. |
|
|
|
Args: |
|
dim (int): Number of input features |
|
window_size (int): Window size |
|
num_heads (int): Number of attention heads |
|
drop_attn (float): Dropout rate of attention map |
|
drop_proj (float): Dropout rate after projection |
|
meta_hidden_dim (int): Number of hidden features in the two layer MLP meta network |
|
sequential_attn (bool): If true sequential self-attention is performed |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
window_size: Tuple[int, int], |
|
drop_attn: float = 0.0, |
|
drop_proj: float = 0.0, |
|
meta_hidden_dim: int = 384, |
|
sequential_attn: bool = False, |
|
) -> None: |
|
super(WindowMultiHeadAttention, self).__init__() |
|
assert dim % num_heads == 0, \ |
|
"The number of input features (in_features) are not divisible by the number of heads (num_heads)." |
|
self.in_features: int = dim |
|
self.window_size: Tuple[int, int] = to_2tuple(window_size) |
|
self.num_heads: int = num_heads |
|
self.sequential_attn: bool = sequential_attn |
|
|
|
self.qkv = nn.Linear(in_features=dim, out_features=dim * 3, bias=True) |
|
self.attn_drop = nn.Dropout(drop_attn) |
|
self.proj = nn.Linear(in_features=dim, out_features=dim, bias=True) |
|
self.proj_drop = nn.Dropout(drop_proj) |
|
|
|
self.meta_mlp = Mlp( |
|
2, |
|
hidden_features=meta_hidden_dim, |
|
out_features=num_heads, |
|
act_layer=nn.ReLU, |
|
drop=(0.125, 0.) |
|
) |
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones(num_heads))) |
|
self._make_pair_wise_relative_positions() |
|
|
|
def _make_pair_wise_relative_positions(self) -> None: |
|
"""Method initializes the pair-wise relative positions to compute the positional biases.""" |
|
device = self.logit_scale.device |
|
coordinates = torch.stack(ndgrid( |
|
torch.arange(self.window_size[0], device=device), |
|
torch.arange(self.window_size[1], device=device) |
|
), dim=0).flatten(1) |
|
relative_coordinates = coordinates[:, :, None] - coordinates[:, None, :] |
|
relative_coordinates = relative_coordinates.permute(1, 2, 0).reshape(-1, 2).float() |
|
relative_coordinates_log = torch.sign(relative_coordinates) * torch.log( |
|
1.0 + relative_coordinates.abs()) |
|
self.register_buffer("relative_coordinates_log", relative_coordinates_log, persistent=False) |
|
|
|
def set_window_size(self, window_size: Tuple[int, int]) -> None: |
|
"""Update window size & interpolate position embeddings |
|
Args: |
|
window_size (int): New window size |
|
""" |
|
window_size = to_2tuple(window_size) |
|
if window_size != self.window_size: |
|
self.window_size = window_size |
|
self._make_pair_wise_relative_positions() |
|
|
|
def _relative_positional_encodings(self) -> torch.Tensor: |
|
"""Method computes the relative positional encodings |
|
|
|
Returns: |
|
relative_position_bias (torch.Tensor): Relative positional encodings |
|
(1, number of heads, window size ** 2, window size ** 2) |
|
""" |
|
window_area = self.window_size[0] * self.window_size[1] |
|
relative_position_bias = self.meta_mlp(self.relative_coordinates_log) |
|
relative_position_bias = relative_position_bias.transpose(1, 0).reshape( |
|
self.num_heads, window_area, window_area |
|
) |
|
relative_position_bias = relative_position_bias.unsqueeze(0) |
|
return relative_position_bias |
|
|
|
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
""" Forward pass. |
|
Args: |
|
x (torch.Tensor): Input tensor of the shape (B * windows, N, C) |
|
mask (Optional[torch.Tensor]): Attention mask for the shift case |
|
|
|
Returns: |
|
Output tensor of the shape [B * windows, N, C] |
|
""" |
|
Bw, L, C = x.shape |
|
|
|
qkv = self.qkv(x).view(Bw, L, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
query, key, value = qkv.unbind(0) |
|
|
|
|
|
attn = (F.normalize(query, dim=-1) @ F.normalize(key, dim=-1).transpose(-2, -1)) |
|
logit_scale = torch.clamp(self.logit_scale.reshape(1, self.num_heads, 1, 1), max=math.log(1. / 0.01)).exp() |
|
attn = attn * logit_scale |
|
attn = attn + self._relative_positional_encodings() |
|
|
|
if mask is not None: |
|
|
|
num_win: int = mask.shape[0] |
|
attn = attn.view(Bw // num_win, num_win, self.num_heads, L, L) |
|
attn = attn + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, L, L) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ value).transpose(1, 2).reshape(Bw, L, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerV2CrBlock(nn.Module): |
|
r"""This class implements the Swin transformer block. |
|
|
|
Args: |
|
dim (int): Number of input channels |
|
num_heads (int): Number of attention heads to be utilized |
|
feat_size (Tuple[int, int]): Input resolution |
|
window_size (Tuple[int, int]): Window size to be utilized |
|
shift_size (int): Shifting size to be used |
|
mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels |
|
proj_drop (float): Dropout in input mapping |
|
drop_attn (float): Dropout rate of attention map |
|
drop_path (float): Dropout in main path |
|
extra_norm (bool): Insert extra norm on 'main' branch if True |
|
sequential_attn (bool): If true sequential self-attention is performed |
|
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
feat_size: Tuple[int, int], |
|
window_size: Tuple[int, int], |
|
shift_size: Tuple[int, int] = (0, 0), |
|
always_partition: bool = False, |
|
dynamic_mask: bool = False, |
|
mlp_ratio: float = 4.0, |
|
init_values: Optional[float] = 0, |
|
proj_drop: float = 0.0, |
|
drop_attn: float = 0.0, |
|
drop_path: float = 0.0, |
|
extra_norm: bool = False, |
|
sequential_attn: bool = False, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
): |
|
super(SwinTransformerV2CrBlock, self).__init__() |
|
self.dim: int = dim |
|
self.feat_size: Tuple[int, int] = feat_size |
|
self.target_shift_size: Tuple[int, int] = to_2tuple(shift_size) |
|
self.always_partition = always_partition |
|
self.dynamic_mask = dynamic_mask |
|
self.window_size, self.shift_size = self._calc_window_shift(window_size) |
|
self.window_area = self.window_size[0] * self.window_size[1] |
|
self.init_values: Optional[float] = init_values |
|
|
|
|
|
self.attn = WindowMultiHeadAttention( |
|
dim=dim, |
|
num_heads=num_heads, |
|
window_size=self.window_size, |
|
drop_attn=drop_attn, |
|
drop_proj=proj_drop, |
|
sequential_attn=sequential_attn, |
|
) |
|
self.norm1 = norm_layer(dim) |
|
self.drop_path1 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
|
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
drop=proj_drop, |
|
out_features=dim, |
|
) |
|
self.norm2 = norm_layer(dim) |
|
self.drop_path2 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
|
|
|
|
self.norm3 = norm_layer(dim) if extra_norm else nn.Identity() |
|
|
|
self.register_buffer( |
|
"attn_mask", |
|
None if self.dynamic_mask else self.get_attn_mask(), |
|
persistent=False, |
|
) |
|
self.init_weights() |
|
|
|
def _calc_window_shift( |
|
self, |
|
target_window_size: Tuple[int, int], |
|
) -> Tuple[Tuple[int, int], Tuple[int, int]]: |
|
target_window_size = to_2tuple(target_window_size) |
|
target_shift_size = self.target_shift_size |
|
if any(target_shift_size): |
|
|
|
target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) |
|
|
|
if self.always_partition: |
|
return target_window_size, target_shift_size |
|
|
|
window_size = [f if f <= w else w for f, w in zip(self.feat_size, target_window_size)] |
|
shift_size = [0 if f <= w else s for f, w, s in zip(self.feat_size, window_size, target_shift_size)] |
|
return tuple(window_size), tuple(shift_size) |
|
|
|
def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]: |
|
"""Method generates the attention mask used in shift case.""" |
|
|
|
if any(self.shift_size): |
|
|
|
if x is None: |
|
img_mask = torch.zeros((1, *self.feat_size, 1)) |
|
else: |
|
img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) |
|
cnt = 0 |
|
for h in ( |
|
(0, -self.window_size[0]), |
|
(-self.window_size[0], -self.shift_size[0]), |
|
(-self.shift_size[0], None), |
|
): |
|
for w in ( |
|
(0, -self.window_size[1]), |
|
(-self.window_size[1], -self.shift_size[1]), |
|
(-self.shift_size[1], None), |
|
): |
|
img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt |
|
cnt += 1 |
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_area) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
else: |
|
attn_mask = None |
|
return attn_mask |
|
|
|
def init_weights(self): |
|
|
|
if self.init_values is not None: |
|
nn.init.constant_(self.norm1.weight, self.init_values) |
|
nn.init.constant_(self.norm2.weight, self.init_values) |
|
|
|
def set_input_size(self, feat_size: Tuple[int, int], window_size: Tuple[int, int]) -> None: |
|
"""Method updates the image resolution to be processed and window size and so the pair-wise relative positions. |
|
|
|
Args: |
|
feat_size (Tuple[int, int]): New input resolution |
|
window_size (int): New window size |
|
""" |
|
|
|
self.feat_size: Tuple[int, int] = feat_size |
|
self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size)) |
|
self.window_area = self.window_size[0] * self.window_size[1] |
|
self.attn.set_window_size(self.window_size) |
|
self.register_buffer( |
|
"attn_mask", |
|
None if self.dynamic_mask else self.get_attn_mask(), |
|
persistent=False, |
|
) |
|
|
|
def _shifted_window_attn(self, x): |
|
B, H, W, C = x.shape |
|
|
|
|
|
sh, sw = self.shift_size |
|
do_shift: bool = any(self.shift_size) |
|
if do_shift: |
|
|
|
|
|
|
|
x = torch.roll(x, shifts=(-sh, -sw), dims=(1, 2)) |
|
|
|
pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] |
|
pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] |
|
x = torch.nn.functional.pad(x, (0, 0, 0, pad_w, 0, pad_h)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
x_windows = window_partition(x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C) |
|
|
|
|
|
if getattr(self, 'dynamic_mask', False): |
|
attn_mask = self.get_attn_mask(x) |
|
else: |
|
attn_mask = self.attn_mask |
|
attn_windows = self.attn(x_windows, mask=attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) |
|
x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
|
|
if do_shift: |
|
|
|
|
|
|
|
x = torch.roll(x, shifts=(sh, sw), dims=(1, 2)) |
|
|
|
return x |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Forward pass. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of the shape [B, C, H, W] |
|
|
|
Returns: |
|
output (torch.Tensor): Output tensor of the shape [B, C, H, W] |
|
""" |
|
|
|
x = x + self.drop_path1(self.norm1(self._shifted_window_attn(x))) |
|
|
|
B, H, W, C = x.shape |
|
x = x.reshape(B, -1, C) |
|
x = x + self.drop_path2(self.norm2(self.mlp(x))) |
|
x = self.norm3(x) |
|
x = x.reshape(B, H, W, C) |
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" This class implements the patch merging as a strided convolution with a normalization before. |
|
Args: |
|
dim (int): Number of input channels |
|
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. |
|
""" |
|
|
|
def __init__(self, dim: int, norm_layer: Type[nn.Module] = nn.LayerNorm) -> None: |
|
super(PatchMerging, self).__init__() |
|
self.norm = norm_layer(4 * dim) |
|
self.reduction = nn.Linear(in_features=4 * dim, out_features=2 * dim, bias=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" Forward pass. |
|
Args: |
|
x (torch.Tensor): Input tensor of the shape [B, C, H, W] |
|
Returns: |
|
output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2] |
|
""" |
|
B, H, W, C = x.shape |
|
|
|
pad_values = (0, 0, 0, W % 2, 0, H % 2) |
|
x = nn.functional.pad(x, pad_values) |
|
_, H, W, _ = x.shape |
|
|
|
x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) |
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" 2D Image to Patch Embedding """ |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
strict_img_size=True, |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.strict_img_size = strict_img_size |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def set_input_size(self, img_size: Tuple[int, int]): |
|
img_size = to_2tuple(img_size) |
|
if img_size != self.img_size: |
|
self.img_size = img_size |
|
self.grid_size = (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
if self.strict_img_size: |
|
_assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") |
|
_assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") |
|
x = self.proj(x) |
|
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
return x |
|
|
|
|
|
class SwinTransformerV2CrStage(nn.Module): |
|
r"""This class implements a stage of the Swin transformer including multiple layers. |
|
|
|
Args: |
|
embed_dim (int): Number of input channels |
|
depth (int): Depth of the stage (number of layers) |
|
downscale (bool): If true input is downsampled (see Fig. 3 or V1 paper) |
|
feat_size (Tuple[int, int]): input feature map size (H, W) |
|
num_heads (int): Number of attention heads to be utilized |
|
window_size (int): Window size to be utilized |
|
mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels |
|
proj_drop (float): Dropout in input mapping |
|
drop_attn (float): Dropout rate of attention map |
|
drop_path (float): Dropout in main path |
|
norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. Default: nn.LayerNorm |
|
extra_norm_period (int): Insert extra norm layer on main branch every N (period) blocks |
|
extra_norm_stage (bool): End each stage with an extra norm layer in main branch |
|
sequential_attn (bool): If true sequential self-attention is performed |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
depth: int, |
|
downscale: bool, |
|
num_heads: int, |
|
feat_size: Tuple[int, int], |
|
window_size: Tuple[int, int], |
|
always_partition: bool = False, |
|
dynamic_mask: bool = False, |
|
mlp_ratio: float = 4.0, |
|
init_values: Optional[float] = 0.0, |
|
proj_drop: float = 0.0, |
|
drop_attn: float = 0.0, |
|
drop_path: Union[List[float], float] = 0.0, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
extra_norm_period: int = 0, |
|
extra_norm_stage: bool = False, |
|
sequential_attn: bool = False, |
|
): |
|
super(SwinTransformerV2CrStage, self).__init__() |
|
self.downscale: bool = downscale |
|
self.grad_checkpointing: bool = False |
|
self.feat_size: Tuple[int, int] = (feat_size[0] // 2, feat_size[1] // 2) if downscale else feat_size |
|
|
|
if downscale: |
|
self.downsample = PatchMerging(embed_dim, norm_layer=norm_layer) |
|
embed_dim = embed_dim * 2 |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
def _extra_norm(index): |
|
i = index + 1 |
|
if extra_norm_period and i % extra_norm_period == 0: |
|
return True |
|
return i == depth if extra_norm_stage else False |
|
|
|
self.blocks = nn.Sequential(*[ |
|
SwinTransformerV2CrBlock( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
feat_size=self.feat_size, |
|
window_size=window_size, |
|
always_partition=always_partition, |
|
dynamic_mask=dynamic_mask, |
|
shift_size=tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size]), |
|
mlp_ratio=mlp_ratio, |
|
init_values=init_values, |
|
proj_drop=proj_drop, |
|
drop_attn=drop_attn, |
|
drop_path=drop_path[index] if isinstance(drop_path, list) else drop_path, |
|
extra_norm=_extra_norm(index), |
|
sequential_attn=sequential_attn, |
|
norm_layer=norm_layer, |
|
) |
|
for index in range(depth)] |
|
) |
|
|
|
def set_input_size( |
|
self, |
|
feat_size: Tuple[int, int], |
|
window_size: int, |
|
always_partition: Optional[bool] = None, |
|
): |
|
""" Updates the resolution to utilize and the window size and so the pair-wise relative positions. |
|
|
|
Args: |
|
window_size (int): New window size |
|
feat_size (Tuple[int, int]): New input resolution |
|
""" |
|
self.feat_size = (feat_size[0] // 2, feat_size[1] // 2) if self.downscale else feat_size |
|
for block in self.blocks: |
|
block.set_input_size( |
|
feat_size=self.feat_size, |
|
window_size=window_size, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Forward pass. |
|
Args: |
|
x (torch.Tensor): Input tensor of the shape [B, C, H, W] or [B, L, C] |
|
Returns: |
|
output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2] |
|
""" |
|
x = bchw_to_bhwc(x) |
|
x = self.downsample(x) |
|
for block in self.blocks: |
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint.checkpoint(block, x) |
|
else: |
|
x = block(x) |
|
x = bhwc_to_bchw(x) |
|
return x |
|
|
|
|
|
class SwinTransformerV2Cr(nn.Module): |
|
r""" Swin Transformer V2 |
|
A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` - |
|
https://arxiv.org/pdf/2111.09883 |
|
|
|
Args: |
|
img_size: Input resolution. |
|
window_size: Window size. If None, grid_size // window_div |
|
window_ratio: Window size to patch grid ratio. |
|
patch_size: Patch size. |
|
in_chans: Number of input channels. |
|
depths: Depth of the stage (number of layers). |
|
num_heads: Number of attention heads to be utilized. |
|
embed_dim: Patch embedding dimension. |
|
num_classes: Number of output classes. |
|
mlp_ratio: Ratio of the hidden dimension in the FFN to the input channels. |
|
drop_rate: Dropout rate. |
|
proj_drop_rate: Projection dropout rate. |
|
attn_drop_rate: Dropout rate of attention map. |
|
drop_path_rate: Stochastic depth rate. |
|
norm_layer: Type of normalization layer to be utilized. |
|
extra_norm_period: Insert extra norm layer on main branch every N (period) blocks in stage |
|
extra_norm_stage: End each stage with an extra norm layer in main branch |
|
sequential_attn: If true sequential self-attention is performed. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: Tuple[int, int] = (224, 224), |
|
patch_size: int = 4, |
|
window_size: Optional[int] = None, |
|
window_ratio: int = 8, |
|
always_partition: bool = False, |
|
strict_img_size: bool = True, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
embed_dim: int = 96, |
|
depths: Tuple[int, ...] = (2, 2, 6, 2), |
|
num_heads: Tuple[int, ...] = (3, 6, 12, 24), |
|
mlp_ratio: float = 4.0, |
|
init_values: Optional[float] = 0., |
|
drop_rate: float = 0.0, |
|
proj_drop_rate: float = 0.0, |
|
attn_drop_rate: float = 0.0, |
|
drop_path_rate: float = 0.0, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
extra_norm_period: int = 0, |
|
extra_norm_stage: bool = False, |
|
sequential_attn: bool = False, |
|
global_pool: str = 'avg', |
|
weight_init='skip', |
|
**kwargs: Any |
|
) -> None: |
|
super(SwinTransformerV2Cr, self).__init__() |
|
img_size = to_2tuple(img_size) |
|
self.num_classes: int = num_classes |
|
self.patch_size: int = patch_size |
|
self.img_size: Tuple[int, int] = img_size |
|
self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) |
|
self.feature_info = [] |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer, |
|
strict_img_size=strict_img_size, |
|
) |
|
grid_size = self.patch_embed.grid_size |
|
if window_size is None: |
|
self.window_size = tuple([s // window_ratio for s in grid_size]) |
|
else: |
|
self.window_size = to_2tuple(window_size) |
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
stages = [] |
|
in_dim = embed_dim |
|
in_scale = 1 |
|
for stage_idx, (depth, num_heads) in enumerate(zip(depths, num_heads)): |
|
stages += [SwinTransformerV2CrStage( |
|
embed_dim=in_dim, |
|
depth=depth, |
|
downscale=stage_idx != 0, |
|
feat_size=(grid_size[0] // in_scale, grid_size[1] // in_scale), |
|
num_heads=num_heads, |
|
window_size=self.window_size, |
|
always_partition=always_partition, |
|
dynamic_mask=not strict_img_size, |
|
mlp_ratio=mlp_ratio, |
|
init_values=init_values, |
|
proj_drop=proj_drop_rate, |
|
drop_attn=attn_drop_rate, |
|
drop_path=dpr[stage_idx], |
|
extra_norm_period=extra_norm_period, |
|
extra_norm_stage=extra_norm_stage or (stage_idx + 1) == len(depths), |
|
sequential_attn=sequential_attn, |
|
norm_layer=norm_layer, |
|
)] |
|
if stage_idx != 0: |
|
in_dim *= 2 |
|
in_scale *= 2 |
|
self.feature_info += [dict(num_chs=in_dim, reduction=4 * in_scale, module=f'stages.{stage_idx}')] |
|
self.stages = nn.Sequential(*stages) |
|
|
|
self.head = ClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
) |
|
|
|
|
|
|
|
if weight_init != 'skip': |
|
named_apply(init_weights, self) |
|
|
|
def set_input_size( |
|
self, |
|
img_size: Optional[Tuple[int, int]] = None, |
|
window_size: Optional[Tuple[int, int]] = None, |
|
window_ratio: int = 8, |
|
always_partition: Optional[bool] = None, |
|
) -> None: |
|
"""Updates the image resolution, window size and so the pair-wise relative positions. |
|
|
|
Args: |
|
img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used |
|
window_size (Optional[int]): New window size, if None based on new_img_size // window_div |
|
window_ratio (int): divisor for calculating window size from patch grid size |
|
always_partition: always partition / shift windows even if feat size is < window |
|
""" |
|
if img_size is not None: |
|
self.patch_embed.set_input_size(img_size=img_size) |
|
grid_size = self.patch_embed.grid_size |
|
|
|
if window_size is None and window_ratio is not None: |
|
window_size = tuple([s // window_ratio for s in grid_size]) |
|
|
|
for index, stage in enumerate(self.stages): |
|
stage_scale = 2 ** max(index - 1, 0) |
|
stage.set_input_size( |
|
feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale), |
|
window_size=window_size, |
|
always_partition=always_partition, |
|
) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^patch_embed', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+).downsample', (0,)), |
|
(r'^stages\.(\d+)\.\w+\.(\d+)', None), |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore() |
|
def get_classifier(self) -> nn.Module: |
|
"""Method returns the classification head of the model. |
|
Returns: |
|
head (nn.Module): Current classification head |
|
""" |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None) -> None: |
|
"""Method results the classification head |
|
|
|
Args: |
|
num_classes (int): Number of classes to be predicted |
|
global_pool (str): Unused |
|
""" |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.stages), indices) |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
|
if torch.jit.is_scripting() or not stop_early: |
|
stages = self.stages |
|
else: |
|
stages = self.stages[:max_index + 1] |
|
for i, stage in enumerate(stages): |
|
x = stage(x) |
|
if i in take_indices: |
|
intermediates.append(x) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.stages), indices) |
|
self.stages = self.stages[:max_index + 1] |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_embed(x) |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=True) if pre_logits else self.head(x) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def init_weights(module: nn.Module, name: str = ''): |
|
|
|
if isinstance(module, nn.Linear): |
|
if 'qkv' in name: |
|
|
|
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1])) |
|
nn.init.uniform_(module.weight, -val, val) |
|
elif 'head' in name: |
|
nn.init.zeros_(module.weight) |
|
else: |
|
nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif hasattr(module, 'init_weights'): |
|
module.init_weights() |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
state_dict = state_dict.get('model', state_dict) |
|
state_dict = state_dict.get('state_dict', state_dict) |
|
if 'head.fc.weight' in state_dict: |
|
return state_dict |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'tau' in k: |
|
|
|
v = torch.log(1 / v) |
|
k = k.replace('tau', 'logit_scale') |
|
k = k.replace('head.', 'head.fc.') |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_swin_transformer_v2_cr(variant, pretrained=False, **kwargs): |
|
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1)))) |
|
out_indices = kwargs.pop('out_indices', default_out_indices) |
|
|
|
model = build_model_with_cfg( |
|
SwinTransformerV2Cr, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, |
|
'input_size': (3, 224, 224), |
|
'pool_size': (7, 7), |
|
'crop_pct': 0.9, |
|
'interpolation': 'bicubic', |
|
'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, |
|
'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', |
|
'classifier': 'head.fc', |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'swinv2_cr_tiny_384.untrained': _cfg( |
|
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
'swinv2_cr_tiny_224.untrained': _cfg( |
|
url="", input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_tiny_ns_224.sw_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_tiny_ns_224-ba8166c6.pth", |
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_small_384.untrained': _cfg( |
|
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
'swinv2_cr_small_224.sw_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_224-0813c165.pth", |
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_small_ns_224.sw_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_ns_224_iv-2ce90f8e.pth", |
|
input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_small_ns_256.untrained': _cfg( |
|
url="", input_size=(3, 256, 256), crop_pct=1.0, pool_size=(8, 8)), |
|
'swinv2_cr_base_384.untrained': _cfg( |
|
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
'swinv2_cr_base_224.untrained': _cfg( |
|
url="", input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_base_ns_224.untrained': _cfg( |
|
url="", input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_large_384.untrained': _cfg( |
|
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
'swinv2_cr_large_224.untrained': _cfg( |
|
url="", input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_huge_384.untrained': _cfg( |
|
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
'swinv2_cr_huge_224.untrained': _cfg( |
|
url="", input_size=(3, 224, 224), crop_pct=0.9), |
|
'swinv2_cr_giant_384.untrained': _cfg( |
|
url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
'swinv2_cr_giant_224.untrained': _cfg( |
|
url="", input_size=(3, 224, 224), crop_pct=0.9), |
|
}) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_tiny_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-T V2 CR @ 384x384, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 6, 2), |
|
num_heads=(3, 6, 12, 24), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_tiny_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-T V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 6, 2), |
|
num_heads=(3, 6, 12, 24), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_tiny_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-T V2 CR @ 224x224, trained ImageNet-1k w/ extra stage norms. |
|
** Experimental, may make default if results are improved. ** |
|
""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 6, 2), |
|
num_heads=(3, 6, 12, 24), |
|
extra_norm_stage=True, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_tiny_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_small_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-S V2 CR @ 384x384, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(3, 6, 12, 24), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_small_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_small_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-S V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(3, 6, 12, 24), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_small_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-S V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(3, 6, 12, 24), |
|
extra_norm_stage=True, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_small_ns_256(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-S V2 CR @ 256x256, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=96, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(3, 6, 12, 24), |
|
extra_norm_stage=True, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_base_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-B V2 CR @ 384x384, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=128, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(4, 8, 16, 32), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_base_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_base_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-B V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=128, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(4, 8, 16, 32), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_base_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-B V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=128, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(4, 8, 16, 32), |
|
extra_norm_stage=True, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_base_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_large_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-L V2 CR @ 384x384, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=192, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(6, 12, 24, 48), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_large_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_large_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-L V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=192, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(6, 12, 24, 48), |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_huge_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-H V2 CR @ 384x384, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=352, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(11, 22, 44, 88), |
|
extra_norm_period=6, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_huge_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_huge_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-H V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=352, |
|
depths=(2, 2, 18, 2), |
|
num_heads=(8, 16, 32, 64), |
|
extra_norm_period=6, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_giant_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-G V2 CR @ 384x384, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=512, |
|
depths=(2, 2, 42, 2), |
|
num_heads=(16, 32, 64, 128), |
|
extra_norm_period=6, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_giant_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swinv2_cr_giant_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: |
|
"""Swin-G V2 CR @ 224x224, trained ImageNet-1k""" |
|
model_args = dict( |
|
embed_dim=512, |
|
depths=(2, 2, 42, 2), |
|
num_heads=(16, 32, 64, 128), |
|
extra_norm_period=6, |
|
) |
|
return _create_swin_transformer_v2_cr('swinv2_cr_giant_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|