|
""" Swin Transformer |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` |
|
- https://arxiv.org/pdf/2103.14030 |
|
|
|
Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below |
|
|
|
S3 (AutoFormerV2, https://arxiv.org/abs/2111.14725) Swin weights from |
|
- https://github.com/microsoft/Cream/tree/main/AutoFormerV2 |
|
|
|
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import PatchEmbed, Mlp, DropPath, ClassifierHead, to_2tuple, to_ntuple, trunc_normal_, \ |
|
_assert, use_fused_attn, resize_rel_pos_bias_table, resample_patch_embed, ndgrid |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._features_fx import register_notrace_function |
|
from ._manipulate import checkpoint_seq, named_apply |
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
|
from .vision_transformer import get_init_weights_vit |
|
|
|
__all__ = ['SwinTransformer'] |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
_int_or_tuple_2_t = Union[int, Tuple[int, int]] |
|
|
|
|
|
def window_partition( |
|
x: torch.Tensor, |
|
window_size: Tuple[int, int], |
|
) -> torch.Tensor: |
|
""" |
|
Partition into non-overlapping windows with padding if needed. |
|
Args: |
|
x (tensor): input tokens with [B, H, W, C]. |
|
window_size (int): window size. |
|
|
|
Returns: |
|
windows: windows after partition with [B * num_windows, window_size, window_size, C]. |
|
(Hp, Wp): padded height and width before partition |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) |
|
return windows |
|
|
|
|
|
@register_notrace_function |
|
def window_reverse(windows, window_size: Tuple[int, int], H: int, W: int): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
C = windows.shape[-1] |
|
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) |
|
return x |
|
|
|
|
|
def get_relative_position_index(win_h: int, win_w: int): |
|
|
|
coords = torch.stack(ndgrid(torch.arange(win_h), torch.arange(win_w))) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += win_h - 1 |
|
relative_coords[:, :, 1] += win_w - 1 |
|
relative_coords[:, :, 0] *= 2 * win_w - 1 |
|
return relative_coords.sum(-1) |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports shifted and non-shifted windows. |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
head_dim: Optional[int] = None, |
|
window_size: _int_or_tuple_2_t = 7, |
|
qkv_bias: bool = True, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0., |
|
): |
|
""" |
|
Args: |
|
dim: Number of input channels. |
|
num_heads: Number of attention heads. |
|
head_dim: Number of channels per head (dim // num_heads if not set) |
|
window_size: The height and width of the window. |
|
qkv_bias: If True, add a learnable bias to query, key, value. |
|
attn_drop: Dropout ratio of attention weight. |
|
proj_drop: Dropout ratio of output. |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = to_2tuple(window_size) |
|
win_h, win_w = self.window_size |
|
self.window_area = win_h * win_w |
|
self.num_heads = num_heads |
|
head_dim = head_dim or dim // num_heads |
|
attn_dim = head_dim * num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn(experimental=True) |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * win_h - 1) * (2 * win_w - 1), num_heads)) |
|
|
|
|
|
self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False) |
|
|
|
self.qkv = nn.Linear(dim, attn_dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(attn_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def set_window_size(self, window_size: Tuple[int, int]) -> None: |
|
"""Update window size & interpolate position embeddings |
|
Args: |
|
window_size (int): New window size |
|
""" |
|
window_size = to_2tuple(window_size) |
|
if window_size == self.window_size: |
|
return |
|
self.window_size = window_size |
|
win_h, win_w = self.window_size |
|
self.window_area = win_h * win_w |
|
with torch.no_grad(): |
|
new_bias_shape = (2 * win_h - 1) * (2 * win_w - 1), self.num_heads |
|
self.relative_position_bias_table = nn.Parameter( |
|
resize_rel_pos_bias_table( |
|
self.relative_position_bias_table, |
|
new_window_size=self.window_size, |
|
new_bias_shape=new_bias_shape, |
|
)) |
|
self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False) |
|
|
|
def _get_rel_pos_bias(self) -> torch.Tensor: |
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1)].view(self.window_area, self.window_area, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
return relative_position_bias.unsqueeze(0) |
|
|
|
def forward(self, x, mask: Optional[torch.Tensor] = None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.fused_attn: |
|
attn_mask = self._get_rel_pos_bias() |
|
if mask is not None: |
|
num_win = mask.shape[0] |
|
mask = mask.view(1, num_win, 1, N, N).expand(B_ // num_win, -1, self.num_heads, -1, -1) |
|
attn_mask = attn_mask + mask.reshape(-1, self.num_heads, N, N) |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=attn_mask, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn + self._get_rel_pos_bias() |
|
if mask is not None: |
|
num_win = mask.shape[0] |
|
attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B_, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
""" Swin Transformer Block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
input_resolution: _int_or_tuple_2_t, |
|
num_heads: int = 4, |
|
head_dim: Optional[int] = None, |
|
window_size: _int_or_tuple_2_t = 7, |
|
shift_size: int = 0, |
|
always_partition: bool = False, |
|
dynamic_mask: bool = False, |
|
mlp_ratio: float = 4., |
|
qkv_bias: bool = True, |
|
proj_drop: float = 0., |
|
attn_drop: float = 0., |
|
drop_path: float = 0., |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = nn.LayerNorm, |
|
): |
|
""" |
|
Args: |
|
dim: Number of input channels. |
|
input_resolution: Input resolution. |
|
window_size: Window size. |
|
num_heads: Number of attention heads. |
|
head_dim: Enforce the number of channels per head |
|
shift_size: Shift size for SW-MSA. |
|
always_partition: Always partition into full windows and shift |
|
mlp_ratio: Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias: If True, add a learnable bias to query, key, value. |
|
proj_drop: Dropout rate. |
|
attn_drop: Attention dropout rate. |
|
drop_path: Stochastic depth rate. |
|
act_layer: Activation layer. |
|
norm_layer: Normalization layer. |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.target_shift_size = to_2tuple(shift_size) |
|
self.always_partition = always_partition |
|
self.dynamic_mask = dynamic_mask |
|
self.window_size, self.shift_size = self._calc_window_shift(window_size, shift_size) |
|
self.window_area = self.window_size[0] * self.window_size[1] |
|
self.mlp_ratio = mlp_ratio |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, |
|
num_heads=num_heads, |
|
head_dim=head_dim, |
|
window_size=self.window_size, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.register_buffer( |
|
"attn_mask", |
|
None if self.dynamic_mask else self.get_attn_mask(), |
|
persistent=False, |
|
) |
|
|
|
def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]: |
|
if any(self.shift_size): |
|
|
|
if x is not None: |
|
H, W = x.shape[1], x.shape[2] |
|
device = x.device |
|
dtype = x.dtype |
|
else: |
|
H, W = self.input_resolution |
|
device = None |
|
dtype = None |
|
H = math.ceil(H / self.window_size[0]) * self.window_size[0] |
|
W = math.ceil(W / self.window_size[1]) * self.window_size[1] |
|
img_mask = torch.zeros((1, H, W, 1), dtype=dtype, device=device) |
|
cnt = 0 |
|
for h in ( |
|
(0, -self.window_size[0]), |
|
(-self.window_size[0], -self.shift_size[0]), |
|
(-self.shift_size[0], None), |
|
): |
|
for w in ( |
|
(0, -self.window_size[1]), |
|
(-self.window_size[1], -self.shift_size[1]), |
|
(-self.shift_size[1], None), |
|
): |
|
img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt |
|
cnt += 1 |
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_area) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
else: |
|
attn_mask = None |
|
return attn_mask |
|
|
|
def _calc_window_shift( |
|
self, |
|
target_window_size: Union[int, Tuple[int, int]], |
|
target_shift_size: Optional[Union[int, Tuple[int, int]]] = None, |
|
) -> Tuple[Tuple[int, int], Tuple[int, int]]: |
|
target_window_size = to_2tuple(target_window_size) |
|
if target_shift_size is None: |
|
|
|
target_shift_size = self.target_shift_size |
|
if any(target_shift_size): |
|
target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) |
|
else: |
|
target_shift_size = to_2tuple(target_shift_size) |
|
|
|
if self.always_partition: |
|
return target_window_size, target_shift_size |
|
|
|
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] |
|
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] |
|
return tuple(window_size), tuple(shift_size) |
|
|
|
def set_input_size( |
|
self, |
|
feat_size: Tuple[int, int], |
|
window_size: Tuple[int, int], |
|
always_partition: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
feat_size: New input resolution |
|
window_size: New window size |
|
always_partition: Change always_partition attribute if not None |
|
""" |
|
self.input_resolution = feat_size |
|
if always_partition is not None: |
|
self.always_partition = always_partition |
|
self.window_size, self.shift_size = self._calc_window_shift(window_size) |
|
self.window_area = self.window_size[0] * self.window_size[1] |
|
self.attn.set_window_size(self.window_size) |
|
self.register_buffer( |
|
"attn_mask", |
|
None if self.dynamic_mask else self.get_attn_mask(), |
|
persistent=False, |
|
) |
|
|
|
def _attn(self, x): |
|
B, H, W, C = x.shape |
|
|
|
|
|
has_shift = any(self.shift_size) |
|
if has_shift: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) |
|
else: |
|
shifted_x = x |
|
|
|
|
|
pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] |
|
pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] |
|
shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h)) |
|
_, Hp, Wp, _ = shifted_x.shape |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_area, C) |
|
|
|
|
|
if getattr(self, 'dynamic_mask', False): |
|
attn_mask = self.get_attn_mask(shifted_x) |
|
else: |
|
attn_mask = self.attn_mask |
|
attn_windows = self.attn(x_windows, mask=attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) |
|
shifted_x = shifted_x[:, :H, :W, :].contiguous() |
|
|
|
|
|
if has_shift: |
|
x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
return x |
|
|
|
def forward(self, x): |
|
B, H, W, C = x.shape |
|
x = x + self.drop_path1(self._attn(self.norm1(x))) |
|
x = x.reshape(B, -1, C) |
|
x = x + self.drop_path2(self.mlp(self.norm2(x))) |
|
x = x.reshape(B, H, W, C) |
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
out_dim: Optional[int] = None, |
|
norm_layer: Callable = nn.LayerNorm, |
|
): |
|
""" |
|
Args: |
|
dim: Number of input channels. |
|
out_dim: Number of output channels (or 2 * dim if None) |
|
norm_layer: Normalization layer. |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.out_dim = out_dim or 2 * dim |
|
self.norm = norm_layer(4 * dim) |
|
self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) |
|
|
|
def forward(self, x): |
|
B, H, W, C = x.shape |
|
|
|
pad_values = (0, 0, 0, W % 2, 0, H % 2) |
|
x = nn.functional.pad(x, pad_values) |
|
_, H, W, _ = x.shape |
|
|
|
x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) |
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
return x |
|
|
|
|
|
class SwinTransformerStage(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
out_dim: int, |
|
input_resolution: Tuple[int, int], |
|
depth: int, |
|
downsample: bool = True, |
|
num_heads: int = 4, |
|
head_dim: Optional[int] = None, |
|
window_size: _int_or_tuple_2_t = 7, |
|
always_partition: bool = False, |
|
dynamic_mask: bool = False, |
|
mlp_ratio: float = 4., |
|
qkv_bias: bool = True, |
|
proj_drop: float = 0., |
|
attn_drop: float = 0., |
|
drop_path: Union[List[float], float] = 0., |
|
norm_layer: Callable = nn.LayerNorm, |
|
): |
|
""" |
|
Args: |
|
dim: Number of input channels. |
|
out_dim: Number of output channels. |
|
input_resolution: Input resolution. |
|
depth: Number of blocks. |
|
downsample: Downsample layer at the end of the layer. |
|
num_heads: Number of attention heads. |
|
head_dim: Channels per head (dim // num_heads if not set) |
|
window_size: Local window size. |
|
mlp_ratio: Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias: If True, add a learnable bias to query, key, value. |
|
proj_drop: Projection dropout rate. |
|
attn_drop: Attention dropout rate. |
|
drop_path: Stochastic depth rate. |
|
norm_layer: Normalization layer. |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution |
|
self.depth = depth |
|
self.grad_checkpointing = False |
|
window_size = to_2tuple(window_size) |
|
shift_size = tuple([w // 2 for w in window_size]) |
|
|
|
|
|
if downsample: |
|
self.downsample = PatchMerging( |
|
dim=dim, |
|
out_dim=out_dim, |
|
norm_layer=norm_layer, |
|
) |
|
else: |
|
assert dim == out_dim |
|
self.downsample = nn.Identity() |
|
|
|
|
|
self.blocks = nn.Sequential(*[ |
|
SwinTransformerBlock( |
|
dim=out_dim, |
|
input_resolution=self.output_resolution, |
|
num_heads=num_heads, |
|
head_dim=head_dim, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else shift_size, |
|
always_partition=always_partition, |
|
dynamic_mask=dynamic_mask, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(depth)]) |
|
|
|
def set_input_size( |
|
self, |
|
feat_size: Tuple[int, int], |
|
window_size: int, |
|
always_partition: Optional[bool] = None, |
|
): |
|
""" Updates the resolution, window size and so the pair-wise relative positions. |
|
|
|
Args: |
|
feat_size: New input (feature) resolution |
|
window_size: New window size |
|
always_partition: Always partition / shift the window |
|
""" |
|
self.input_resolution = feat_size |
|
if isinstance(self.downsample, nn.Identity): |
|
self.output_resolution = feat_size |
|
else: |
|
self.output_resolution = tuple(i // 2 for i in feat_size) |
|
for block in self.blocks: |
|
block.set_input_size( |
|
feat_size=self.output_resolution, |
|
window_size=window_size, |
|
always_partition=always_partition, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
""" Swin Transformer |
|
|
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: _int_or_tuple_2_t = 224, |
|
patch_size: int = 4, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
embed_dim: int = 96, |
|
depths: Tuple[int, ...] = (2, 2, 6, 2), |
|
num_heads: Tuple[int, ...] = (3, 6, 12, 24), |
|
head_dim: Optional[int] = None, |
|
window_size: _int_or_tuple_2_t = 7, |
|
always_partition: bool = False, |
|
strict_img_size: bool = True, |
|
mlp_ratio: float = 4., |
|
qkv_bias: bool = True, |
|
drop_rate: float = 0., |
|
proj_drop_rate: float = 0., |
|
attn_drop_rate: float = 0., |
|
drop_path_rate: float = 0.1, |
|
embed_layer: Callable = PatchEmbed, |
|
norm_layer: Union[str, Callable] = nn.LayerNorm, |
|
weight_init: str = '', |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
in_chans: Number of input image channels. |
|
num_classes: Number of classes for classification head. |
|
embed_dim: Patch embedding dimension. |
|
depths: Depth of each Swin Transformer layer. |
|
num_heads: Number of attention heads in different layers. |
|
head_dim: Dimension of self-attention heads. |
|
window_size: Window size. |
|
mlp_ratio: Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias: If True, add a learnable bias to query, key, value. |
|
drop_rate: Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. |
|
drop_path_rate (float): Stochastic depth rate. |
|
embed_layer: Patch embedding layer. |
|
norm_layer (nn.Module): Normalization layer. |
|
""" |
|
super().__init__() |
|
assert global_pool in ('', 'avg') |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.output_fmt = 'NHWC' |
|
|
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1)) |
|
self.feature_info = [] |
|
|
|
if not isinstance(embed_dim, (tuple, list)): |
|
embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] |
|
|
|
|
|
self.patch_embed = embed_layer( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim[0], |
|
norm_layer=norm_layer, |
|
strict_img_size=strict_img_size, |
|
output_fmt='NHWC', |
|
) |
|
patch_grid = self.patch_embed.grid_size |
|
|
|
|
|
head_dim = to_ntuple(self.num_layers)(head_dim) |
|
if not isinstance(window_size, (list, tuple)): |
|
window_size = to_ntuple(self.num_layers)(window_size) |
|
elif len(window_size) == 2: |
|
window_size = (window_size,) * self.num_layers |
|
assert len(window_size) == self.num_layers |
|
mlp_ratio = to_ntuple(self.num_layers)(mlp_ratio) |
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
layers = [] |
|
in_dim = embed_dim[0] |
|
scale = 1 |
|
for i in range(self.num_layers): |
|
out_dim = embed_dim[i] |
|
layers += [SwinTransformerStage( |
|
dim=in_dim, |
|
out_dim=out_dim, |
|
input_resolution=( |
|
patch_grid[0] // scale, |
|
patch_grid[1] // scale |
|
), |
|
depth=depths[i], |
|
downsample=i > 0, |
|
num_heads=num_heads[i], |
|
head_dim=head_dim[i], |
|
window_size=window_size[i], |
|
always_partition=always_partition, |
|
dynamic_mask=not strict_img_size, |
|
mlp_ratio=mlp_ratio[i], |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
)] |
|
in_dim = out_dim |
|
if i > 0: |
|
scale *= 2 |
|
self.feature_info += [dict(num_chs=out_dim, reduction=patch_size * scale, module=f'layers.{i}')] |
|
self.layers = nn.Sequential(*layers) |
|
|
|
self.norm = norm_layer(self.num_features) |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
input_fmt=self.output_fmt, |
|
) |
|
if weight_init != 'skip': |
|
self.init_weights(weight_init) |
|
|
|
@torch.jit.ignore |
|
def init_weights(self, mode=''): |
|
assert mode in ('jax', 'jax_nlhb', 'moco', '') |
|
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. |
|
named_apply(get_init_weights_vit(mode, head_bias=head_bias), self) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
nwd = set() |
|
for n, _ in self.named_parameters(): |
|
if 'relative_position_bias_table' in n: |
|
nwd.add(n) |
|
return nwd |
|
|
|
def set_input_size( |
|
self, |
|
img_size: Optional[Tuple[int, int]] = None, |
|
patch_size: Optional[Tuple[int, int]] = None, |
|
window_size: Optional[Tuple[int, int]] = None, |
|
window_ratio: int = 8, |
|
always_partition: Optional[bool] = None, |
|
) -> None: |
|
""" Updates the image resolution and window size. |
|
|
|
Args: |
|
img_size: New input resolution, if None current resolution is used |
|
patch_size (Optional[Tuple[int, int]): New patch size, if None use current patch size |
|
window_size: New window size, if None based on new_img_size // window_div |
|
window_ratio: divisor for calculating window size from grid size |
|
always_partition: always partition into windows and shift (even if window size < feat size) |
|
""" |
|
if img_size is not None or patch_size is not None: |
|
self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) |
|
patch_grid = self.patch_embed.grid_size |
|
|
|
if window_size is None: |
|
window_size = tuple([pg // window_ratio for pg in patch_grid]) |
|
|
|
for index, stage in enumerate(self.layers): |
|
stage_scale = 2 ** max(index - 1, 0) |
|
stage.set_input_size( |
|
feat_size=(patch_grid[0] // stage_scale, patch_grid[1] // stage_scale), |
|
window_size=window_size, |
|
always_partition=always_partition, |
|
) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^patch_embed', |
|
blocks=r'^layers\.(\d+)' if coarse else [ |
|
(r'^layers\.(\d+).downsample', (0,)), |
|
(r'^layers\.(\d+)\.\w+\.(\d+)', None), |
|
(r'^norm', (99999,)), |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for l in self.layers: |
|
l.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, pool_type=global_pool) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.layers), indices) |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
|
num_stages = len(self.layers) |
|
if torch.jit.is_scripting() or not stop_early: |
|
stages = self.layers |
|
else: |
|
stages = self.layers[:max_index + 1] |
|
for i, stage in enumerate(stages): |
|
x = stage(x) |
|
if i in take_indices: |
|
if norm and i == num_stages - 1: |
|
x_inter = self.norm(x) |
|
else: |
|
x_inter = x |
|
x_inter = x_inter.permute(0, 3, 1, 2).contiguous() |
|
intermediates.append(x_inter) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
x = self.norm(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.layers), indices) |
|
self.layers = self.layers[:max_index + 1] |
|
if prune_norm: |
|
self.norm = nn.Identity() |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = self.layers(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=True) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
old_weights = True |
|
if 'head.fc.weight' in state_dict: |
|
old_weights = False |
|
import re |
|
out_dict = {} |
|
state_dict = state_dict.get('model', state_dict) |
|
state_dict = state_dict.get('state_dict', state_dict) |
|
for k, v in state_dict.items(): |
|
if any([n in k for n in ('relative_position_index', 'attn_mask')]): |
|
continue |
|
|
|
if 'patch_embed.proj.weight' in k: |
|
_, _, H, W = model.patch_embed.proj.weight.shape |
|
if v.shape[-2] != H or v.shape[-1] != W: |
|
v = resample_patch_embed( |
|
v, |
|
(H, W), |
|
interpolation='bicubic', |
|
antialias=True, |
|
verbose=True, |
|
) |
|
|
|
if k.endswith('relative_position_bias_table'): |
|
m = model.get_submodule(k[:-29]) |
|
if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: |
|
v = resize_rel_pos_bias_table( |
|
v, |
|
new_window_size=m.window_size, |
|
new_bias_shape=m.relative_position_bias_table.shape, |
|
) |
|
|
|
if old_weights: |
|
k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) |
|
k = k.replace('head.', 'head.fc.') |
|
|
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_swin_transformer(variant, pretrained=False, **kwargs): |
|
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) |
|
out_indices = kwargs.pop('out_indices', default_out_indices) |
|
|
|
model = build_model_with_cfg( |
|
SwinTransformer, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs) |
|
|
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', |
|
'license': 'mit', **kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'swin_small_patch4_window7_224.ms_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22kto1k_finetune.pth', ), |
|
'swin_base_patch4_window7_224.ms_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth',), |
|
'swin_base_patch4_window12_384.ms_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), |
|
'swin_large_patch4_window7_224.ms_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth',), |
|
'swin_large_patch4_window12_384.ms_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), |
|
|
|
'swin_tiny_patch4_window7_224.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth',), |
|
'swin_small_patch4_window7_224.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth',), |
|
'swin_base_patch4_window7_224.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth',), |
|
'swin_base_patch4_window12_384.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), |
|
|
|
|
|
'swin_tiny_patch4_window7_224.ms_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22kto1k_finetune.pth',), |
|
|
|
'swin_tiny_patch4_window7_224.ms_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth', |
|
num_classes=21841), |
|
'swin_small_patch4_window7_224.ms_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22k.pth', |
|
num_classes=21841), |
|
'swin_base_patch4_window7_224.ms_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', |
|
num_classes=21841), |
|
'swin_base_patch4_window12_384.ms_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), |
|
'swin_large_patch4_window7_224.ms_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth', |
|
num_classes=21841), |
|
'swin_large_patch4_window12_384.ms_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth', |
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), |
|
|
|
'swin_s3_tiny_224.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_t-1d53f6a8.pth'), |
|
'swin_s3_small_224.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_s-3bb4c69d.pth'), |
|
'swin_s3_base_224.ms_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_b-a1e95db4.pth'), |
|
}) |
|
|
|
|
|
@register_model |
|
def swin_tiny_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-T @ 224x224, trained ImageNet-1k |
|
""" |
|
model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) |
|
return _create_swin_transformer( |
|
'swin_tiny_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_small_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-S @ 224x224 |
|
""" |
|
model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) |
|
return _create_swin_transformer( |
|
'swin_small_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_base_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-B @ 224x224 |
|
""" |
|
model_args = dict(patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) |
|
return _create_swin_transformer( |
|
'swin_base_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_base_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-B @ 384x384 |
|
""" |
|
model_args = dict(patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) |
|
return _create_swin_transformer( |
|
'swin_base_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_large_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-L @ 224x224 |
|
""" |
|
model_args = dict(patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) |
|
return _create_swin_transformer( |
|
'swin_large_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_large_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-L @ 384x384 |
|
""" |
|
model_args = dict(patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) |
|
return _create_swin_transformer( |
|
'swin_large_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_s3_tiny_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-S3-T @ 224x224, https://arxiv.org/abs/2111.14725 |
|
""" |
|
model_args = dict( |
|
patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) |
|
return _create_swin_transformer('swin_s3_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_s3_small_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-S3-S @ 224x224, https://arxiv.org/abs/2111.14725 |
|
""" |
|
model_args = dict( |
|
patch_size=4, window_size=(14, 14, 14, 7), embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) |
|
return _create_swin_transformer('swin_s3_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def swin_s3_base_224(pretrained=False, **kwargs) -> SwinTransformer: |
|
""" Swin-S3-B @ 224x224, https://arxiv.org/abs/2111.14725 |
|
""" |
|
model_args = dict( |
|
patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 30, 2), num_heads=(3, 6, 12, 24)) |
|
return _create_swin_transformer('swin_s3_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'swin_base_patch4_window7_224_in22k': 'swin_base_patch4_window7_224.ms_in22k', |
|
'swin_base_patch4_window12_384_in22k': 'swin_base_patch4_window12_384.ms_in22k', |
|
'swin_large_patch4_window7_224_in22k': 'swin_large_patch4_window7_224.ms_in22k', |
|
'swin_large_patch4_window12_384_in22k': 'swin_large_patch4_window12_384.ms_in22k', |
|
}) |
|
|