|
""" RepViT |
|
|
|
Paper: `RepViT: Revisiting Mobile CNN From ViT Perspective` |
|
- https://arxiv.org/abs/2307.09283 |
|
|
|
@misc{wang2023repvit, |
|
title={RepViT: Revisiting Mobile CNN From ViT Perspective}, |
|
author={Ao Wang and Hui Chen and Zijia Lin and Hengjun Pu and Guiguang Ding}, |
|
year={2023}, |
|
eprint={2307.09283}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
Adapted from official impl at https://github.com/jameslahm/RepViT |
|
""" |
|
|
|
__all__ = ['RepVit'] |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import SqueezeExcite, trunc_normal_, to_ntuple, to_2tuple |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
|
|
class ConvNorm(nn.Sequential): |
|
def __init__(self, in_dim, out_dim, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): |
|
super().__init__() |
|
self.add_module('c', nn.Conv2d(in_dim, out_dim, ks, stride, pad, dilation, groups, bias=False)) |
|
self.add_module('bn', nn.BatchNorm2d(out_dim)) |
|
nn.init.constant_(self.bn.weight, bn_weight_init) |
|
nn.init.constant_(self.bn.bias, 0) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
c, bn = self._modules.values() |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
m = nn.Conv2d( |
|
w.size(1) * self.c.groups, |
|
w.size(0), |
|
w.shape[2:], |
|
stride=self.c.stride, |
|
padding=self.c.padding, |
|
dilation=self.c.dilation, |
|
groups=self.c.groups, |
|
device=c.weight.device, |
|
) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
|
|
class NormLinear(nn.Sequential): |
|
def __init__(self, in_dim, out_dim, bias=True, std=0.02): |
|
super().__init__() |
|
self.add_module('bn', nn.BatchNorm1d(in_dim)) |
|
self.add_module('l', nn.Linear(in_dim, out_dim, bias=bias)) |
|
trunc_normal_(self.l.weight, std=std) |
|
if bias: |
|
nn.init.constant_(self.l.bias, 0) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
bn, l = self._modules.values() |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = l.weight * w[None, :] |
|
if l.bias is None: |
|
b = b @ self.l.weight.T |
|
else: |
|
b = (l.weight @ b[:, None]).view(-1) + self.l.bias |
|
m = nn.Linear(w.size(1), w.size(0), device=l.weight.device) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
|
|
class RepVggDw(nn.Module): |
|
def __init__(self, ed, kernel_size, legacy=False): |
|
super().__init__() |
|
self.conv = ConvNorm(ed, ed, kernel_size, 1, (kernel_size - 1) // 2, groups=ed) |
|
if legacy: |
|
self.conv1 = ConvNorm(ed, ed, 1, 1, 0, groups=ed) |
|
|
|
self.bn = nn.Identity() |
|
else: |
|
self.conv1 = nn.Conv2d(ed, ed, 1, 1, 0, groups=ed) |
|
self.bn = nn.BatchNorm2d(ed) |
|
self.dim = ed |
|
self.legacy = legacy |
|
|
|
def forward(self, x): |
|
return self.bn(self.conv(x) + self.conv1(x) + x) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
conv = self.conv.fuse() |
|
|
|
if self.legacy: |
|
conv1 = self.conv1.fuse() |
|
else: |
|
conv1 = self.conv1 |
|
|
|
conv_w = conv.weight |
|
conv_b = conv.bias |
|
conv1_w = conv1.weight |
|
conv1_b = conv1.bias |
|
|
|
conv1_w = nn.functional.pad(conv1_w, [1, 1, 1, 1]) |
|
|
|
identity = nn.functional.pad( |
|
torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1, 1, 1, 1] |
|
) |
|
|
|
final_conv_w = conv_w + conv1_w + identity |
|
final_conv_b = conv_b + conv1_b |
|
|
|
conv.weight.data.copy_(final_conv_w) |
|
conv.bias.data.copy_(final_conv_b) |
|
|
|
if not self.legacy: |
|
bn = self.bn |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = conv.weight * w[:, None, None, None] |
|
b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
conv.weight.data.copy_(w) |
|
conv.bias.data.copy_(b) |
|
return conv |
|
|
|
|
|
class RepVitMlp(nn.Module): |
|
def __init__(self, in_dim, hidden_dim, act_layer): |
|
super().__init__() |
|
self.conv1 = ConvNorm(in_dim, hidden_dim, 1, 1, 0) |
|
self.act = act_layer() |
|
self.conv2 = ConvNorm(hidden_dim, in_dim, 1, 1, 0, bn_weight_init=0) |
|
|
|
def forward(self, x): |
|
return self.conv2(self.act(self.conv1(x))) |
|
|
|
|
|
class RepViTBlock(nn.Module): |
|
def __init__(self, in_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy=False): |
|
super(RepViTBlock, self).__init__() |
|
|
|
self.token_mixer = RepVggDw(in_dim, kernel_size, legacy) |
|
self.se = SqueezeExcite(in_dim, 0.25) if use_se else nn.Identity() |
|
self.channel_mixer = RepVitMlp(in_dim, in_dim * mlp_ratio, act_layer) |
|
|
|
def forward(self, x): |
|
x = self.token_mixer(x) |
|
x = self.se(x) |
|
identity = x |
|
x = self.channel_mixer(x) |
|
return identity + x |
|
|
|
|
|
class RepVitStem(nn.Module): |
|
def __init__(self, in_chs, out_chs, act_layer): |
|
super().__init__() |
|
self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1) |
|
self.act1 = act_layer() |
|
self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1) |
|
self.stride = 4 |
|
|
|
def forward(self, x): |
|
return self.conv2(self.act1(self.conv1(x))) |
|
|
|
|
|
class RepVitDownsample(nn.Module): |
|
def __init__(self, in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy=False): |
|
super().__init__() |
|
self.pre_block = RepViTBlock(in_dim, mlp_ratio, kernel_size, use_se=False, act_layer=act_layer, legacy=legacy) |
|
self.spatial_downsample = ConvNorm(in_dim, in_dim, kernel_size, 2, (kernel_size - 1) // 2, groups=in_dim) |
|
self.channel_downsample = ConvNorm(in_dim, out_dim, 1, 1) |
|
self.ffn = RepVitMlp(out_dim, out_dim * mlp_ratio, act_layer) |
|
|
|
def forward(self, x): |
|
x = self.pre_block(x) |
|
x = self.spatial_downsample(x) |
|
x = self.channel_downsample(x) |
|
identity = x |
|
x = self.ffn(x) |
|
return x + identity |
|
|
|
|
|
class RepVitClassifier(nn.Module): |
|
def __init__(self, dim, num_classes, distillation=False, drop=0.0): |
|
super().__init__() |
|
self.head_drop = nn.Dropout(drop) |
|
self.head = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity() |
|
self.distillation = distillation |
|
self.distilled_training = False |
|
self.num_classes = num_classes |
|
if distillation: |
|
self.head_dist = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.head_drop(x) |
|
if self.distillation: |
|
x1, x2 = self.head(x), self.head_dist(x) |
|
if self.training and self.distilled_training and not torch.jit.is_scripting(): |
|
return x1, x2 |
|
else: |
|
return (x1 + x2) / 2 |
|
else: |
|
x = self.head(x) |
|
return x |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
if not self.num_classes > 0: |
|
return nn.Identity() |
|
head = self.head.fuse() |
|
if self.distillation: |
|
head_dist = self.head_dist.fuse() |
|
head.weight += head_dist.weight |
|
head.bias += head_dist.bias |
|
head.weight /= 2 |
|
head.bias /= 2 |
|
return head |
|
else: |
|
return head |
|
|
|
|
|
class RepVitStage(nn.Module): |
|
def __init__(self, in_dim, out_dim, depth, mlp_ratio, act_layer, kernel_size=3, downsample=True, legacy=False): |
|
super().__init__() |
|
if downsample: |
|
self.downsample = RepVitDownsample(in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy) |
|
else: |
|
assert in_dim == out_dim |
|
self.downsample = nn.Identity() |
|
|
|
blocks = [] |
|
use_se = True |
|
for _ in range(depth): |
|
blocks.append(RepViTBlock(out_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy)) |
|
use_se = not use_se |
|
|
|
self.blocks = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class RepVit(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans=3, |
|
img_size=224, |
|
embed_dim=(48,), |
|
depth=(2,), |
|
mlp_ratio=2, |
|
global_pool='avg', |
|
kernel_size=3, |
|
num_classes=1000, |
|
act_layer=nn.GELU, |
|
distillation=True, |
|
drop_rate=0.0, |
|
legacy=False, |
|
): |
|
super(RepVit, self).__init__() |
|
self.grad_checkpointing = False |
|
self.global_pool = global_pool |
|
self.embed_dim = embed_dim |
|
self.num_classes = num_classes |
|
|
|
in_dim = embed_dim[0] |
|
self.stem = RepVitStem(in_chans, in_dim, act_layer) |
|
stride = self.stem.stride |
|
resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))]) |
|
|
|
num_stages = len(embed_dim) |
|
mlp_ratios = to_ntuple(num_stages)(mlp_ratio) |
|
|
|
self.feature_info = [] |
|
stages = [] |
|
for i in range(num_stages): |
|
downsample = True if i != 0 else False |
|
stages.append( |
|
RepVitStage( |
|
in_dim, |
|
embed_dim[i], |
|
depth[i], |
|
mlp_ratio=mlp_ratios[i], |
|
act_layer=act_layer, |
|
kernel_size=kernel_size, |
|
downsample=downsample, |
|
legacy=legacy, |
|
) |
|
) |
|
stage_stride = 2 if downsample else 1 |
|
stride *= stage_stride |
|
resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) |
|
self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] |
|
in_dim = embed_dim[i] |
|
self.stages = nn.Sequential(*stages) |
|
|
|
self.num_features = self.head_hidden_size = embed_dim[-1] |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = RepVitClassifier(embed_dim[-1], num_classes, distillation) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict(stem=r'^stem', blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, distillation: bool = False): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
self.global_pool = global_pool |
|
self.head = RepVitClassifier(self.embed_dim[-1], num_classes, distillation) |
|
|
|
@torch.jit.ignore |
|
def set_distilled_training(self, enable=True): |
|
self.head.distilled_training = enable |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.stages, x) |
|
else: |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool == 'avg': |
|
x = x.mean((2, 3), keepdim=False) |
|
x = self.head_drop(x) |
|
if pre_logits: |
|
return x |
|
return self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
def fuse_children(net): |
|
for child_name, child in net.named_children(): |
|
if hasattr(child, 'fuse'): |
|
fused = child.fuse() |
|
setattr(net, child_name, fused) |
|
fuse_children(fused) |
|
else: |
|
fuse_children(child) |
|
|
|
fuse_children(self) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, |
|
'input_size': (3, 224, 224), |
|
'pool_size': (7, 7), |
|
'crop_pct': 0.95, |
|
'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, |
|
'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv1.c', |
|
'classifier': ('head.head.l', 'head.head_dist.l'), |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs( |
|
{ |
|
'repvit_m1.dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m2.dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m3.dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m0_9.dist_300e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m0_9.dist_450e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m1_0.dist_300e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m1_0.dist_450e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m1_1.dist_300e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m1_1.dist_450e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m1_5.dist_300e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m1_5.dist_450e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m2_3.dist_300e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'repvit_m2_3.dist_450e_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
} |
|
) |
|
|
|
|
|
def _create_repvit(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) |
|
model = build_model_with_cfg( |
|
RepVit, |
|
variant, |
|
pretrained, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
@register_model |
|
def repvit_m1(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M1 model |
|
""" |
|
model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2), legacy=True) |
|
return _create_repvit('repvit_m1', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m2(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M2 model |
|
""" |
|
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2), legacy=True) |
|
return _create_repvit('repvit_m2', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m3(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M3 model |
|
""" |
|
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 18, 2), legacy=True) |
|
return _create_repvit('repvit_m3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m0_9(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M0.9 model |
|
""" |
|
model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2)) |
|
return _create_repvit('repvit_m0_9', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m1_0(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M1.0 model |
|
""" |
|
model_args = dict(embed_dim=(56, 112, 224, 448), depth=(2, 2, 14, 2)) |
|
return _create_repvit('repvit_m1_0', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m1_1(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M1.1 model |
|
""" |
|
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2)) |
|
return _create_repvit('repvit_m1_1', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m1_5(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M1.5 model |
|
""" |
|
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 24, 4)) |
|
return _create_repvit('repvit_m1_5', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def repvit_m2_3(pretrained=False, **kwargs): |
|
""" |
|
Constructs a RepViT-M2.3 model |
|
""" |
|
model_args = dict(embed_dim=(80, 160, 320, 640), depth=(6, 6, 34, 2)) |
|
return _create_repvit('repvit_m2_3', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|