|
""" |
|
RDNet |
|
Copyright (c) 2024-present NAVER Cloud Corp. |
|
Apache-2.0 |
|
""" |
|
|
|
from functools import partial |
|
from typing import List, Optional, Tuple, Union, Callable |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import DropPath, NormMlpClassifierHead, ClassifierHead, EffectiveSEModule, \ |
|
make_divisible, get_act_layer, get_norm_layer |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._manipulate import named_apply |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ["RDNet"] |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, in_chs, inter_chs, out_chs, norm_layer, act_layer): |
|
super().__init__() |
|
self.layers = nn.Sequential( |
|
nn.Conv2d(in_chs, in_chs, groups=in_chs, kernel_size=7, stride=1, padding=3), |
|
norm_layer(in_chs), |
|
nn.Conv2d(in_chs, inter_chs, kernel_size=1, stride=1, padding=0), |
|
act_layer(), |
|
nn.Conv2d(inter_chs, out_chs, kernel_size=1, stride=1, padding=0), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
class BlockESE(nn.Module): |
|
def __init__(self, in_chs, inter_chs, out_chs, norm_layer, act_layer): |
|
super().__init__() |
|
self.layers = nn.Sequential( |
|
nn.Conv2d(in_chs, in_chs, groups=in_chs, kernel_size=7, stride=1, padding=3), |
|
norm_layer(in_chs), |
|
nn.Conv2d(in_chs, inter_chs, kernel_size=1, stride=1, padding=0), |
|
act_layer(), |
|
nn.Conv2d(inter_chs, out_chs, kernel_size=1, stride=1, padding=0), |
|
EffectiveSEModule(out_chs), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
def _get_block_type(block: str): |
|
block = block.lower().strip() |
|
if block == "block": |
|
return Block |
|
elif block == "blockese": |
|
return BlockESE |
|
else: |
|
assert False, f"Unknown block type ({block})." |
|
|
|
|
|
class DenseBlock(nn.Module): |
|
def __init__( |
|
self, |
|
num_input_features: int = 64, |
|
growth_rate: int = 64, |
|
bottleneck_width_ratio: float = 4.0, |
|
drop_path_rate: float = 0.0, |
|
drop_rate: float = 0.0, |
|
rand_gather_step_prob: float = 0.0, |
|
block_idx: int = 0, |
|
block_type: str = "Block", |
|
ls_init_value: float = 1e-6, |
|
norm_layer: str = "layernorm2d", |
|
act_layer: str = "gelu", |
|
): |
|
super().__init__() |
|
self.drop_rate = drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.rand_gather_step_prob = rand_gather_step_prob |
|
self.block_idx = block_idx |
|
self.growth_rate = growth_rate |
|
|
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(growth_rate)) if ls_init_value > 0 else None |
|
growth_rate = int(growth_rate) |
|
inter_chs = int(num_input_features * bottleneck_width_ratio / 8) * 8 |
|
|
|
self.drop_path = DropPath(drop_path_rate) |
|
|
|
self.layers = _get_block_type(block_type)( |
|
in_chs=num_input_features, |
|
inter_chs=inter_chs, |
|
out_chs=growth_rate, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
) |
|
|
|
def forward(self, x: List[torch.Tensor]) -> torch.Tensor: |
|
x = torch.cat(x, 1) |
|
x = self.layers(x) |
|
|
|
if self.gamma is not None: |
|
x = x.mul(self.gamma.reshape(1, -1, 1, 1)) |
|
|
|
x = self.drop_path(x) |
|
return x |
|
|
|
|
|
class DenseStage(nn.Sequential): |
|
def __init__(self, num_block, num_input_features, drop_path_rates, growth_rate, **kwargs): |
|
super().__init__() |
|
for i in range(num_block): |
|
layer = DenseBlock( |
|
num_input_features=num_input_features, |
|
growth_rate=growth_rate, |
|
drop_path_rate=drop_path_rates[i], |
|
block_idx=i, |
|
**kwargs, |
|
) |
|
num_input_features += growth_rate |
|
self.add_module(f"dense_block{i}", layer) |
|
self.num_out_features = num_input_features |
|
|
|
def forward(self, init_feature: torch.Tensor) -> torch.Tensor: |
|
features = [init_feature] |
|
for module in self: |
|
new_feature = module(features) |
|
features.append(new_feature) |
|
return torch.cat(features, 1) |
|
|
|
|
|
class RDNet(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
growth_rates: Union[List[int], Tuple[int]] = (64, 104, 128, 128, 128, 128, 224), |
|
num_blocks_list: Union[List[int], Tuple[int]] = (3, 3, 3, 3, 3, 3, 3), |
|
block_type: Union[List[int], Tuple[int]] = ("Block",) * 2 + ("BlockESE",) * 5, |
|
is_downsample_block: Union[List[bool], Tuple[bool]] = (None, True, True, False, False, False, True), |
|
bottleneck_width_ratio: float = 4.0, |
|
transition_compression_ratio: float = 0.5, |
|
ls_init_value: float = 1e-6, |
|
stem_type: str = 'patch', |
|
patch_size: int = 4, |
|
num_init_features: int = 64, |
|
head_init_scale: float = 1., |
|
head_norm_first: bool = False, |
|
conv_bias: bool = True, |
|
act_layer: Union[str, Callable] = 'gelu', |
|
norm_layer: str = "layernorm2d", |
|
norm_eps: Optional[float] = None, |
|
drop_rate: float = 0.0, |
|
drop_path_rate: float = 0.0, |
|
): |
|
""" |
|
Args: |
|
in_chans: Number of input image channels. |
|
num_classes: Number of classes for classification head. |
|
global_pool: Global pooling type. |
|
growth_rates: Growth rate at each stage. |
|
num_blocks_list: Number of blocks at each stage. |
|
is_downsample_block: Whether to downsample at each stage. |
|
bottleneck_width_ratio: Bottleneck width ratio (similar to mlp expansion ratio). |
|
transition_compression_ratio: Channel compression ratio of transition layers. |
|
ls_init_value: Init value for Layer Scale, disabled if None. |
|
stem_type: Type of stem. |
|
patch_size: Stem patch size for patch stem. |
|
num_init_features: Number of features of stem. |
|
head_init_scale: Init scaling value for classifier weights and biases. |
|
head_norm_first: Apply normalization before global pool + head. |
|
conv_bias: Use bias layers w/ all convolutions. |
|
act_layer: Activation layer type. |
|
norm_layer: Normalization layer type. |
|
norm_eps: Small value to avoid division by zero in normalization. |
|
drop_rate: Head pre-classifier dropout rate. |
|
drop_path_rate: Stochastic depth drop rate. |
|
""" |
|
super().__init__() |
|
assert len(growth_rates) == len(num_blocks_list) == len(is_downsample_block) |
|
act_layer = get_act_layer(act_layer) |
|
norm_layer = get_norm_layer(norm_layer) |
|
if norm_eps is not None: |
|
norm_layer = partial(norm_layer, eps=norm_eps) |
|
|
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
|
|
|
|
assert stem_type in ('patch', 'overlap', 'overlap_tiered') |
|
if stem_type == 'patch': |
|
|
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, num_init_features, kernel_size=patch_size, stride=patch_size, bias=conv_bias), |
|
norm_layer(num_init_features), |
|
) |
|
stem_stride = patch_size |
|
else: |
|
mid_chs = make_divisible(num_init_features // 2) if 'tiered' in stem_type else num_init_features |
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
nn.Conv2d(mid_chs, num_init_features, kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
norm_layer(num_init_features), |
|
) |
|
stem_stride = 4 |
|
|
|
|
|
self.feature_info = [] |
|
self.num_stages = len(growth_rates) |
|
curr_stride = stem_stride |
|
num_features = num_init_features |
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(num_blocks_list)).split(num_blocks_list)] |
|
|
|
dense_stages = [] |
|
for i in range(self.num_stages): |
|
dense_stage_layers = [] |
|
if i != 0: |
|
compressed_num_features = int(num_features * transition_compression_ratio / 8) * 8 |
|
k_size = stride = 1 |
|
if is_downsample_block[i]: |
|
curr_stride *= 2 |
|
k_size = stride = 2 |
|
|
|
dense_stage_layers.append(norm_layer(num_features)) |
|
dense_stage_layers.append( |
|
nn.Conv2d(num_features, compressed_num_features, kernel_size=k_size, stride=stride, padding=0) |
|
) |
|
num_features = compressed_num_features |
|
|
|
stage = DenseStage( |
|
num_block=num_blocks_list[i], |
|
num_input_features=num_features, |
|
growth_rate=growth_rates[i], |
|
bottleneck_width_ratio=bottleneck_width_ratio, |
|
drop_rate=drop_rate, |
|
drop_path_rates=dp_rates[i], |
|
ls_init_value=ls_init_value, |
|
block_type=block_type[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
) |
|
dense_stage_layers.append(stage) |
|
num_features += num_blocks_list[i] * growth_rates[i] |
|
|
|
if i + 1 == self.num_stages or (i + 1 != self.num_stages and is_downsample_block[i + 1]): |
|
self.feature_info += [ |
|
dict( |
|
num_chs=num_features, |
|
reduction=curr_stride, |
|
module=f'dense_stages.{i}', |
|
growth_rate=growth_rates[i], |
|
) |
|
] |
|
dense_stages.append(nn.Sequential(*dense_stage_layers)) |
|
self.dense_stages = nn.Sequential(*dense_stages) |
|
self.num_features = self.head_hidden_size = num_features |
|
|
|
|
|
|
|
if head_norm_first: |
|
self.norm_pre = norm_layer(self.num_features) |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
) |
|
else: |
|
self.norm_pre = nn.Identity() |
|
self.head = NormMlpClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.dense_stages) + 1, indices) |
|
|
|
|
|
feat_idx = 0 |
|
x = self.stem(x) |
|
if feat_idx in take_indices: |
|
intermediates.append(x) |
|
|
|
if torch.jit.is_scripting() or not stop_early: |
|
dense_stages = self.dense_stages |
|
else: |
|
dense_stages = self.dense_stages[:max_index] |
|
for stage in dense_stages: |
|
feat_idx += 1 |
|
x = stage(x) |
|
if feat_idx in take_indices: |
|
|
|
intermediates.append(x) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
x = self.norm_pre(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.dense_stages) + 1, indices) |
|
self.dense_stages = self.dense_stages[:max_index] |
|
if prune_norm: |
|
self.norm_pre = nn.Identity() |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.dense_stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=True) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
assert not coarse, "coarse grouping is not implemented for RDNet" |
|
return dict( |
|
stem=r'^stem', |
|
blocks=r'^dense_stages\.(\d+)', |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.dense_stages: |
|
s.grad_checkpointing = enable |
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0): |
|
if isinstance(module, nn.Conv2d): |
|
nn.init.kaiming_normal_(module.weight) |
|
elif isinstance(module, nn.BatchNorm2d): |
|
nn.init.constant_(module.weight, 1) |
|
nn.init.constant_(module.bias, 0) |
|
elif isinstance(module, nn.Linear): |
|
nn.init.constant_(module.bias, 0) |
|
if name and 'head.' in name: |
|
module.weight.data.mul_(head_init_scale) |
|
module.bias.data.mul_(head_init_scale) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" Remap NV checkpoints -> timm """ |
|
if 'stem.0.weight' in state_dict: |
|
return state_dict |
|
if 'model' in state_dict: |
|
state_dict = state_dict['model'] |
|
|
|
out_dict = {} |
|
|
|
for k, v in state_dict.items(): |
|
k = k.replace('stem.stem.', 'stem.') |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
def _create_rdnet(variant, pretrained=False, **kwargs): |
|
model = build_model_with_cfg( |
|
RDNet, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), |
|
**kwargs) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
"url": url, |
|
"num_classes": 1000, "input_size": (3, 224, 224), "pool_size": (7, 7), |
|
"crop_pct": 0.9, "interpolation": "bicubic", |
|
"mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD, |
|
"first_conv": "stem.0", "classifier": "head.fc", |
|
"paper_ids": "arXiv:2403.19588", |
|
"paper_name": "DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs", |
|
"origin_url": "https://github.com/naver-ai/rdnet", |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'rdnet_tiny.nv_in1k': _cfg( |
|
hf_hub_id='naver-ai/rdnet_tiny.nv_in1k'), |
|
'rdnet_small.nv_in1k': _cfg( |
|
hf_hub_id='naver-ai/rdnet_small.nv_in1k'), |
|
'rdnet_base.nv_in1k': _cfg( |
|
hf_hub_id='naver-ai/rdnet_base.nv_in1k'), |
|
'rdnet_large.nv_in1k': _cfg( |
|
hf_hub_id='naver-ai/rdnet_large.nv_in1k'), |
|
'rdnet_large.nv_in1k_ft_in1k_384': _cfg( |
|
hf_hub_id='naver-ai/rdnet_large.nv_in1k_ft_in1k_384', |
|
input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), |
|
}) |
|
|
|
|
|
@register_model |
|
def rdnet_tiny(pretrained=False, **kwargs): |
|
n_layer = 7 |
|
model_args = { |
|
"num_init_features": 64, |
|
"growth_rates": [64] + [104] + [128] * 4 + [224], |
|
"num_blocks_list": [3] * n_layer, |
|
"is_downsample_block": (None, True, True, False, False, False, True), |
|
"transition_compression_ratio": 0.5, |
|
"block_type": ["Block"] + ["Block"] + ["BlockESE"] * 4 + ["BlockESE"], |
|
} |
|
model = _create_rdnet("rdnet_tiny", pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def rdnet_small(pretrained=False, **kwargs): |
|
n_layer = 11 |
|
model_args = { |
|
"num_init_features": 72, |
|
"growth_rates": [64] + [128] + [128] * (n_layer - 4) + [240] * 2, |
|
"num_blocks_list": [3] * n_layer, |
|
"is_downsample_block": (None, True, True, False, False, False, False, False, False, True, False), |
|
"transition_compression_ratio": 0.5, |
|
"block_type": ["Block"] + ["Block"] + ["BlockESE"] * (n_layer - 4) + ["BlockESE"] * 2, |
|
} |
|
model = _create_rdnet("rdnet_small", pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def rdnet_base(pretrained=False, **kwargs): |
|
n_layer = 11 |
|
model_args = { |
|
"num_init_features": 120, |
|
"growth_rates": [96] + [128] + [168] * (n_layer - 4) + [336] * 2, |
|
"num_blocks_list": [3] * n_layer, |
|
"is_downsample_block": (None, True, True, False, False, False, False, False, False, True, False), |
|
"transition_compression_ratio": 0.5, |
|
"block_type": ["Block"] + ["Block"] + ["BlockESE"] * (n_layer - 4) + ["BlockESE"] * 2, |
|
} |
|
model = _create_rdnet("rdnet_base", pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def rdnet_large(pretrained=False, **kwargs): |
|
n_layer = 12 |
|
model_args = { |
|
"num_init_features": 144, |
|
"growth_rates": [128] + [192] + [256] * (n_layer - 4) + [360] * 2, |
|
"num_blocks_list": [3] * n_layer, |
|
"is_downsample_block": (None, True, True, False, False, False, False, False, False, False, True, False), |
|
"transition_compression_ratio": 0.5, |
|
"block_type": ["Block"] + ["Block"] + ["BlockESE"] * (n_layer - 4) + ["BlockESE"] * 2, |
|
} |
|
model = _create_rdnet("rdnet_large", pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|