|
""" |
|
Poolformer from MetaFormer is Actually What You Need for Vision https://arxiv.org/abs/2111.11418 |
|
|
|
IdentityFormer, RandFormer, PoolFormerV2, ConvFormer, and CAFormer |
|
from MetaFormer Baselines for Vision https://arxiv.org/abs/2210.13452 |
|
|
|
All implemented models support feature extraction and variable input resolution. |
|
|
|
Original implementation by Weihao Yu et al., |
|
adapted for timm by Fredo Guan and Ross Wightman. |
|
|
|
Adapted from https://github.com/sail-sg/metaformer, original copyright below |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch.jit import Final |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import trunc_normal_, DropPath, SelectAdaptivePool2d, GroupNorm1, LayerNorm, LayerNorm2d, Mlp, \ |
|
use_fused_attn |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import generate_default_cfgs, register_model |
|
|
|
__all__ = ['MetaFormer'] |
|
|
|
|
|
class Stem(nn.Module): |
|
""" |
|
Stem implemented by a layer of convolution. |
|
Conv2d params constant across all models. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
norm_layer=None, |
|
): |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=7, |
|
stride=4, |
|
padding=2 |
|
) |
|
self.norm = norm_layer(out_channels) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class Downsampling(nn.Module): |
|
""" |
|
Downsampling implemented by a layer of convolution. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
norm_layer=None, |
|
): |
|
super().__init__() |
|
self.norm = norm_layer(in_channels) if norm_layer else nn.Identity() |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding |
|
) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Scale(nn.Module): |
|
""" |
|
Scale vector by element multiplications. |
|
""" |
|
|
|
def __init__(self, dim, init_value=1.0, trainable=True, use_nchw=True): |
|
super().__init__() |
|
self.shape = (dim, 1, 1) if use_nchw else (dim,) |
|
self.scale = nn.Parameter(init_value * torch.ones(dim), requires_grad=trainable) |
|
|
|
def forward(self, x): |
|
return x * self.scale.view(self.shape) |
|
|
|
|
|
class SquaredReLU(nn.Module): |
|
""" |
|
Squared ReLU: https://arxiv.org/abs/2109.08668 |
|
""" |
|
|
|
def __init__(self, inplace=False): |
|
super().__init__() |
|
self.relu = nn.ReLU(inplace=inplace) |
|
|
|
def forward(self, x): |
|
return torch.square(self.relu(x)) |
|
|
|
|
|
class StarReLU(nn.Module): |
|
""" |
|
StarReLU: s * relu(x) ** 2 + b |
|
""" |
|
|
|
def __init__( |
|
self, |
|
scale_value=1.0, |
|
bias_value=0.0, |
|
scale_learnable=True, |
|
bias_learnable=True, |
|
mode=None, |
|
inplace=False |
|
): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.relu = nn.ReLU(inplace=inplace) |
|
self.scale = nn.Parameter(scale_value * torch.ones(1), requires_grad=scale_learnable) |
|
self.bias = nn.Parameter(bias_value * torch.ones(1), requires_grad=bias_learnable) |
|
|
|
def forward(self, x): |
|
return self.scale * self.relu(x) ** 2 + self.bias |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
Vanilla self-attention from Transformer: https://arxiv.org/abs/1706.03762. |
|
Modified from timm. |
|
""" |
|
fused_attn: Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
head_dim=32, |
|
num_heads=None, |
|
qkv_bias=False, |
|
attn_drop=0., |
|
proj_drop=0., |
|
proj_bias=False, |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
self.head_dim = head_dim |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.num_heads = num_heads if num_heads else dim // head_dim |
|
if self.num_heads == 0: |
|
self.num_heads = 1 |
|
|
|
self.attention_dim = self.num_heads * self.head_dim |
|
|
|
self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
q, k, v, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
) |
|
else: |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class GroupNorm1NoBias(GroupNorm1): |
|
def __init__(self, num_channels, **kwargs): |
|
super().__init__(num_channels, **kwargs) |
|
self.eps = kwargs.get('eps', 1e-6) |
|
self.bias = None |
|
|
|
|
|
class LayerNorm2dNoBias(LayerNorm2d): |
|
def __init__(self, num_channels, **kwargs): |
|
super().__init__(num_channels, **kwargs) |
|
self.eps = kwargs.get('eps', 1e-6) |
|
self.bias = None |
|
|
|
|
|
class LayerNormNoBias(nn.LayerNorm): |
|
def __init__(self, num_channels, **kwargs): |
|
super().__init__(num_channels, **kwargs) |
|
self.eps = kwargs.get('eps', 1e-6) |
|
self.bias = None |
|
|
|
|
|
class SepConv(nn.Module): |
|
r""" |
|
Inverted separable convolution from MobileNetV2: https://arxiv.org/abs/1801.04381. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
expansion_ratio=2, |
|
act1_layer=StarReLU, |
|
act2_layer=nn.Identity, |
|
bias=False, |
|
kernel_size=7, |
|
padding=3, |
|
**kwargs |
|
): |
|
super().__init__() |
|
mid_channels = int(expansion_ratio * dim) |
|
self.pwconv1 = nn.Conv2d(dim, mid_channels, kernel_size=1, bias=bias) |
|
self.act1 = act1_layer() |
|
self.dwconv = nn.Conv2d( |
|
mid_channels, mid_channels, kernel_size=kernel_size, |
|
padding=padding, groups=mid_channels, bias=bias) |
|
self.act2 = act2_layer() |
|
self.pwconv2 = nn.Conv2d(mid_channels, dim, kernel_size=1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.pwconv1(x) |
|
x = self.act1(x) |
|
x = self.dwconv(x) |
|
x = self.act2(x) |
|
x = self.pwconv2(x) |
|
return x |
|
|
|
|
|
class Pooling(nn.Module): |
|
""" |
|
Implementation of pooling for PoolFormer: https://arxiv.org/abs/2111.11418 |
|
""" |
|
|
|
def __init__(self, pool_size=3, **kwargs): |
|
super().__init__() |
|
self.pool = nn.AvgPool2d( |
|
pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) |
|
|
|
def forward(self, x): |
|
y = self.pool(x) |
|
return y - x |
|
|
|
|
|
class MlpHead(nn.Module): |
|
""" MLP classification head |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_classes=1000, |
|
mlp_ratio=4, |
|
act_layer=SquaredReLU, |
|
norm_layer=LayerNorm, |
|
drop_rate=0., |
|
bias=True |
|
): |
|
super().__init__() |
|
hidden_features = int(mlp_ratio * dim) |
|
self.fc1 = nn.Linear(dim, hidden_features, bias=bias) |
|
self.act = act_layer() |
|
self.norm = norm_layer(hidden_features) |
|
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) |
|
self.head_drop = nn.Dropout(drop_rate) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.norm(x) |
|
x = self.head_drop(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class MetaFormerBlock(nn.Module): |
|
""" |
|
Implementation of one MetaFormer block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
token_mixer=Pooling, |
|
mlp_act=StarReLU, |
|
mlp_bias=False, |
|
norm_layer=LayerNorm2d, |
|
proj_drop=0., |
|
drop_path=0., |
|
use_nchw=True, |
|
layer_scale_init_value=None, |
|
res_scale_init_value=None, |
|
**kwargs |
|
): |
|
super().__init__() |
|
ls_layer = partial(Scale, dim=dim, init_value=layer_scale_init_value, use_nchw=use_nchw) |
|
rs_layer = partial(Scale, dim=dim, init_value=res_scale_init_value, use_nchw=use_nchw) |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.token_mixer = token_mixer(dim=dim, proj_drop=proj_drop, **kwargs) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.layer_scale1 = ls_layer() if layer_scale_init_value is not None else nn.Identity() |
|
self.res_scale1 = rs_layer() if res_scale_init_value is not None else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp( |
|
dim, |
|
int(4 * dim), |
|
act_layer=mlp_act, |
|
bias=mlp_bias, |
|
drop=proj_drop, |
|
use_conv=use_nchw, |
|
) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.layer_scale2 = ls_layer() if layer_scale_init_value is not None else nn.Identity() |
|
self.res_scale2 = rs_layer() if res_scale_init_value is not None else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.res_scale1(x) + \ |
|
self.layer_scale1( |
|
self.drop_path1( |
|
self.token_mixer(self.norm1(x)) |
|
) |
|
) |
|
x = self.res_scale2(x) + \ |
|
self.layer_scale2( |
|
self.drop_path2( |
|
self.mlp(self.norm2(x)) |
|
) |
|
) |
|
return x |
|
|
|
|
|
class MetaFormerStage(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
depth=2, |
|
token_mixer=nn.Identity, |
|
mlp_act=StarReLU, |
|
mlp_bias=False, |
|
downsample_norm=LayerNorm2d, |
|
norm_layer=LayerNorm2d, |
|
proj_drop=0., |
|
dp_rates=[0.] * 2, |
|
layer_scale_init_value=None, |
|
res_scale_init_value=None, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.grad_checkpointing = False |
|
self.use_nchw = not issubclass(token_mixer, Attention) |
|
|
|
|
|
self.downsample = nn.Identity() if in_chs == out_chs else Downsampling( |
|
in_chs, |
|
out_chs, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
norm_layer=downsample_norm, |
|
) |
|
|
|
self.blocks = nn.Sequential(*[MetaFormerBlock( |
|
dim=out_chs, |
|
token_mixer=token_mixer, |
|
mlp_act=mlp_act, |
|
mlp_bias=mlp_bias, |
|
norm_layer=norm_layer, |
|
proj_drop=proj_drop, |
|
drop_path=dp_rates[i], |
|
layer_scale_init_value=layer_scale_init_value, |
|
res_scale_init_value=res_scale_init_value, |
|
use_nchw=self.use_nchw, |
|
**kwargs, |
|
) for i in range(depth)]) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
def forward(self, x: Tensor): |
|
x = self.downsample(x) |
|
B, C, H, W = x.shape |
|
|
|
if not self.use_nchw: |
|
x = x.reshape(B, C, -1).transpose(1, 2) |
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
|
|
if not self.use_nchw: |
|
x = x.transpose(1, 2).reshape(B, C, H, W) |
|
|
|
return x |
|
|
|
|
|
class MetaFormer(nn.Module): |
|
r""" MetaFormer |
|
A PyTorch impl of : `MetaFormer Baselines for Vision` - |
|
https://arxiv.org/abs/2210.13452 |
|
|
|
Args: |
|
in_chans (int): Number of input image channels. |
|
num_classes (int): Number of classes for classification head. |
|
global_pool: Pooling for classifier head. |
|
depths (list or tuple): Number of blocks at each stage. |
|
dims (list or tuple): Feature dimension at each stage. |
|
token_mixers (list, tuple or token_fcn): Token mixer for each stage. |
|
mlp_act: Activation layer for MLP. |
|
mlp_bias (boolean): Enable or disable mlp bias term. |
|
drop_path_rate (float): Stochastic depth rate. |
|
drop_rate (float): Dropout rate. |
|
layer_scale_init_values (list, tuple, float or None): Init value for Layer Scale. |
|
None means not use the layer scale. Form: https://arxiv.org/abs/2103.17239. |
|
res_scale_init_values (list, tuple, float or None): Init value for res Scale on residual connections. |
|
None means not use the res scale. From: https://arxiv.org/abs/2110.09456. |
|
downsample_norm (nn.Module): Norm layer used in stem and downsampling layers. |
|
norm_layers (list, tuple or norm_fcn): Norm layers for each stage. |
|
output_norm: Norm layer before classifier head. |
|
use_mlp_head: Use MLP classification head. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
depths=(2, 2, 6, 2), |
|
dims=(64, 128, 320, 512), |
|
token_mixers=Pooling, |
|
mlp_act=StarReLU, |
|
mlp_bias=False, |
|
drop_path_rate=0., |
|
proj_drop_rate=0., |
|
drop_rate=0.0, |
|
layer_scale_init_values=None, |
|
res_scale_init_values=(None, None, 1.0, 1.0), |
|
downsample_norm=LayerNorm2dNoBias, |
|
norm_layers=LayerNorm2dNoBias, |
|
output_norm=LayerNorm2d, |
|
use_mlp_head=True, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = dims[-1] |
|
self.drop_rate = drop_rate |
|
self.use_mlp_head = use_mlp_head |
|
self.num_stages = len(depths) |
|
|
|
|
|
if not isinstance(depths, (list, tuple)): |
|
depths = [depths] |
|
if not isinstance(dims, (list, tuple)): |
|
dims = [dims] |
|
if not isinstance(token_mixers, (list, tuple)): |
|
token_mixers = [token_mixers] * self.num_stages |
|
if not isinstance(norm_layers, (list, tuple)): |
|
norm_layers = [norm_layers] * self.num_stages |
|
if not isinstance(layer_scale_init_values, (list, tuple)): |
|
layer_scale_init_values = [layer_scale_init_values] * self.num_stages |
|
if not isinstance(res_scale_init_values, (list, tuple)): |
|
res_scale_init_values = [res_scale_init_values] * self.num_stages |
|
|
|
self.grad_checkpointing = False |
|
self.feature_info = [] |
|
|
|
self.stem = Stem( |
|
in_chans, |
|
dims[0], |
|
norm_layer=downsample_norm |
|
) |
|
|
|
stages = [] |
|
prev_dim = dims[0] |
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
for i in range(self.num_stages): |
|
stages += [MetaFormerStage( |
|
prev_dim, |
|
dims[i], |
|
depth=depths[i], |
|
token_mixer=token_mixers[i], |
|
mlp_act=mlp_act, |
|
mlp_bias=mlp_bias, |
|
proj_drop=proj_drop_rate, |
|
dp_rates=dp_rates[i], |
|
layer_scale_init_value=layer_scale_init_values[i], |
|
res_scale_init_value=res_scale_init_values[i], |
|
downsample_norm=downsample_norm, |
|
norm_layer=norm_layers[i], |
|
**kwargs, |
|
)] |
|
prev_dim = dims[i] |
|
self.feature_info += [dict(num_chs=dims[i], reduction=2**(i+2), module=f'stages.{i}')] |
|
|
|
self.stages = nn.Sequential(*stages) |
|
|
|
|
|
if num_classes > 0: |
|
if self.use_mlp_head: |
|
|
|
final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) |
|
self.head_hidden_size = self.num_features |
|
else: |
|
final = nn.Linear(self.num_features, num_classes) |
|
self.head_hidden_size = self.num_features |
|
else: |
|
final = nn.Identity() |
|
|
|
self.head = nn.Sequential(OrderedDict([ |
|
('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), |
|
('norm', output_norm(self.num_features)), |
|
('flatten', nn.Flatten(1) if global_pool else nn.Identity()), |
|
('drop', nn.Dropout(drop_rate) if self.use_mlp_head else nn.Identity()), |
|
('fc', final) |
|
])) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
for stage in self.stages: |
|
stage.set_grad_checkpointing(enable=enable) |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
if global_pool is not None: |
|
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
|
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity() |
|
if num_classes > 0: |
|
if self.use_mlp_head: |
|
final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) |
|
else: |
|
final = nn.Linear(self.num_features, num_classes) |
|
else: |
|
final = nn.Identity() |
|
self.head.fc = final |
|
|
|
def forward_head(self, x: Tensor, pre_logits: bool = False): |
|
|
|
x = self.head.global_pool(x) |
|
x = self.head.norm(x) |
|
x = self.head.flatten(x) |
|
x = self.head.drop(x) |
|
return x if pre_logits else self.head.fc(x) |
|
|
|
def forward_features(self, x: Tensor): |
|
x = self.stem(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.stages, x) |
|
else: |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward(self, x: Tensor): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
if 'stem.conv.weight' in state_dict: |
|
return state_dict |
|
|
|
import re |
|
out_dict = {} |
|
is_poolformerv1 = 'network.0.0.mlp.fc1.weight' in state_dict |
|
model_state_dict = model.state_dict() |
|
for k, v in state_dict.items(): |
|
if is_poolformerv1: |
|
k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k) |
|
k = k.replace('network.1', 'downsample_layers.1') |
|
k = k.replace('network.3', 'downsample_layers.2') |
|
k = k.replace('network.5', 'downsample_layers.3') |
|
k = k.replace('network.2', 'network.1') |
|
k = k.replace('network.4', 'network.2') |
|
k = k.replace('network.6', 'network.3') |
|
k = k.replace('network', 'stages') |
|
|
|
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k) |
|
k = k.replace('downsample.proj', 'downsample.conv') |
|
k = k.replace('patch_embed.proj', 'patch_embed.conv') |
|
k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k) |
|
k = k.replace('stages.0.downsample', 'patch_embed') |
|
k = k.replace('patch_embed', 'stem') |
|
k = k.replace('post_norm', 'norm') |
|
k = k.replace('pre_norm', 'norm') |
|
k = re.sub(r'^head', 'head.fc', k) |
|
k = re.sub(r'^norm', 'head.norm', k) |
|
|
|
if v.shape != model_state_dict[k] and v.numel() == model_state_dict[k].numel(): |
|
v = v.reshape(model_state_dict[k].shape) |
|
|
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_metaformer(variant, pretrained=False, **kwargs): |
|
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (2, 2, 6, 2)))) |
|
out_indices = kwargs.pop('out_indices', default_out_indices) |
|
|
|
model = build_model_with_cfg( |
|
MetaFormer, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), |
|
**kwargs, |
|
) |
|
|
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 1.0, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'classifier': 'head.fc', 'first_conv': 'stem.conv', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'poolformer_s12.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.9), |
|
'poolformer_s24.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.9), |
|
'poolformer_s36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.9), |
|
'poolformer_m36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95), |
|
'poolformer_m48.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95), |
|
|
|
'poolformerv2_s12.sail_in1k': _cfg(hf_hub_id='timm/'), |
|
'poolformerv2_s24.sail_in1k': _cfg(hf_hub_id='timm/'), |
|
'poolformerv2_s36.sail_in1k': _cfg(hf_hub_id='timm/'), |
|
'poolformerv2_m36.sail_in1k': _cfg(hf_hub_id='timm/'), |
|
'poolformerv2_m48.sail_in1k': _cfg(hf_hub_id='timm/'), |
|
|
|
'convformer_s18.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_s18.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_s18.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_s18.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_s18.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'convformer_s36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_s36.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_s36.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_s36.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_s36.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'convformer_m36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_m36.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_m36.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_m36.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_m36.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'convformer_b36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_b36.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_b36.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'convformer_b36.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'convformer_b36.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'caformer_s18.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_s18.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_s18.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_s18.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_s18.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'caformer_s36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_s36.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_s36.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_s36.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_s36.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'caformer_m36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_m36.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_m36.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_m36.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_m36.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
|
|
'caformer_b36.sail_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_b36.sail_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_b36.sail_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2'), |
|
'caformer_b36.sail_in22k_ft_in1k_384': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), |
|
'caformer_b36.sail_in22k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier='head.fc.fc2', num_classes=21841), |
|
}) |
|
|
|
|
|
@register_model |
|
def poolformer_s12(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[2, 2, 6, 2], |
|
dims=[64, 128, 320, 512], |
|
downsample_norm=None, |
|
mlp_act=nn.GELU, |
|
mlp_bias=True, |
|
norm_layers=GroupNorm1, |
|
layer_scale_init_values=1e-5, |
|
res_scale_init_values=None, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformer_s12', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformer_s24(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[4, 4, 12, 4], |
|
dims=[64, 128, 320, 512], |
|
downsample_norm=None, |
|
mlp_act=nn.GELU, |
|
mlp_bias=True, |
|
norm_layers=GroupNorm1, |
|
layer_scale_init_values=1e-5, |
|
res_scale_init_values=None, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformer_s24', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformer_s36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[6, 6, 18, 6], |
|
dims=[64, 128, 320, 512], |
|
downsample_norm=None, |
|
mlp_act=nn.GELU, |
|
mlp_bias=True, |
|
norm_layers=GroupNorm1, |
|
layer_scale_init_values=1e-6, |
|
res_scale_init_values=None, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformer_s36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformer_m36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[6, 6, 18, 6], |
|
dims=[96, 192, 384, 768], |
|
downsample_norm=None, |
|
mlp_act=nn.GELU, |
|
mlp_bias=True, |
|
norm_layers=GroupNorm1, |
|
layer_scale_init_values=1e-6, |
|
res_scale_init_values=None, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformer_m36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformer_m48(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[8, 8, 24, 8], |
|
dims=[96, 192, 384, 768], |
|
downsample_norm=None, |
|
mlp_act=nn.GELU, |
|
mlp_bias=True, |
|
norm_layers=GroupNorm1, |
|
layer_scale_init_values=1e-6, |
|
res_scale_init_values=None, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformer_m48', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformerv2_s12(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[2, 2, 6, 2], |
|
dims=[64, 128, 320, 512], |
|
norm_layers=GroupNorm1NoBias, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformerv2_s12', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformerv2_s24(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[4, 4, 12, 4], |
|
dims=[64, 128, 320, 512], |
|
norm_layers=GroupNorm1NoBias, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformerv2_s24', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformerv2_s36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[6, 6, 18, 6], |
|
dims=[64, 128, 320, 512], |
|
norm_layers=GroupNorm1NoBias, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformerv2_s36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformerv2_m36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[6, 6, 18, 6], |
|
dims=[96, 192, 384, 768], |
|
norm_layers=GroupNorm1NoBias, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformerv2_m36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def poolformerv2_m48(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[8, 8, 24, 8], |
|
dims=[96, 192, 384, 768], |
|
norm_layers=GroupNorm1NoBias, |
|
use_mlp_head=False, |
|
**kwargs) |
|
return _create_metaformer('poolformerv2_m48', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def convformer_s18(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 3, 9, 3], |
|
dims=[64, 128, 320, 512], |
|
token_mixers=SepConv, |
|
norm_layers=LayerNorm2dNoBias, |
|
**kwargs) |
|
return _create_metaformer('convformer_s18', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def convformer_s36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 12, 18, 3], |
|
dims=[64, 128, 320, 512], |
|
token_mixers=SepConv, |
|
norm_layers=LayerNorm2dNoBias, |
|
**kwargs) |
|
return _create_metaformer('convformer_s36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def convformer_m36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 12, 18, 3], |
|
dims=[96, 192, 384, 576], |
|
token_mixers=SepConv, |
|
norm_layers=LayerNorm2dNoBias, |
|
**kwargs) |
|
return _create_metaformer('convformer_m36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def convformer_b36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 12, 18, 3], |
|
dims=[128, 256, 512, 768], |
|
token_mixers=SepConv, |
|
norm_layers=LayerNorm2dNoBias, |
|
**kwargs) |
|
return _create_metaformer('convformer_b36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def caformer_s18(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 3, 9, 3], |
|
dims=[64, 128, 320, 512], |
|
token_mixers=[SepConv, SepConv, Attention, Attention], |
|
norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, |
|
**kwargs) |
|
return _create_metaformer('caformer_s18', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def caformer_s36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 12, 18, 3], |
|
dims=[64, 128, 320, 512], |
|
token_mixers=[SepConv, SepConv, Attention, Attention], |
|
norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, |
|
**kwargs) |
|
return _create_metaformer('caformer_s36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def caformer_m36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 12, 18, 3], |
|
dims=[96, 192, 384, 576], |
|
token_mixers=[SepConv, SepConv, Attention, Attention], |
|
norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, |
|
**kwargs) |
|
return _create_metaformer('caformer_m36', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def caformer_b36(pretrained=False, **kwargs) -> MetaFormer: |
|
model_kwargs = dict( |
|
depths=[3, 12, 18, 3], |
|
dims=[128, 256, 512, 768], |
|
token_mixers=[SepConv, SepConv, Attention, Attention], |
|
norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, |
|
**kwargs) |
|
return _create_metaformer('caformer_b36', pretrained=pretrained, **model_kwargs) |
|
|