|
""" |
|
MambaOut models for image classification. |
|
Some implementations are modified from: |
|
timm (https://github.com/rwightman/pytorch-image-models), |
|
MetaFormer (https://github.com/sail-sg/metaformer), |
|
InceptionNeXt (https://github.com/sail-sg/inceptionnext) |
|
""" |
|
from collections import OrderedDict |
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import trunc_normal_, DropPath, LayerNorm, LayerScale, ClNormMlpClassifierHead, get_act_layer |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
|
|
class Stem(nn.Module): |
|
r""" Code modified from InternImage: |
|
https://github.com/OpenGVLab/InternImage |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs=3, |
|
out_chs=96, |
|
mid_norm: bool = True, |
|
act_layer=nn.GELU, |
|
norm_layer=LayerNorm, |
|
): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_chs, |
|
out_chs // 2, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1 |
|
) |
|
self.norm1 = norm_layer(out_chs // 2) if mid_norm else None |
|
self.act = act_layer() |
|
self.conv2 = nn.Conv2d( |
|
out_chs // 2, |
|
out_chs, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1 |
|
) |
|
self.norm2 = norm_layer(out_chs) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
if self.norm1 is not None: |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm1(x) |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.act(x) |
|
x = self.conv2(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm2(x) |
|
return x |
|
|
|
|
|
class DownsampleNormFirst(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs=96, |
|
out_chs=198, |
|
norm_layer=LayerNorm, |
|
): |
|
super().__init__() |
|
self.norm = norm_layer(in_chs) |
|
self.conv = nn.Conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.conv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs=96, |
|
out_chs=198, |
|
norm_layer=LayerNorm, |
|
): |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1 |
|
) |
|
self.norm = norm_layer(out_chs) |
|
|
|
def forward(self, x): |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.conv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class MlpHead(nn.Module): |
|
""" MLP classification head |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
num_classes=1000, |
|
pool_type='avg', |
|
act_layer=nn.GELU, |
|
mlp_ratio=4, |
|
norm_layer=LayerNorm, |
|
drop_rate=0., |
|
bias=True, |
|
): |
|
super().__init__() |
|
if mlp_ratio is not None: |
|
hidden_size = int(mlp_ratio * in_features) |
|
else: |
|
hidden_size = None |
|
self.pool_type = pool_type |
|
self.in_features = in_features |
|
self.hidden_size = hidden_size or in_features |
|
|
|
self.norm = norm_layer(in_features) |
|
if hidden_size: |
|
self.pre_logits = nn.Sequential(OrderedDict([ |
|
('fc', nn.Linear(in_features, hidden_size)), |
|
('act', act_layer()), |
|
('norm', norm_layer(hidden_size)) |
|
])) |
|
self.num_features = hidden_size |
|
else: |
|
self.num_features = in_features |
|
self.pre_logits = nn.Identity() |
|
|
|
self.fc = nn.Linear(self.num_features, num_classes, bias=bias) if num_classes > 0 else nn.Identity() |
|
self.head_dropout = nn.Dropout(drop_rate) |
|
|
|
def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False): |
|
if pool_type is not None: |
|
self.pool_type = pool_type |
|
if reset_other: |
|
self.norm = nn.Identity() |
|
self.pre_logits = nn.Identity() |
|
self.num_features = self.in_features |
|
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
if self.pool_type == 'avg': |
|
x = x.mean((1, 2)) |
|
x = self.norm(x) |
|
x = self.pre_logits(x) |
|
x = self.head_dropout(x) |
|
if pre_logits: |
|
return x |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
class GatedConvBlock(nn.Module): |
|
r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083 |
|
Args: |
|
conv_ratio: control the number of channels to conduct depthwise convolution. |
|
Conduct convolution on partial channels can improve paraitcal efficiency. |
|
The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and |
|
also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
expansion_ratio=8 / 3, |
|
kernel_size=7, |
|
conv_ratio=1.0, |
|
ls_init_value=None, |
|
norm_layer=LayerNorm, |
|
act_layer=nn.GELU, |
|
drop_path=0., |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.norm = norm_layer(dim) |
|
hidden = int(expansion_ratio * dim) |
|
self.fc1 = nn.Linear(dim, hidden * 2) |
|
self.act = act_layer() |
|
conv_channels = int(conv_ratio * dim) |
|
self.split_indices = (hidden, hidden - conv_channels, conv_channels) |
|
self.conv = nn.Conv2d( |
|
conv_channels, |
|
conv_channels, |
|
kernel_size=kernel_size, |
|
padding=kernel_size // 2, |
|
groups=conv_channels |
|
) |
|
self.fc2 = nn.Linear(hidden, dim) |
|
self.ls = LayerScale(dim) if ls_init_value is not None else nn.Identity() |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.norm(x) |
|
x = self.fc1(x) |
|
g, i, c = torch.split(x, self.split_indices, dim=-1) |
|
c = c.permute(0, 3, 1, 2) |
|
c = self.conv(c) |
|
c = c.permute(0, 2, 3, 1) |
|
x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1)) |
|
x = self.ls(x) |
|
x = self.drop_path(x) |
|
return x + shortcut |
|
|
|
|
|
class MambaOutStage(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
dim_out: Optional[int] = None, |
|
depth: int = 4, |
|
expansion_ratio=8 / 3, |
|
kernel_size=7, |
|
conv_ratio=1.0, |
|
downsample: str = '', |
|
ls_init_value: Optional[float] = None, |
|
norm_layer=LayerNorm, |
|
act_layer=nn.GELU, |
|
drop_path=0., |
|
): |
|
super().__init__() |
|
dim_out = dim_out or dim |
|
self.grad_checkpointing = False |
|
|
|
if downsample == 'conv': |
|
self.downsample = Downsample(dim, dim_out, norm_layer=norm_layer) |
|
elif downsample == 'conv_nf': |
|
self.downsample = DownsampleNormFirst(dim, dim_out, norm_layer=norm_layer) |
|
else: |
|
assert dim == dim_out |
|
self.downsample = nn.Identity() |
|
|
|
self.blocks = nn.Sequential(*[ |
|
GatedConvBlock( |
|
dim=dim_out, |
|
expansion_ratio=expansion_ratio, |
|
kernel_size=kernel_size, |
|
conv_ratio=conv_ratio, |
|
ls_init_value=ls_init_value, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
drop_path=drop_path[j] if isinstance(drop_path, (list, tuple)) else drop_path, |
|
) |
|
for j in range(depth) |
|
]) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class MambaOut(nn.Module): |
|
r""" MetaFormer |
|
A PyTorch impl of : `MetaFormer Baselines for Vision` - |
|
https://arxiv.org/abs/2210.13452 |
|
|
|
Args: |
|
in_chans (int): Number of input image channels. Default: 3. |
|
num_classes (int): Number of classes for classification head. Default: 1000. |
|
depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3]. |
|
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576]. |
|
downsample_layers: (list or tuple): Downsampling layers before each stage. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0. |
|
output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6). |
|
head_fn: classification head. Default: nn.Linear. |
|
head_dropout (float): dropout for MLP classifier. Default: 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
depths=(3, 3, 9, 3), |
|
dims=(96, 192, 384, 576), |
|
norm_layer=LayerNorm, |
|
act_layer=nn.GELU, |
|
conv_ratio=1.0, |
|
expansion_ratio=8/3, |
|
kernel_size=7, |
|
stem_mid_norm=True, |
|
ls_init_value=None, |
|
downsample='conv', |
|
drop_path_rate=0., |
|
drop_rate=0., |
|
head_fn='default', |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.output_fmt = 'NHWC' |
|
if not isinstance(depths, (list, tuple)): |
|
depths = [depths] |
|
if not isinstance(dims, (list, tuple)): |
|
dims = [dims] |
|
act_layer = get_act_layer(act_layer) |
|
|
|
num_stage = len(depths) |
|
self.num_stage = num_stage |
|
self.feature_info = [] |
|
|
|
self.stem = Stem( |
|
in_chans, |
|
dims[0], |
|
mid_norm=stem_mid_norm, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
) |
|
prev_dim = dims[0] |
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
cur = 0 |
|
curr_stride = 4 |
|
self.stages = nn.Sequential() |
|
for i in range(num_stage): |
|
dim = dims[i] |
|
stride = 2 if curr_stride == 2 or i > 0 else 1 |
|
curr_stride *= stride |
|
stage = MambaOutStage( |
|
dim=prev_dim, |
|
dim_out=dim, |
|
depth=depths[i], |
|
kernel_size=kernel_size, |
|
conv_ratio=conv_ratio, |
|
expansion_ratio=expansion_ratio, |
|
downsample=downsample if i > 0 else '', |
|
ls_init_value=ls_init_value, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
drop_path=dp_rates[i], |
|
) |
|
self.stages.append(stage) |
|
prev_dim = dim |
|
|
|
self.feature_info += [dict(num_chs=prev_dim, reduction=curr_stride, module=f'stages.{i}')] |
|
cur += depths[i] |
|
|
|
if head_fn == 'default': |
|
|
|
self.head = MlpHead( |
|
prev_dim, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
norm_layer=norm_layer, |
|
) |
|
else: |
|
|
|
self.head = ClNormMlpClassifierHead( |
|
prev_dim, |
|
num_classes, |
|
hidden_size=int(prev_dim * 4), |
|
pool_type=global_pool, |
|
norm_layer=norm_layer, |
|
drop_rate=drop_rate, |
|
) |
|
self.num_features = prev_dim |
|
self.head_hidden_size = self.head.num_features |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+)\.downsample', (0,)), |
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None), |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
if 'model' in state_dict: |
|
state_dict = state_dict['model'] |
|
if 'stem.conv1.weight' in state_dict: |
|
return state_dict |
|
|
|
import re |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
k = k.replace('downsample_layers.0.', 'stem.') |
|
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) |
|
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k) |
|
|
|
if k.startswith('norm.'): |
|
|
|
k = k.replace('norm.', 'head.norm.') |
|
elif k.startswith('head.'): |
|
k = k.replace('head.fc1.', 'head.pre_logits.fc.') |
|
k = k.replace('head.norm.', 'head.pre_logits.norm.') |
|
k = k.replace('head.fc2.', 'head.fc.') |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'test_input_size': (3, 288, 288), |
|
'pool_size': (7, 7), 'crop_pct': 1.0, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.conv1', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
|
|
'mambaout_femto.in1k': _cfg( |
|
hf_hub_id='timm/'), |
|
'mambaout_kobe.in1k': _cfg( |
|
hf_hub_id='timm/'), |
|
'mambaout_tiny.in1k': _cfg( |
|
hf_hub_id='timm/'), |
|
'mambaout_small.in1k': _cfg( |
|
hf_hub_id='timm/'), |
|
'mambaout_base.in1k': _cfg( |
|
hf_hub_id='timm/'), |
|
|
|
|
|
'mambaout_small_rw.sw_e450_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'mambaout_base_short_rw.sw_e500_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_crop_pct=1.0, |
|
), |
|
'mambaout_base_tall_rw.sw_e500_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_crop_pct=1.0, |
|
), |
|
'mambaout_base_wide_rw.sw_e500_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_crop_pct=1.0, |
|
), |
|
'mambaout_base_plus_rw.sw_e150_in12k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
), |
|
'mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), test_input_size=(3, 384, 384), crop_mode='squash', pool_size=(12, 12), |
|
), |
|
'mambaout_base_plus_rw.sw_e150_in12k': _cfg( |
|
hf_hub_id='timm/', |
|
num_classes=11821, |
|
), |
|
'test_mambaout': _cfg(input_size=(3, 160, 160), test_input_size=(3, 192, 192), pool_size=(5, 5)), |
|
}) |
|
|
|
|
|
def _create_mambaout(variant, pretrained=False, **kwargs): |
|
model = build_model_with_cfg( |
|
MambaOut, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
|
|
@register_model |
|
def mambaout_femto(pretrained=False, **kwargs): |
|
model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 192, 288)) |
|
return _create_mambaout('mambaout_femto', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_kobe(pretrained=False, **kwargs): |
|
model_args = dict(depths=[3, 3, 15, 3], dims=[48, 96, 192, 288]) |
|
return _create_mambaout('mambaout_kobe', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
@register_model |
|
def mambaout_tiny(pretrained=False, **kwargs): |
|
model_args = dict(depths=[3, 3, 9, 3], dims=[96, 192, 384, 576]) |
|
return _create_mambaout('mambaout_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_small(pretrained=False, **kwargs): |
|
model_args = dict(depths=[3, 4, 27, 3], dims=[96, 192, 384, 576]) |
|
return _create_mambaout('mambaout_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_base(pretrained=False, **kwargs): |
|
model_args = dict(depths=[3, 4, 27, 3], dims=[128, 256, 512, 768]) |
|
return _create_mambaout('mambaout_base', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_small_rw(pretrained=False, **kwargs): |
|
model_args = dict( |
|
depths=[3, 4, 27, 3], |
|
dims=[96, 192, 384, 576], |
|
stem_mid_norm=False, |
|
downsample='conv_nf', |
|
ls_init_value=1e-6, |
|
head_fn='norm_mlp', |
|
) |
|
return _create_mambaout('mambaout_small_rw', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_base_short_rw(pretrained=False, **kwargs): |
|
model_args = dict( |
|
depths=(3, 3, 25, 3), |
|
dims=(128, 256, 512, 768), |
|
expansion_ratio=3.0, |
|
conv_ratio=1.25, |
|
stem_mid_norm=False, |
|
downsample='conv_nf', |
|
ls_init_value=1e-6, |
|
head_fn='norm_mlp', |
|
) |
|
return _create_mambaout('mambaout_base_short_rw', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_base_tall_rw(pretrained=False, **kwargs): |
|
model_args = dict( |
|
depths=(3, 4, 30, 3), |
|
dims=(128, 256, 512, 768), |
|
expansion_ratio=2.5, |
|
conv_ratio=1.25, |
|
stem_mid_norm=False, |
|
downsample='conv_nf', |
|
ls_init_value=1e-6, |
|
head_fn='norm_mlp', |
|
) |
|
return _create_mambaout('mambaout_base_tall_rw', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_base_wide_rw(pretrained=False, **kwargs): |
|
model_args = dict( |
|
depths=(3, 4, 27, 3), |
|
dims=(128, 256, 512, 768), |
|
expansion_ratio=3.0, |
|
conv_ratio=1.5, |
|
stem_mid_norm=False, |
|
downsample='conv_nf', |
|
ls_init_value=1e-6, |
|
act_layer='silu', |
|
head_fn='norm_mlp', |
|
) |
|
return _create_mambaout('mambaout_base_wide_rw', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def mambaout_base_plus_rw(pretrained=False, **kwargs): |
|
model_args = dict( |
|
depths=(3, 4, 30, 3), |
|
dims=(128, 256, 512, 768), |
|
expansion_ratio=3.0, |
|
conv_ratio=1.5, |
|
stem_mid_norm=False, |
|
downsample='conv_nf', |
|
ls_init_value=1e-6, |
|
act_layer='silu', |
|
head_fn='norm_mlp', |
|
) |
|
return _create_mambaout('mambaout_base_plus_rw', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def test_mambaout(pretrained=False, **kwargs): |
|
model_args = dict( |
|
depths=(1, 1, 3, 1), |
|
dims=(16, 32, 48, 64), |
|
expansion_ratio=3, |
|
stem_mid_norm=False, |
|
downsample='conv_nf', |
|
ls_init_value=1e-4, |
|
act_layer='silu', |
|
head_fn='norm_mlp', |
|
) |
|
return _create_mambaout('test_mambaout', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|