danjacobellis
commited on
Commit
•
a912f33
1
Parent(s):
49ddfb0
Upload audio_diffusion.py
Browse files- audio_diffusion.py +96 -0
audio_diffusion.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import tensorflow_io as tfio
|
3 |
+
import IPython.display as ipd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import scipy as sp
|
6 |
+
import PIL.Image
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
def wav_to_tf(filename):
|
10 |
+
bits = tf.io.read_file(filename)
|
11 |
+
x = tfio.audio.decode_wav(bits,dtype=tf.int16)[:,0]
|
12 |
+
x = tf.cast(x,tf.float32)
|
13 |
+
x = x - tf.math.reduce_mean(x);
|
14 |
+
x = x / tf.math.reduce_std(x)
|
15 |
+
return tf.Variable(x)
|
16 |
+
|
17 |
+
def play(x,rate=24000):
|
18 |
+
ipd.display(ipd.Audio(x,rate=rate,autoplay=False))
|
19 |
+
|
20 |
+
def slog(x):
|
21 |
+
return tf.sign(x) * tf.math.log(1+ tf.math.abs(x) )
|
22 |
+
|
23 |
+
def show(X,clim=(-3,3), xlim=(0,300), ylim=(0,100)):
|
24 |
+
plt.figure(figsize=(15,6),dpi=200)
|
25 |
+
plt.imshow(tf.transpose(X),origin='lower',cmap='RdBu')
|
26 |
+
plt.colorbar()
|
27 |
+
plt.clim(clim)
|
28 |
+
plt.xlim(xlim)
|
29 |
+
plt.ylim(ylim)
|
30 |
+
|
31 |
+
def mdct(x,L=624):
|
32 |
+
X = tf.signal.mdct(x,L);
|
33 |
+
return tf.Variable(X)
|
34 |
+
|
35 |
+
def imdct(X):
|
36 |
+
y = tf.signal.inverse_mdct(X)
|
37 |
+
return y
|
38 |
+
|
39 |
+
Γ = sp.special.gamma
|
40 |
+
|
41 |
+
def F(x,μ,σ,γ):
|
42 |
+
return sp.stats.gennorm.cdf(x, beta=γ, loc=μ, scale=σ)
|
43 |
+
|
44 |
+
def Finv(x,μ,σ,γ):
|
45 |
+
return sp.stats.gennorm.ppf(x, beta=γ, loc=μ, scale=σ)
|
46 |
+
|
47 |
+
def r(γ):
|
48 |
+
return Γ(1/γ)*Γ(3/γ)/Γ(2/γ)
|
49 |
+
|
50 |
+
def estimate_GGD(X):
|
51 |
+
μ = tf.math.reduce_mean(X)
|
52 |
+
σ = tf.math.reduce_std(X)
|
53 |
+
E = tf.math.reduce_mean(tf.abs(X - μ))
|
54 |
+
ρ = tf.square(σ/E)
|
55 |
+
|
56 |
+
γ = sp.optimize.bisect(lambda γ:r(γ)-ρ, 0.3, 1.5,maxiter=50)
|
57 |
+
return μ,σ,γ
|
58 |
+
|
59 |
+
def tf_to_pil(x):
|
60 |
+
x = np.array(x)
|
61 |
+
return PIL.Image.fromarray(x,mode="L")
|
62 |
+
def pil_to_tf(x):
|
63 |
+
x = np.array(x)
|
64 |
+
return tf.convert_to_tensor(x)
|
65 |
+
|
66 |
+
def σ_prior(band):
|
67 |
+
def sc(z,μ,σ,γ):
|
68 |
+
return sp.stats.skewcauchy.pdf(z, γ, loc=μ, scale=σ)
|
69 |
+
return 10000*(2*sc(band,20,100,0.9)+sc(band,22,12,0.5))
|
70 |
+
|
71 |
+
def img_to_mdct(img):
|
72 |
+
X = []
|
73 |
+
q = 256;
|
74 |
+
Y = pil_to_tf(img)
|
75 |
+
Y = tf.cast(Y,tf.float32)/q
|
76 |
+
for i_band in range(512):
|
77 |
+
band = Y[:,i_band]
|
78 |
+
σ = σ_prior(i_band)
|
79 |
+
X.append(Finv(band,0,σ,0.85))
|
80 |
+
X = tf.stack(X)
|
81 |
+
X = tf.transpose(X)
|
82 |
+
X = tf.where(tf.math.is_inf(X), tf.ones_like(X), X)
|
83 |
+
return tf.cast(X,tf.float32)
|
84 |
+
|
85 |
+
def mdct_to_img(X):
|
86 |
+
Y = []
|
87 |
+
q = 256;
|
88 |
+
for i_band in range(512):
|
89 |
+
band = X[:,i_band]
|
90 |
+
σ = σ_prior(i_band)
|
91 |
+
Y.append(F(band,0,σ,0.85))
|
92 |
+
Y = tf.stack(Y)
|
93 |
+
Y = tf.transpose(Y)
|
94 |
+
Y = tf.round(q*Y)
|
95 |
+
Y = tf.cast(Y,tf.uint8)
|
96 |
+
return tf_to_pil(Y)
|