Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
Tags:
emotion-classification
License:
Convert dataset to Parquet
Browse filesConvert dataset to Parquet.
This dataset uses `tasks`, which are deprecated and will raise an error after the next release of `datasets`. See: https://github.com/huggingface/datasets/pull/6999
- README.md +15 -5
- dataset_infos.json +161 -1
- split/test-00000-of-00001.parquet +3 -0
- split/train-00000-of-00001.parquet +3 -0
- split/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -38,16 +38,16 @@ dataset_info:
|
|
38 |
'5': surprise
|
39 |
splits:
|
40 |
- name: train
|
41 |
-
num_bytes:
|
42 |
num_examples: 16000
|
43 |
- name: validation
|
44 |
-
num_bytes:
|
45 |
num_examples: 2000
|
46 |
- name: test
|
47 |
-
num_bytes:
|
48 |
num_examples: 2000
|
49 |
-
download_size:
|
50 |
-
dataset_size:
|
51 |
- config_name: unsplit
|
52 |
features:
|
53 |
- name: text
|
@@ -68,6 +68,16 @@ dataset_info:
|
|
68 |
num_examples: 416809
|
69 |
download_size: 15388281
|
70 |
dataset_size: 45445685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
train-eval-index:
|
72 |
- config: default
|
73 |
task: text-classification
|
|
|
38 |
'5': surprise
|
39 |
splits:
|
40 |
- name: train
|
41 |
+
num_bytes: 1741533
|
42 |
num_examples: 16000
|
43 |
- name: validation
|
44 |
+
num_bytes: 214695
|
45 |
num_examples: 2000
|
46 |
- name: test
|
47 |
+
num_bytes: 217173
|
48 |
num_examples: 2000
|
49 |
+
download_size: 1287193
|
50 |
+
dataset_size: 2173401
|
51 |
- config_name: unsplit
|
52 |
features:
|
53 |
- name: text
|
|
|
68 |
num_examples: 416809
|
69 |
download_size: 15388281
|
70 |
dataset_size: 45445685
|
71 |
+
configs:
|
72 |
+
- config_name: split
|
73 |
+
data_files:
|
74 |
+
- split: train
|
75 |
+
path: split/train-*
|
76 |
+
- split: validation
|
77 |
+
path: split/validation-*
|
78 |
+
- split: test
|
79 |
+
path: split/test-*
|
80 |
+
default: true
|
81 |
train-eval-index:
|
82 |
- config: default
|
83 |
task: text-classification
|
dataset_infos.json
CHANGED
@@ -1 +1,161 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"default": {
|
3 |
+
"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
|
4 |
+
"citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
|
5 |
+
"homepage": "https://github.com/dair-ai/emotion_dataset",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"text": {
|
9 |
+
"dtype": "string",
|
10 |
+
"id": null,
|
11 |
+
"_type": "Value"
|
12 |
+
},
|
13 |
+
"label": {
|
14 |
+
"num_classes": 6,
|
15 |
+
"names": [
|
16 |
+
"sadness",
|
17 |
+
"joy",
|
18 |
+
"love",
|
19 |
+
"anger",
|
20 |
+
"fear",
|
21 |
+
"surprise"
|
22 |
+
],
|
23 |
+
"names_file": null,
|
24 |
+
"id": null,
|
25 |
+
"_type": "ClassLabel"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"post_processed": null,
|
29 |
+
"supervised_keys": {
|
30 |
+
"input": "text",
|
31 |
+
"output": "label"
|
32 |
+
},
|
33 |
+
"task_templates": [
|
34 |
+
{
|
35 |
+
"task": "text-classification",
|
36 |
+
"text_column": "text",
|
37 |
+
"label_column": "label",
|
38 |
+
"labels": [
|
39 |
+
"anger",
|
40 |
+
"fear",
|
41 |
+
"joy",
|
42 |
+
"love",
|
43 |
+
"sadness",
|
44 |
+
"surprise"
|
45 |
+
]
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"builder_name": "emotion",
|
49 |
+
"config_name": "default",
|
50 |
+
"version": {
|
51 |
+
"version_str": "0.0.0",
|
52 |
+
"description": null,
|
53 |
+
"major": 0,
|
54 |
+
"minor": 0,
|
55 |
+
"patch": 0
|
56 |
+
},
|
57 |
+
"splits": {
|
58 |
+
"train": {
|
59 |
+
"name": "train",
|
60 |
+
"num_bytes": 1741541,
|
61 |
+
"num_examples": 16000,
|
62 |
+
"dataset_name": "emotion"
|
63 |
+
},
|
64 |
+
"validation": {
|
65 |
+
"name": "validation",
|
66 |
+
"num_bytes": 214699,
|
67 |
+
"num_examples": 2000,
|
68 |
+
"dataset_name": "emotion"
|
69 |
+
},
|
70 |
+
"test": {
|
71 |
+
"name": "test",
|
72 |
+
"num_bytes": 217177,
|
73 |
+
"num_examples": 2000,
|
74 |
+
"dataset_name": "emotion"
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"download_checksums": {
|
78 |
+
"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {
|
79 |
+
"num_bytes": 1658616,
|
80 |
+
"checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"
|
81 |
+
},
|
82 |
+
"https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {
|
83 |
+
"num_bytes": 204240,
|
84 |
+
"checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"
|
85 |
+
},
|
86 |
+
"https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {
|
87 |
+
"num_bytes": 206760,
|
88 |
+
"checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"download_size": 2069616,
|
92 |
+
"post_processing_size": null,
|
93 |
+
"dataset_size": 2173417,
|
94 |
+
"size_in_bytes": 4243033
|
95 |
+
},
|
96 |
+
"split": {
|
97 |
+
"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
|
98 |
+
"citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
|
99 |
+
"homepage": "https://github.com/dair-ai/emotion_dataset",
|
100 |
+
"license": "The dataset should be used for educational and research purposes only",
|
101 |
+
"features": {
|
102 |
+
"text": {
|
103 |
+
"dtype": "string",
|
104 |
+
"_type": "Value"
|
105 |
+
},
|
106 |
+
"label": {
|
107 |
+
"names": [
|
108 |
+
"sadness",
|
109 |
+
"joy",
|
110 |
+
"love",
|
111 |
+
"anger",
|
112 |
+
"fear",
|
113 |
+
"surprise"
|
114 |
+
],
|
115 |
+
"_type": "ClassLabel"
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"supervised_keys": {
|
119 |
+
"input": "text",
|
120 |
+
"output": "label"
|
121 |
+
},
|
122 |
+
"task_templates": [
|
123 |
+
{
|
124 |
+
"task": "text-classification",
|
125 |
+
"label_column": "label"
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"builder_name": "parquet",
|
129 |
+
"dataset_name": "emotion",
|
130 |
+
"config_name": "split",
|
131 |
+
"version": {
|
132 |
+
"version_str": "1.0.0",
|
133 |
+
"major": 1,
|
134 |
+
"minor": 0,
|
135 |
+
"patch": 0
|
136 |
+
},
|
137 |
+
"splits": {
|
138 |
+
"train": {
|
139 |
+
"name": "train",
|
140 |
+
"num_bytes": 1741533,
|
141 |
+
"num_examples": 16000,
|
142 |
+
"dataset_name": null
|
143 |
+
},
|
144 |
+
"validation": {
|
145 |
+
"name": "validation",
|
146 |
+
"num_bytes": 214695,
|
147 |
+
"num_examples": 2000,
|
148 |
+
"dataset_name": null
|
149 |
+
},
|
150 |
+
"test": {
|
151 |
+
"name": "test",
|
152 |
+
"num_bytes": 217173,
|
153 |
+
"num_examples": 2000,
|
154 |
+
"dataset_name": null
|
155 |
+
}
|
156 |
+
},
|
157 |
+
"download_size": 1287193,
|
158 |
+
"dataset_size": 2173401,
|
159 |
+
"size_in_bytes": 3460594
|
160 |
+
}
|
161 |
+
}
|
split/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f8407fa1ca9c310f55781f082ed73812f6551e8dda2c61973123a121869245b
|
3 |
+
size 128987
|
split/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10817f0f2ea42358bc62f69a09dfb8bd71701727df6d5a387bea742f3ea06417
|
3 |
+
size 1030740
|
split/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70f0e660b5ebd1ea9a37d2a851f516f08a6d6477cdfc11be204e22a2f1102fd
|
3 |
+
size 127466
|